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Roux-en-Y gastric bypass results in large and sustained weight loss and resolution of

type 2 diabetes in 60% of cases at 1–2 years. In addition to calorie restriction and

weight loss, various gastro-intestinal mediated mechanisms, independent of weight

loss, also contribute to glucose control. The anatomical re-arrangement of the small

intestine after gastric bypass results in accelerated nutrient transit, enhances the release

of post-prandial gut hormones incretins and of insulin, alters the metabolism and the

entero-hepatic cycle of bile acids, modifies intestinal glucose uptake and metabolism,

and alters the composition and function of the microbiome. The amelioration of beta

cell function after gastric bypass in individuals with type 2 diabetes requires enteric

stimulation. However, beta cell function in response to intravenous glucose stimulus

remains severely impaired, even in individuals in full clinical diabetes remission. The

permanent impairment of the beta cell may explain diabetes relapse years after surgery.

Keywords: gastric bypass surgery, beta cell function, glucagon-like peptide 1 (GLP-1), bile acids, microbiome,

sodium glucose transporter 1 (SGLt1), type 2 diabetes

The prevalence of severe obesity, defines as body mass index (BMI) above 40 kg/m2, is increasing.
It is affecting women more than men, and African American women (16.9%) more than Caucasian
(9.3%), or Hispanic (8.9%) women (1). The number of bariatric surgeries performed yearly in
the US has increased only minimally in the last few years and was estimated at 216,000 in 2016.
Hence, only a small percentage of people meeting criteria for bariatric surgery, the most efficient
and durable form of weight loss, actually benefit from it. Roux-en-Y gastric bypass (RYGB) was
the dominant type of surgery performed in the US up to 2011. Vertical sleeve gastrectomy (VSG)
is now the most performed surgery and represented 58% of all bariatric procedures in 2016 (2, 3).
However, RYGB is the surgical model that has been studied themost to investigate gut mechanisms,
independent of weight loss, thatmay contribute to post-operative glucose control. In addition, there
are more long-term data on clinical remission of type 2 diabetes (T2D) after RYGB. Hence, this
review will be more RYGB-centric.

The remarkable effect of bariatric surgery on T2D has generated considerable attention from
the surgical, as well as the research community, in the last 12 years. Non-randomized observational
studies have shown that bariatric surgery results not only in diabetes remission, but also decreases
micro- and macro-vascular complications, cardiovascular disease risk and events, non-alcoholic
steato-hepatitis (NASH) (4) and cancers (5–12). Cohort studies have shown increased longevity
after bariatric surgery (10, 13). The effect of bariatric surgery on T2D remission is of particular
interest. Both observational studies (14) and randomized controlled trials (RCTs) (15) show rates
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of remission varying from 15 to 100%, depending, in part, of
the definition of diabetes remission (16, 17). Determinants of
diabetes remission have been reviewed in meta-analysis (18) and
the IDF-ADATranslational symposium (19). Pre-intervention β-
cell function, use of insulin, known duration of T2D, HbA1C,
age, surgery type, weight loss amount, genomics biomarkers,
and the duration of follow-up after surgery remission, are all
predictors of remission (20–25). The duration of follow up is
certainly one of the key variables. In the Swedish Obesity Study
(SOS), the rate of T2D remission decreases from 72%, at 2
years, to 36% at 10 years (5). Adams et al. show a decrease
in the rate of remission from 75% at 2 years to 51% at 21
years in 84 patients with little attrition (90% follow up) (12).
Arterburn et al. using electronic medical records, studied a large
cohort of 4, 434 individuals with uncontrolled diabetes prior to
surgery; of the 68.2% patients who initially remit their diabetes
at 5 years, one third experience diabetes relapse 5–8 years after
RYGB surgery (11). Overall, clinical parameters pre-intervention,
surgery type, and post-surgery weight loss amount predict about
70% of remission rate. Predictive scores such as DiaRem (26) and
ABCD (27) have been developed.

