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Assembly of multi enzyme complexes at subcellular localizations by anchoring- and

scaffolding proteins represents a pivotal mechanism for achieving spatiotemporal

regulation of cellular signaling after hormone receptor targeting [for review, see (1)]. In the

3′ 5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) signaling

pathway it is generally accepted that specificity is secured at several levels. This includes

at the first level stimulation of receptors coupled to heterotrimeric G proteins which

through stimulation of adenylyl cyclase (AC) forms the second messenger cAMP. Cyclic

AMP has several receptors including PKA. PKA is a tetrameric holoenzyme consisting

of a regulatory (R) subunit dimer and two catalytic (C) subunits. The R subunit is the

receptor for cAMP and compartmentalizes cAMP signals through binding to cell and

tissue-specifically expressed A kinase anchoring proteins (AKAPs). The current dogma

tells that in the presence of cAMP, PKA dissociates into an R subunit dimer and two C

subunits which are free to phosphorylate relevant substrates in the cytosol and nucleus.

The release of the C subunit has raised the question how specificity of the cAMP and

PKA signaling pathway is maintained when the C subunit no longer is attached to the

R subunit-AKAP complex. An increasing body of evidence points toward a regulatory

role of the cAMP and PKA signaling pathway by targeting the C subunits to various C

subunit binding proteins in the cytosol and nucleus. Moreover, recent identification of

isoform specific amino acid sequences, motifs and three dimensional structures have

together provided new insight into how PKA at the level of the C subunit may act in a

highly isoform-specific fashion. Here we discuss recent understanding of specificity of

the cAMP and PKA signaling pathway based on C subunit subcellular targeting as well

as evolution of the C subunit structure that may contribute to the dynamic regulation of

C subunit activity.
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THE cAMP AND PKA SIGNALING PATHWAY AND cAMP
RECEPTORS

In the classical conception of the Protein kinase A (PKA) signaling pathway, depicted in Figure 1,
activation of PKA starts with the binding of a ligand to a seven transmembrane G protein
coupled receptor [GPCR, denoted (1) in Figure 1]. Examples of such ligands include the hormones
epinephrine, prostaglandin E2 (PGE2) and glucagon in addition to various neurotransmitters and
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other signal substances (3, 4). GPCRs have an extracellular
surface recognizing ligands, and an intracellular surface
interacting with membrane-bound heterotrimeric G proteins
[denoted (2)]. Binding of a ligand to the extracellular part causes
a conformational change in the G protein-interacting surface
of the GPCR. The heterotrimeric G proteins are composed
of α, β, and γ subunits. In the inactive state, all subunits are
bound together, and the α subunit has a GDP-molecule attached.
After activation through the ligand-bound GPCR, the α subunit
exchanges its GDP-molecule with GTP [denoted (3)]. This
causes dissociation of the subunits into an activated α subunit
and an activated βγ complex (5, 6). There are several types of G
protein α subunits (Gα), and different α subunits show distinct
specificities. In the PKA signaling pathway, the stimulatory G
protein known as GS activates membrane (m)-bound adenylyl
cyclase [AC, denoted (4)] (7).The mACs produce cAMP from
ATP, and can increase the intracellular cAMP-concentration
by more than twentyfold in seconds after stimulation (8).
Free cAMP [denoted (5)] can bind to and stimulate several
proteins, including popeye domain-containing [POPDC,
denoted (6)] proteins, cyclic nucleotide-gated ion channels
[CNGs, denoted (7)], exchange protein directly activated by
cAMP [Epac, denoted (8)], and PKA holoenzymes [denoted
(9)] (3, 4). CNGs are identified in photoreceptor cells, olfactory
sensory neurons, cardiac sinoatrial node cells, kidney, liver,
lymphocytes, muscle, and testis (9–13). CNG channels in visual
and olfactory sensory cells convert stimuli into electrical signals
through cationic influx, mainly Ca2+ (14). Cyclic AMP binds
to Epac with high affinity and activates the Ras superfamily
of small GTPases Rap1 and Rap2 (15). There are two variants
of mammalian Epac, Epac1, and Epac2. Epac is involved in a
range of processes, including cell adhesion, cell-cell junction,
exocytosis/secretion, cell differentiation and proliferation, gene
expression, apoptosis, cardiac hypertrophy, and phagocytosis
(15–17). POPDC proteins are a family of membrane proteins
that are found in cardiac and skeletal muscle cells, among
other tissues, and are encoded by the three genes POPDC1,
POPDC2, and POPDC3. They have high affinities to cAMP,
and mutations in the POPDC1 gene have been implicated in
limb-girdle muscular dystrophy and cardiac arrhythmia (18, 19).
Despite a vast number of reports describing these receptors for
cAMP, the best studied cAMP receptor is PKA [denoted (9) in
Figure 1] (3). Inactive PKA exists as a tetrameric holoenzyme
of two regulatory (R) subunits in a dimer formation and two
catalytic (C) subunits. The R subunits contain two cAMP binding
domains (CBDs, A and B) each. Binding of cAMP to CBD B
causes a conformational change of the R subunits and exposure
of CBD A. The classical conception of two cAMP molecules
bound to each of the R subunits is that the C subunits are released
and in that way become catalytically active (20). The C subunits
belong to the serine threonine protein kinase (STKs) family
of enzymes, and more than 250 PKA-substrates are identified
(21). The consequences of PKA activation are numerous,
including regulation of metabolism, gene transcription, cell
growth and division, and cell differentiation (3). Cyclic AMP
binds to and is degraded by cAMP phosphodiesterases [PDEs,
denoted (10) Figure 1]. The cAMP PDEs can be stimulated via