Pooling data from observational studies (14) and RTCs (15,
28–30), the rate of T2D remission is about 60% 2 years after
RYGB. Themechanism bywhich RYGB results in this remarkable
high rate of diabetes remission is not fully elucidated. The key
question is whether diabetes remission is entirely weight loss
dependent or not. If it is weight loss driven, then research should
focus on the mechanisms, likely centrally mediated, by which
patients eat less, lose about 30% of their total body weight and
are able to keep the weight off, all goals unmatched with diet
and exercise alone (31), or with pharmacotherapy (32). If some
weight loss independent effects are at play in diabetes remission,
they are likely gut-mediated. However, although RYGB results in
many alterations of gut-mediated endocrine mechanisms, some
of which play a role in post-prandial glucose control, their role
in diabetes remission has not been fully demonstrated. The
understanding of these mechanisms is crucial as it may help
identify novel targets for the treatment of T2DM.

Calorie restriction with large (25–30%) and sustained (33–
35) weight loss, are clearly important factors in the remission of
diabetes after RYGB. They remove the chronic insult on the β-
cell resulting from nutrient excess, i.e., glucose and lipid toxicity
(36, 37), decrease inflammation (38–41), decrease fat mass and
ectopic fat depots (42–44), and improve insulin sensitivity (29),
all important modulators of metabolism. However, the benefit
of the surgery on glucose control is apparent very rapidly,
within days after RYGB surgery, prior to large amount of weight
loss (45). In addition, the clinical observations that surgeries
that alters the gastro intestinal track, such as RYGB, VSG, or
biliopancreatic diversion (BPD), result in greater and more
rapid diabetes remission than purely restrictive surgeries such as
adjusted gastric banding (AGB), have prompted investigations of
gastro-intestinal mediated mechanisms of glucose improvement.
The regulation of blood glucose is complex and necessitates
cross talk between the central nervous system, the endocrine
pancreas, the liver, and the intestine (46). The intestine is
the first line of contact with the environment, i.e., nutrient

calorie load and composition, and plays a central role in post-
prandial glucose control. The small intestine signals other organs
via nutrient sensing, glucose transport, satiety and incretin
hormones, bile acids metabolism, and the microbiome. Many of
these intestinal pathways, reviewed below, contribute to glucose
control, independent of weight loss, after RYGB (47).

The gut endocrine system regulates satiety and insulin
secretion, both key factors in body weight and glucose control
(48). Bariatric surgery alters the gut endocrine system in
a favorable way to decrease appetite and improved glucose
metabolism (49). After RYGB, ingested food empties rapidly
from the small gastric pouch into the alimentary limb, and
mix with the biliary and pancreatic exocrine secretion in the
common limb (Figure 1). The rapid emptying of the reduced
gastric pouch results in accelerated nutrient transit (50, 51)
and alters the post-prandial gastro-intestinal hormonal chain
of event. It enhances the release of satiety hormone such as
cholecystokinin (CCK) (52, 53), peptide yy (PYY) (54), glucagon
like peptide 1 (GLP-1) (55–57) and oxyntomodulin (58). A few
clinical studies, using octreotide, demonstrated the role of gut
peptides in increased satiety and decreased food reward after
RYGB surgery (59, 60) (Figure 2). The release of the incretins
GLP-1 (51, 61, 62), and of glucose dependent insulin peptide
(GIP), in some (63–65) but not all (66) studies, is also enhanced
by the accelerated transit; this improves the incretin effect on
insulin secretion (55–57, 63, 67, 68) and lowers post-prandial
glycemia (20). This exaggerated post-prandial release of GLP-1
occurs rapidly after the surgery (69), is independent of weight
loss (51, 70) and can be entirely abolished by administration
of the meal and/or glucose in the gastric remnant via a
gastrostomy (67, 68). Although mean glucose levels improved
after RYGB, the pattern of glucose levels during meals shows
greater variability with earlier and higher glucose peaks, and
lower post-prandial glycemia, at times in the hypoglycemic range,
even if often asymptomatic. A small percentage of individuals
experience debilitating neuroglycopenia after RYGB (71, 72),
in relation to altered counter regulatory hormone response
(73), increased insulin sensitivity (29) and decreased insulin
clearance (74). The infusion of the GLP-1 receptor blocker
exendin 9–39 prevents the large post-prandial insulin secretion
and corrects the post-prandial neuroglycopenia; this illustrates
the effect of endogenous GLP-1 on post-prandial glycemic
control (75). The effect of exendin 9–39 on post-prandial glucose
in individuals with normoglycemia, however, is more modest.
Although exendin 9–39 can blunt post-prandial insulin secretion
(76, 77), it results only in modest worsening of the glycemia
(77–79).

The role of enhanced endogenous GLP-1 on the control
of insulin secretion in response to oral glucose after RYGB
is well demonstrated; its long-term implication on diabetes
remission however remains elusive (79). Beta-cell function,
assessed in response to intravenous glucose stimulus, improves
only minimally and remains impaired in individuals in
clinical diabetes remission and sustained weight loss, up
to 3 years after RYGB (76). The reversal of post-prandial
hyperinsulinemic hypoglycemia by the administration of food
directly via gastrostomy in the remnant stomach, rather than
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per os, highlights the absence of permanent amelioration of
the pancreatic endocrine function years after RYGB (80, 81).
Therefore the increased meal-related insulin secretion after
RYGB depends on enteric stimulation rather than on improved
beta cells responsiveness to glucose (82) or to incretin stimuli

FIGURE 1 | Schematic representation of anatomical changes after RYGB.

(83). The persistent defect of beta cell function, overcome during
meals, may explain, in part, the potential for diabetes relapse
years after RYGB, in older patients who eat a less restrictive diet
and regain some weight.

In addition to the intestinal endocrine function, other
aspects of the gastro intestinal track play an important role in
glucose control (84). The remodeling and reprogramming of the
gastrointestinal track modifies intestinal glucose metabolism and
glucose absorption and contributes to whole body metabolism
after RYGB (85, 86). Interestingly this may not be the case
after VSG (87) (Table 1). Troy et al. show increased intestinal
gluconeogenesis after RYGB in mice, and effect abolished in
GLUT-2 knockout mice (88). Others have shown an increased
expression of genes involved in intestinal glucose transport and
gluconeogenesis, in a rat bypass model (89–91), in association
with decreased insulin resistance (92). Saeidi et al. demonstrated
in rats that the active remodeling of the gastrointestinal tract
increased intestinal cholesterol and glucose utilization, and
contributed significantly to the improvement of whole body
glucose metabolism after RYGB (93). Intestinal glucose transport
is one of the key determinants of post-prandial glucose. The
sodium-glucose transporter 1 (SGLT1) is responsible for the
sodium-dependent, active uptake of glucose across the apical
membrane of the small intestine (94). The expression of SGLT-
1 increases after duodenal jenunal bypass (DJB) in rats (90) and
after RYGB in humans (95). Baud et al. demonstrated, in a well
characterized RYGB model in mini pigs (96), that the intestinal
uptake of ingested glucose is blunted in the bile-deprived
alimentary limb (Figure 1). Glucose absorption can be restored

FIGURE 2 | Mechanistic model of improved glycemia after RYGB. RYGB improves glucose metabolism via weight loss, and via weight-independent mechanisms,

including stimulation of gut peptides, alteration of bile acids enterohepatic cycle, remodeling of the gastrointestinal track, and alteration of the microbiome. Solid lines:

evidence based mechanisms; dashed lines: possible mechanisms. RYGB, Roux-en-Y gastric bypass surgery; HGP, hepatic glucose production; BA derivation, bile

acids derivation; GI, gastro intestinal; GNG, gluconeogenesis; GLP-1, glucagon-like-peptide 1; PYY, peptide YY; OXY, oxyntomodulin; GSIS, glucose-stimulated

insulin secretion; PPG, post-prandial glucose; ↑: increase; ↓: decrease.

Frontiers in Endocrinology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 530

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Laferrère and Pattou Gut Effects of Gastric Bypass

TABLE 1 | Mechanisms of glycemic control after RYGB, VSG, and AGB.