phosphorylation by PKA, leading to reduced cAMP levels and
consequently down-regulation of cAMP signaling in a negative
feedback loop (22).

THE PKA R SUBUNIT IS A MAJOR
INTRACELLULAR cAMP RECEPTOR

There are two major forms of the PKA holoenzyme, designated
PKA type I (PKAI) and PKA type II (PKAII) (3). While PKAI
is made by association of the C subunit with what is known
as RI, PKAII contains RII subunits (23–25). RI and RII were
initially distinguished based on their different affinity for the
ion-exchange resin diethylaminoethyl (DEAE), and therefore
elute at different concentrations of NaCl (26, 27). Two known
isoforms of each of the RI and RII subunits are described and
called RIα, RIβ, RIIα, and RIIβ, respectively (28–31). Despite that
heterodimers of RIα and RIβ have been reported to form PKAI,
most PKAI holoenzymes are thought to contain either RIα or RIβ
homodimers (24, 32, 33). The R subunit isoforms also associate
with different sets of proteins, locating the PKA holoenzymes to
different subcellular compartments (34–36). All R subunits share
the same overall architecture (37). The N-terminus contains
a dimerization/docking domain (D/D domain). This is where
the R subunits bind to each other, forming dimers. The D/D
domain is also the binding site for proteins belonging to the A
kinase anchoring protein [AKAP (see below for details) denoted
(11)] family (38). Next to the D/D domain follows a linker
region, containing a substrate/autoinhibitor site, including the
primary C subunit recognition site (RS1). The RS1 site contains
an actual phosphorylation site (P-site) in RII (α and β), and a
pseudo site in RI. In RII the P-site is occupied by a Ser residue
(38), making RII a substrate inhibitor of the C subunit. The RI
subunits on the other hand represent pseudosubstrates as Ala
(RIα) or Gly (RIβ). Carboxy (C)-terminally in the R subunits
two cAMP binding domains are located and denoted CBD A
and B, as previously described (38, 39). The various R subunits
are differentially expressed in different tissues. Whereas, RIα
and RIIα are ubiquitously expressed (40–42), RIβ is primarily
found in brain (43), and RIIβ is expressed in endocrine tissues,
brain, fat and reproductive organs (24, 44). The R subunit
genes are, at least partially, non-redundant as studies of R
subunit null mutated [knockout (KO)] mice reveal altered
phenotypes in all four instances of R subunit ablation. The
most pronounced phenotype has been described for an RIα
null mutation where the mice displayed severe developmental
defects and die at an early embryonic stage (45). Null mutation
of the other R subunits did not show such severe phenotypes.
RIIα-knockouts show reduced ocular dominance plasticity and
long-term potentiation (46), as well as a predisposition to
hematopoietic neoplasms (47). Ablation of RIβ was associated
with reduced inflammatory response and nociceptive pain (48).
In addition, RIβ KO showed a role for this subunit in tuning
hippocampal synaptic plasticity (49, 50). Finally, RIIβ KO studies
revealed this isoform as important in metabolic and temperature
regulation (51–53) as well as motor behavior and neural gene
expression (54). Interestingly, null mutation of RIIβ in mice
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FIGURE 1 | Cyclic AMP signaling pathways. Epac, Exchange protein directly activated by cAMP; AKAP, A Kinase Anchoring Protein; PDE, phosphodiesterase. See

main text for details. Figure based on Wong and Scott (2). Figure created using the Servier Medical Art resource (http://www.servier.com).

leads to delayed cardiac aging, including resistance to age-related
diastolic dysfunction and a superior global ventricular function
compared to wild type (WT) (55).

Recently a report was published demonstrating that the
stoichiometric relation between RI and RII is 0.6–1.5µM
revealing a 2.5-fold excess of RII in any given tissue (56). To this
end, they also showed that the C subunit is greatly outnumbered
by the R subunit in that the R concentration exceeds Cmore than
17-fold.

PKA C SUBUNIT VARIANTS

In humans, two principal C subunit encoding genes are
identified: PRKACA and PRKACB, encoding proteins Cα and
Cβ, respectively. In addition, PRKX and the retroposons PRKY
and PRKACG are identified as PKA C subunit genes. PRKY
and PRKACG have not been shown to translate into proteins,
whereas PRKX is translated into a cAMP-responsive PK which
is inhibited by R subunits (57–61). At physiological conditions,
in vitro experiments show that PRKX activity is inhibited by high
affinity binding to RIα subunits, whereas RIIα subunits only show
weak binding (61). Deletion of PRKACA in mice reveals a severe
phenotype with most of the offspring dying before or at birth and
during the early postnatal period (62). The mammalian PRKACA
gene encodes two Cα variants designated Cα1 and Cα2 (63). Cα1
and Cα2 are encoded with different amino (N)-terminal ends due
to the use of alternative 5′ first exons in the PRKACA gene. Cα1
is ubiquitously expressed, and is the main source of PKA activity

in most tissues (64). Cα2 is exclusively expressed in a late stage
of sperm maturation in the testis, and selective ablation of Cα2
in mice renders the mice infertile (65). Cβ exists in several splice
variants due to the use of four known alternative 5′ exons, giving
rise to the proteins Cβ1, Cβ2, Cβ3, and Cβ4 (66, 67). In addition,
Cβ3 and Cβ4 may contain additional exons located 5′ of exon 2
termed a, b, and c (68, 69). Cβ1 is ubiquitously expressed, whereas
the other Cβ splice variants are more specifically expressed in
tissues like lymphoid and neuronal tissue (68, 69). Inactive Cβ

subunit variants missing exon 4 have also been identified in
nervous tissue (70). Genetic null-mutation of PRKACB results
in a reduced accumulation of visceral fat in mice fed a high
caloric diet, and the mice are protected from certain age-related
problems, including cardiac dysfunction and hypertrophy (55).

Thus, most of the variability between Cα, Cβ, and their splice
variants, is found in the N-terminal parts of these proteins.
Several reports have made attempts to document functional
features associated with the N-terminal end of the C subunit
which is encoded by exon 1. The Cα2, Cβ2, Cβ3, and Cβ4 splice
variants are lacking the N-terminal myristoylation site which
is seen in both Cα1 and Cβ1 (66). C subunit myristoylation is
thought to play a regulatory role in activity and localization of the
C subunit (71, 72). The enzyme N-myristoyl transferase (NMT)
catalyzes the covalent attachment of myristic acid onto Gly1. In
the unmyristoylated form, the N-terminus of the C subunit is
disordered, and it becomes ordered upon myristoylation (73).
The ordered structure that is formed includes the N-terminal
amphipathic helix known as the A helix (74). Experiments have
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shown that A kinase interacting protein (AKIP1) binds to the
N-terminus of Cα1 (75), implying that the N-tail has a role in
protein-protein interactions. Myristoylation leads to increased
thermal stability of the C subunit, and the myristoyl group
may localize to a hydrophobic pocket in the C subunit. In the
myristoylated C subunit, the myristoylation site becomes solvent
exposed upon binding to RII, but not RI subunits. This also leads
to increased N-terminal flexibility, and the holoenzyme becomes
more hydrophobic. This hydrophobicity stimulates association
of PKA to membranes (76, 77). The latter has recently been
substantiated in two recent publications (56, 78). In the work
by Walker-Gray, they showed by inter- and intralink analysis of
Cβ and RII and using XL-MS that a complex of myristoylated
Cβ1 in association with RIIβ and myristoylated and acetylated
(palmitate) AKAP was linked to the plasma membrane. This
suggests an anchoring function of C myristoylation of the Cβ1
subunit which may also account for Cα1 which undergoes
myristoylation at the same site as Cβ1.