RYGB VSG AGB

Weight loss +++ ++ +

Accelerated nutrient transit + + ↔

↑ GLP-1, PYY, OXY ++ +/– ↔

Bile acid derivation + – –

Circulating bile acid pool ↑ ↑/↔ ↓/↔

Remodeling GI tract + – –

Microbiome + + +

by the addition of either bile or sodium to the glucose meal, and
is blocked with phlorizin. These studies provide direct evidence
of a novel mechanism, via the reduction of active glucose-sodium
transport, of decreased post-prandial glycemia after RYGB (96).
More research is needed to understand the role of altered glucose
transport, intestinal neoglucogenesis, and re-programming of the
intestine on short and long-term glucose control after RYGB in
humans, and its contribution to diabetes remission.

The change of bile acids metabolism after RYGB has
been studied as potential mechanism of improved glucose
control after bariatric surgery (97). Bile acids are synthesized
by the liver, stored in the gallbladder and released in the
duodenum in response to ingestion of nutrient. In non-
operated individuals, after food intake, the chime, bile acids,
and pancreatic exocrine secretions mix to enhance intestinal
lipid digestion and absorption. After RYGB, in the absence of
gastric fundus and pylorus, the ingested food empties rapidly
from the gastric pouch; it then mix with bile acids and pancreatic
secretions only in the common limb (Figure 1), precluding any
duodenal absorption of nutrient (96). In addition to their role on
lipid absorption, bile acids act as signaling molecules to regulate
metabolism and inflammation (98). Bile acids are ligands of the
nuclear receptor farnesoid X receptor (FXR) and the Takeda-G-
protein- membrane receptor-5 TGR5 (99, 100), both receptors
present in several organs that regulate metabolism. The role of
the intestinal bile acids receptors as key regulators of glucose
homeostasis was reviewed recently (101). The circulating bile
acids concentrations (total molar sum) increase after RYGB in
the fasted (102–106) and postprandial (77, 107–113) states in
humans, as well as in rats and mini-pigs (114). The composition
of the bile acids pool is also altered, and could contribute
to the improvement of metabolism (106, 113). The rise of
circulating bile acids after the surgery is delayed, occurs only
a few months after the surgery and seems to be sustained
overtime (106, 111, 113, 115). The underlying mechanisms of the
elevated concentrations of circulating bile acids are unknown.
Contrary to RYGB, calorie restriction and weight loss, either
with (109) or without (112) AGB, decrease circulating bile acids
concentrations (Table 1). Therefore, the rise in circulating bile
acids after RYGB is not weight loss dependent. Experimental bile
diversion, similarly to ileal transposition (116), are associated
with increased circulating bile acids, increased postprandial
GLP-1, weight loss and improved glucose tolerance (117–119).
Possible explanations for the increased systemic pool of bile acids

after RYGB are: increased hepatic synthesis and/or intestinal
reabsorption, decreased fecal excretion and/or hepatic uptake or
change in the microbiota. The increase in the peripheral but
not in the portal circulation indicate that increase in bile acids
systemic concentration after RYGB can be explained, in part, by
a decrease of hepatic recapture, as shown after RYGB in mini
pig (120). Whether the elevated systemic concentration of bile
acids after RYGB in humans (113) is accompanied by increased
concentration of luminal bile acids is unknown. One study in rats,
show no change in luminal bile acids metabolism after RYGB
and VSG (98, 121). Intestinal FXR is an important modulator
of whole body metabolism. Pharmacological intestinal-specific
activation of FXR reduces insulin resistance and stimulates
adipose tissue browning, reduces lipids, inflammation, and
atherosclerosis, while intestinal FXR inhibition favors non-
alcoholic hepatic steatosis (NASH) (122). The effect of VSG
on the improvement of glucose tolerance is reduced in FXR
knock out (KO) mice (123). Bile acids, via activation of TGR5
signaling on the L cells, stimulate GLP-1 and participate in the
control of glucose homeostasis (124–126). TGR5 seems to be
required for the anti-hyperglycemic effect of VSG, as shown
by two independent reports of VSG in TGR-5 KO mice (127,
128).