In addition to the Gly1 myristoylation site, the two modifiable
residues Asn2 and Ser10 are identified only in Cα1 and Cβ1.
Asn2 may be deamidated into Asp2, whereas Ser10 is a site
for autophosphorylation by PKA (71, 79, 80). Deamidated
forms have been identified in about one third of all Cα1 and
Cβ1 proteins isolated from hearts of pig and cattle, and the
localization of the two variants were analyzed by microinjection
of each fraction into the cytoplasm of NIH 3T3 cells, showing
a relative lower amount of deamidated C subunit accumulating
in the nucleus. This was also reflected by a lower degree of
PKA-mediated phosphorylation of the transcription factor cAMP
response element-binding protein (CREB) in cells microinjected
with the Asp2 form (81). It is believed that deamidation of
Asn2 to Asp2 occurs through the non-enzymatic β-aspartyl
shift mechanism (81, 82). Ser10 has only been identified as
phosophorylated in C subunit purified from E. coli, and has
been proposed to be a transient modification in mammalian C
(81). Deamidation of Asn2 seems to be a prerequisite for Ser10
phosphorylation (83). Ser10 phosphorylation is speculated to be
important for C subunit membrane association controlled by a
myristoyl/phosphoserine switch (74). Experiments indicate that
phosphorylation of Ser10 and/or the presence of membranes
may alter the conformation of the myristoyl group from “myr-
in” (i.e., myristic acid bound to the hydrophobic pocket) to
“myr-out” (74). Much less is known regarding the potential
functions of the various N-termini of Cβ apart from Cβ1. The
Cβ2 N-terminus is the longest of all the C subunits, with
human PRKACB exon 1-2 encoding 62 residues (excluding the
N-terminal Met) (69). Cβ2 has previously been identified in
mammals and birds, and the N-terminus includes a stretch
of residues predicted to form an amphipathic helix, possibly
involved in membrane targeting (67). Human PRKACB exons
1-3, 1-4, a, b, and c are short exons encoding between two and
eight residues. Cβ3 encodes an N-terminal Gly, but experiments
indicate that this variant is not myristoylated (66). Seen together,
this may suggest that features associated with the very proximal
N-terminus may determine 3D structure, membrane binding
capacity as well as solubility and may determine splice variant
specific features.

Based on the high degree of sequence identity between Cα1
and Cβ1 it may be assumed that they have highly comparable
features. However, it has been demonstrated that Cα1 has a three-
to five-fold lower Km for certain peptide substrates than Cβ1, in
addition to a three-fold lower IC50 for inhibition by the protein
kinase inhibitor (PKI) and RIIα (84).

To conclude, despite a certain degree of overlapping functions,
the various isoforms constituting the PKA holoenzymes may
determine the downstream effects of PKA activation (85). For
example, ablation of Cα but not Cβ has been shown to lead
to upregulation of the activation marker CD69 in murine
lymphocytes, which was associated with increased responses to
allogeneic stimulation as well as reduced sensitivity to cAMP-
mediated inhibition of T cell proliferation (86). Moreover, it has
recently been identified that Cβ and not Cα is necessary for
inducing expression of PDE4B, a target for treatment of severe
chronic obstructive pulmonary disease (COPD) (87).

SUBCELLULAR ANCHORING OF PKA—A
MEANS TO SEQUESTER CAMP EFFECTS

A vast number of substrates and hence processes are regulated
by the cAMP-PKA signaling pathway. Accordingly, a major
question is, how specificity is maintained when various hormones
binding to their respective receptors stimulate endogenous
production of a single second messenger cAMP can elicit highly
diverse signals with high precision in time and space. As
understood from above, specificity is achieved at many levels,
including at the level of GPCR, AC, and PDEs. Another level of
specificity in the signaling pathway, which also turned out to be
a general mechanism for most intracellular signaling pathways
was the discovery of subcellular localization and pools of PKA
differentially regulated by the cAMP-inducing receptor agonists,
isoproterenol and prostaglandin E1 (PGE1) in the heart (88–91).
It was later shown that the receptor for isoproterenol is located
at a different place on the cardiomyocytes compared to PGE1
receptor generating distinct intracellular pools of cAMP (92, 93).
In these and other studies it was also revealed that the effects of
isoproterenol and PGE1 as PDE could be differentially regulated
by PDE4 and PDE3, respectively (94). The differential effects
of agonists and PDE3 strongly points to compartmentalization
of cAMP, but also to the colocalization of enzyme complexes,
such as PKA and PDEs. Later it has been demonstrated that
this occurs through subcellular targeting of PKA, PDEs and
other proteins important to signal transduction to a large group
of proteins which are designated AKAPs (A kinase anchoring
proteins) (95–97). AKAPs are a group of structurally diverse
proteins, with a common function, targeting of the R subunit
and hence, confining PKA to discrete locations within the cell.
R subunit binding is conveyed by a targeting domain that
anchors the R subunit, and thereby PKA to specific subcellular
locations. More than 50 AKAPs have been identified that are
expressed in virtually all tissue and cell types examined. These
complexes are typically associated with of PKAII holoenzymes
as AKAPs were initially shown to bind to the RII subunit with
an up to several hundred fold higher affinity compared to the
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RI subunit (98). The nature of the RII binding domain was
initially revealed by helical wheel analysis of AKAP13 (also
known as AKAP-Lbc) and a peptide termed human thyroid
31 (Ht31) which was derived from the predicted RII binding
domain of AKAP13. It is however well established that the PKAI
holoenzymes, which are mainly identified in the soluble fraction
of the cell, may bind to RI- and dual-specific AKAPs (95, 96).
They can localize to most cellular organelles including the plasma
membrane (AKAP7 and AKAP5), the cytoskeleton (AKAP12
and AKAP13), mitochondria (AKAP1), the Golgi apparatus
(AKAP9), vesicles (AKAP11) as well as the nucleus (AKAP 8)
(99). Because AKAPs bind RII and RI with different affinities,
AKAPs are normally subdivided into three classes; RI-, RII-,
or dual-specific (100). The RII binding domain consists of an
amphipathic α-helix of 14–18 amino acids that binds to the four-
helix bundle formed by the D/D domains of the R dimers. AKAPs
may also bind to the D/D domain of RI. However, it has been
shown that several dual-specific AKAPs have an additional PKA
binding determinant termed RI specifier region. It is located
outside the common amphipathic helix motif and contains basic
residues that associate specifically with RI and not RII (100).
AKAPs also serve as signaling nodes for several participants
in the cAMP signaling cascade, including GPCRs (101), ACs
(102), Epac (103), protein phosphatatses (PPs) (104), and PDEs
(105). In this way AKAPs function as scaffolds that orchestrate
signaling events in space and time by forming multicomponent
complexes. Thus, AKAPs facilitate cross talk and integration
of different signaling pathways and are often referred to as
signalosomes (99). This function is well documented by the
dynamic association of RIα in the holoenzyme form, associated
with C, and in non-C bound form and AKAP11 (106). Day
and coworkers demonstrate an AKAP-dependent localization
of RIα to multivesicular bodies (MVBs). Binding of RIα to
AKAP11 occurs both in RIα holoenzymes and in RIα dimers
not bound to C subunits. However, recruitment to MVBs takes
place exclusively after the C subunits are released. Association
with MVBs is reversed when C subunits reassociate with the RIα
subunits. This documents that AKAPs may direct R subunit (in
this case RIα) functionality after C subunit dissociation.

C KINASE ANCHORING
PROTEINS—C-KAPS

Proteins that bind the PKA C subunits are diverse and located
to all parts of the cell, e.g., the outer membrane, the cytoplasm,
and the nucleus. For this group of proteins, we propose the term
C kinase anchoring proteins, C-KAPs. C-KAPs are all proteins
that bind directly to the C subunit and affect its localization.
They include substrates and pseudosubstrates such as the RII-
and RI subunits, respectively, as well as proteins binding to
other parts of the C subunit outside of the active site cleft,
such as AKIP. This means we define C-KAPs as distinct from
proteins targeting the R subunits to subcellular compartments
through AKAP interactions and proteins that interact transiently
as substrates for the C subunits without targeting the C subunit
to subcellular structures or other scaffolds. Given this definition,

the first C-KAP apart from the R subunits to be described was
PKI [Figure 2 (1)] (107). There are three isoforms of PKI; PKIα,
PKIβ, and PKIγ, and all act as physiological inhibitors of PKA
by serving as pseudosubstrates for the C subunit (108, 109). As
all PKA C subunits except Cγ are identical in the catalytic cleft it
is assumed that PKI binds with the same affinity and specificity
to all Cα and Cβ isoforms, a feature which is confirmed for Cα1
and Cα2 (110). With respect to the Cγ subunit, it is not inhibited
by PKI (111). The PKI isoforms contain a nuclear export signal
(NES) and is important in active transport of free C subunits from
the nucleus (112). No apparent phenotypical effects of ablating
the different PKI isoforms in mice have been demonstrated, even
though their different expression patterns imply specific roles
(113, 114).