In all, results from clinical and animal studies suggest an
important role of altered bile acids pool, composition, re-routing
and signaling that may contribute to the metabolic effects of
RYGB or VSG (Table 1). The elegant experiments of bile acids
derivation and FXR and TGR5 KO propose a role for luminal bile
acids in the improvement of metabolism after bariatric surgery.
The clinical translation of these data, however, is still elusive.
The temporal dissociation between the immediate rise of GLP-
1 and the delayed increase in circulating bile acids, makes it
less likely that the two processes are linked, at least in the early
months after RYGB. Important information on intraluminal bile
acids concentration after RYGB (or VSG) in humans is lacking.
The composition, and therefore the function of the bile acids
differs amongst species and add to the difficulty of translational
research in this field. Finally, the large variability of the circulating
concentrations of bile acids in humans studies (115) point out to
other mechanisms, perhaps diet and/or microbiome dependent,
that may modulate their composition and function.

Specific composition of the gut microbiome associates with
pathological conditions such as cardiovascular disease, and
with certain phenotypes like obesity and insulin resistance
(129, 130). The link between gut microbiota composition and
metabolic status is established through transplantation studies
in humans and animals (131). However, the mechanism by
which the gut microbiome maintains health or contributes to
diseases is unknown. The change in microbiota composition,
diversity and function is proposed as mechanism of some
of the metabolic alterations after bariatric surgery (132–138).
Transplantation of gut microbiota from RYGB mice (139) or
patients (140) to germ-free mice reduces weight, fat mass,
and induces metabolic improvements. Together, these studies
indicate a possible link between gut flora modifications and
metabolic changes after RYGB. Proposed mechanisms involve
changes in glucose transport and sensing, GLP-1, short-chain
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fatty acids, lipogenesis, food intake, energy expenditure, adipose
tissue metabolism, bile acids metabolism (141–146). One study
however showed no link between alteration of the microbiome
signature after RYGB and VSG and luminal metabolism of
bile acids (121). The translational applicability of germ free
mice experiments to humans is questionable. Human bariatric
microbiota studies are often short term, lack controlled condition
(diet, antibiotics and other drugs, metabolic status), favor
description of composition rather than function of microbiome,
and are based on feces, rather than luminal flora analysis.
Future research will help identify whether the pre-surgery
microbiome signature can be used to predict the metabolic
response to the surgical intervention, and /or whether the
change of microbiome composition and function can identify
novel pathways of improved metabolism after various types of
surgeries.

An important variable often overlooked in cross sectionals
studies, is the change over time of many of the mechanisms
described above. The accelerated nutrient transit time and
stimulated GLP-1 release both occur immediately after RYGB
and are sustained over time. However, the variance of the
GLP-1 response increases between 1 month and 3 years post-
surgery (147). We (113) and others (111) have demonstrated
a temporal change of the pool of circulating bile acids after
RYGB. Gut adaptation (hypertrophy, density of endocrine cells,
glucose sensing, GNG) and themicrobiome, are likely to undergo
temporal transformation, in part, diet dependent. These data
show the complexity of the gut physiology and adaptability, the
difficulty of clinical studies, and the importance of longitudinal
long-term studies for a better understanding of the contribution
of the gut on post-prandial glycemia as well as diabetes remission.

In summary, RYGB results in T2DM remission as a
result of large and sustained weight loss. RYGB also triggers
weight independent gastro-intestinal mechanisms, including the

stimulation of the incretins, the modulation of intestinal glucose
transport and metabolism, the alteration of the entero-hepatic
bile acids cycle, and change in the microbiome. These gut-
related systems are inter-related as bile diversion impairs upper
intestinal glucose uptake, nutrient malabsorption and bile acids
can stimulate GLP-1, and the microbiome modulates many of
these gastrointestinal targets. The mechanisms described above
are likely to act in concert to contribute, with weight loss
and calorie restriction, to glucose control after bariatric surgery
(Figure 2). However, more clinical research needs to be done to
understand the molecular mechanisms by which these different
systems interact to improve glucose metabolism and to result
in diabetes remission. The lack of normalization of beta cell
function in response to IV glucose stimulus may be an important
determinant of the future risk of diabetes relapse after RYGB
surgery.
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