Several C-KAPs are expressed in the cytoplasm. One such
protein is the small GTPase Rab13 which is involved in
tight junction dynamics. Vasodilator-stimulated phosphoprotein
(VASP) is a PKA substrate and a key actin cytoskeletal
remodeling protein (115). GTP-bound Rab13 interacts directly
with PKA Cα and inhibits PKA dependent phosphorylation and
tight junction associated VASP. This leads to functionally defect
tight junctions (116) [Figure 2 (2)].

A number of components of the cAMP signaling cascade
have been localized to caveolae which are a part of lipid
rafts and function as endocytic and exocytic compartments
at the plasma membrane of most cells. Caveolin-1, which is
the main component of caveolae may be considered a C-KAP,
as it binds and targets the C subunit to the cell membrane
(117, 118). The PKA C subunit associates through binding
of the Caveolin-1 scaffolding domain on the C-terminus and
the binding has been shown to inhibit C subunit enzymatic
activity (118) [Figure 2 (3)]. This may explain why Caveolin-
1 KO mice revealed hyperactive PKA (119). Caveolin-1 KO
mice also have abnormal lipid homeostasis with phenotypic
characteristics associated with type II diabetes, a feature that has
been linked to disturbances in PKA-mediated phosphorylation.
To this end it has been shown that Caveolin-1 bound C
subunit also binds to perilipin, which is a protein that
covers and protects lipid droplets, can be phosphorylated by
PKA, and co-immunoprecipitates with Caveolin-1-PKA C from
adipocytes upon β-adrenergic stimulation (120). Moreover, it has
been shown that PKA-mediated perilipin phosphorylation and
subsequent release of lipids from lipid droplets is dependent
on Caveolin-1 induced formation between PKA C and perilipin
(119). Furthermore, optic atrophy 1 (OPA1), a protein known
to regulate mitochondrial dynamics, was identified as a dual-
specificity AKAP that associates with lipid droplets. OPA1 targets
PKA to lipid droplets for the purpose of hormonal control of
perilipin phosphorylation and lipolysis (121).

p75 neurotrophin receptor (p75NTR) may be considered
a cell membrane-bound C-KAP [Figure 2 (3)]. Ligands for
p75NTR are the neurotrophins, a class of growth factors that
regulate the survival, differentiation, growth, and apoptosis
of neurons. p75NTR has been shown to interact with and
be phosphorylated by the PKA Cβ4ab splice variant (122).
Moreover, activation of the cAMP and PKA pathway was
required for translocation of p75NTR to lipid rafts and for the
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FIGURE 2 | Subcellular localization of C kinase anchoring proteins—C-KAPs. The PKA C subunit associates and regulates the activity of proteins located to multiple

cellular compartments and molecules. These compartments include the outer cell membrane, the cell cytoplasm and the cell nucleus. In the nucleus, C-KAPs

co-locate the PKA C subunit with DNA and components of the splicing factor compartment (SFC). In the cytoplasm the PKA C subunit in addition to associate with

the PKA R subunit interacts with the PKA inhibitor PKI (1), the small G protein Rab13 (2), PDE7A1 (8) the Rsk1 kinase through regulation by ERK (9), and finally IkB (5)

which is a component of the cytoplasmic NFkB/AKIP complex. In the outer membrane compartment PKA C subunits associate with caveolin-1, p75NTR (3), and the

heterotrimeric G protein Gα0 (7). In the nucleus, the PKA C subunit regulates DNA activity through interaction with SAF-1 (4), HSF-1 (10), HA95 (12), and p73 (11).

Finally, the PKA C subunit is also involved in regulating mRNA splicing in SFC by direct interaction with serine and arginine (SR) proteins such as SFSR17A (13),

SRSF1 and SRSF7 (14).

receptors biochemical and biological activities. Furthermore,
p75NTR has also been demonstrated to associate with Caveolin
(123).

An important downstream effect of neurotrophin bound
to p75NTR is to activate the nuclear factor κ-light-chain-
enhancer of activated B cells (NFκB) pathway (124). NFκB
has been implicated as an important transcription factor for
serum amyloid A (SAA) which is a family of plasma proteins
that is linked with several inflammatory diseases, including
amyloidosis, rheumatoid arthritis and atherosclerosis. Activation
of has further been linked to SAA-activating factor 1 (SAF) which
has been shown to associate with PKA Cα (125) [Figure 2 (4)].
In line with this, activation of SAF-1 is cAMP-dependent and
cAMP increases the transactivating and DNA-binding properties
of SAF-1 (126).

NFκB is a member of the Rel family of rapid-acting
transcription factors. The NFκB p65/p50 dimer is kept inactive
in the cytosol in complex with the protein inhibitor of κB
(IκB). IκB which masks the nuclear localization signal (NLS) of
NFκB interacts with Cα1 when IκB is associated with NFκB.
Cα1 is inactive until stimulation and activation of NFκB by
agents such as cytokines and reactive oxygen species (ROS). This
leads to the release and degradation of IκB with subsequent
cAMP-independent activation of PKA C [Figure 2 (5)]. The C
subunits have been shown to phosphorylate Ser276 in the p65
subunit. This enhances NFκB transcriptional activity markedly
and increases the expression of NFκB downstream target genes
involved in e.g. inflammation, cell proliferation and survival.
Interestingly, AKIP which was first identified as a PKAC-binding
protein (75) is also a p65 interaction partner (127) [Figure 2 (5)].
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According to this observation it has been suggested that binding
of the C subunit and AKIP to the p65 subunit encompass PKA-
dependent phosphorylation and regulation of NFκB dependent
transcription (127). Together this also suggests that AKIP1 acts
as a molecular scaffold that simultaneously binds and coordinates
PKA C and p65 activity. In line with this it was shown that
AKIP1 regulates NFκB nuclear translocation (128) [Figure 2
(6)]. Another aspect of PKA C and NFκB interaction has been
documented according to the fact that this complex is activated
when the heterotrimeric G protein Go interacts directly with
the C subunit independent of the R subunit [Figure 2 (7)]. This
suggests that Gαo is a C-KAP as well. Interestingly, when C binds
to Gαo this prevents C from translocating to the nucleus but does
not inhibit catalytic activity (129). The fact that Gαo interacts
with both PKA holoenzyme and free C subunits provides
evidence that active C can be released from R and positioned in
an active state in close proximity to relevant substrates as well as
the R subunit for rapid association, holoenzyme formation, and
presumably inactivation when cAMP is degraded. With respect
to cAMP degradation, the PDE variant PDE7A1 does not only
degrade cAMP to regulate PKA activity (130). PDE7A1 also
regulates C subunit activity through direct interaction between
the C subunit and the N-terminus of PDE7A1 [Figure 2 (8)]. The
PDE7A1 N-terminus which contains two PKA pseudosubstrate
sequences may be considered a C-KAP (131). It should also be
mentioned that PDE7A1 interacts with myeloid translocation
gene 16b (MTG16b) which is a dual specific AKAP (132, 133).
Although the function of the AKAP-MTG16b/PDE7A1/PKA
complex is not fully understood [Figure 2 (8)], it is likely that this
structure as is the case with the Gαo/NF-κB/C-subunit complex
discretely regulates spatiotemporal effects of PKA. Furthermore,
as the Gαo/NF-κB/C-subunit complex is also identified in T cells
it is suggested that it may be a key factor of the signaling complex
regulating T cell activation (134).

A major signaling pathway in eukaryotic cells is the mitogen-
activated protein kinase (MAPK) pathway which is implicated
in regulating cell growth, differentiation and apoptosis. A
typical MAPK pathway consists of a cascade of three successive
phosphorylations exerted by a MAPK kinase kinase (MAPKKK
e.g., Raf), a MAPK kinase (MAPKK, e.g., Mek), and a MAPK
(e.g., Erk). MAPKs target other proteins such as kinases known as
the MAPK-activated protein kinases (MAPKAPK) that belong to
the Ca2+/calmodulin-dependent protein kinases. Among these
kinases we find the ribosomal-S6-kinases (RSKs) which represent
points of cross-talk between the PKA pathway and the MAPK
pathway. RSK1 is a serine/threonine kinase with important
functions in cellular growth control and proliferation (135).
RSK1 interacts with PKA RI in its unphosphorylated and inactive
state while activated RSK1 binds directly to C subunits (136)
[Figure 2 (9)]. Binding of RSK1 to RI decreases the interaction
between RI and PKA C subunit while the binding of active RSK1
to the C subunit increases the interaction between the PKA C
and R subunits. These findings indicate that RSK1 acts both as
a C-KAP and AKAP involved in a negative feedback loop of PKA
activity where PKA can trigger phosphorylation of RSK1 through
activation of ERK. Phospho-RSK1 will then promote association
of the PKA holoenzyme (137). At the same time, through the

association with PKA, D-AKAP1 serves as a necessary nuclear
anchor for RSK1. D-AKAP1 also binds protein phosphatase 2A
(PP2A) that can dephosphorylate and thus regulate RSK1 activity
(138).

In response to heat shock or other physiological stresses,
heat shock factor (HSF) rapidly oligomerises into DNA-binding
trimers, accumulates in the nucleus and acts as a transcription
factor that regulates the expression of heat shock proteins (HSP).
HSPs belong to a class of functionally related proteins involved
in the folding and unfolding of other proteins (139). This process
involves activating posttranslational modifications and the HSF
isoform HSF1 has been shown to be sumoylated and acetylated
as well as heavily phosphorylated (140). Hyperphosphorylation
of HSF1 is correlated with transcriptional competence and
slow dissociation of active trimers (141). Moreover, later it
has been shown that it acts as a C-KAP as HSF1 binds to
PKA Cα and is activated by PKA-dependent phosphorylation
[Figure 2 (10)]. This again permits HSF1 to accumulate
in the nucleus where it activates transcription of HSP70.1
(142). The latter is consistent with the observation that the
cAMP and PKA-pathway regulates HSP70 promoter activity
(143).

Another protein important for the regulation of cell growth
and proliferation is p73, which is a structural and functional
homolog of the widely known p53 tumor suppressor protein
(144). Evidence suggests that p73 can bind to the p53-responsive
element and transactivate an overlapping set of p53 target genes,
thus, leading to the induction of G1/S cell cycle arrest. p73 is
expressed as multiple isoforms arising from alternative splicing
of the primary p73 transcript (p73α, p73β, p73γ, p73δ, p73ε,
p73η, and p73ζ). p73α, but not p53, has been demonstrated
to be phosphorylated by and bind to the PKA Cβ subunit,
and may therefore be considered a C-KAP [Figure 2 (11)]
(145).

Taken together these reports demonstrate regulation of
activity and location of C and its interaction partners both
in the cytoplasm as well as the nucleus. It has further been
reported that the PKA holoenzyme may localize within the
nucleus (146). Nuclear localization of the PKA holoenzyme is
however controversial and remarkably few AKAPs have been
demonstrated to reside within this cellular compartment in
interphase cells. The present dogma suggests that PKA acts in
the nucleus when the C subunit is transferred to the nucleus
upon cAMP stimulation. Hence, it is likely that several nuclear C-
KAPs exist. Homologous to AKAP95 (HA95), which shows high
homology to AKAP95, binds the PKA C subunit independent
of R in the nucleus and may be considered a C-KAP (147)
[Figure 2 (12)]. HA95 is a nuclear protein and contains a
NLS. The gene encoding HA95 probably arose due to a gene
duplication of AKAP95 andmay have survived evolution because
it solely binds the C subunit and does not compete with AKAP95
for R subunit binding (147). HA95 activity is associated with
several nuclear processes, including shuttle protein activity by
binding to RNA helicase A and the activation of the retroviral
constitutive transport element (148). HA95 is also involved in
regulation of nuclear envelope dynamics (149), DNA replication
(150), and regulation of the histone deacetylase (HDAC) pathway
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(151). Although conclusive evidence lacks, these reports may
imply that there is a direct link between cAMP and PKA-
dependent regulation of various nuclear events and C subunit
binding to HA95. However, support for a direct binding of
C to HA95 comes from experiments on Epstein-Barr virus
(EBV) infected B cells. We have demonstrated that binding
of the C subunit to HA95 is required for EBV infection
(152, 153). In these experiments, HA95 was also shown to co-
immunoprecipitate with the EBV co-activating nuclear protein
EBNA-LP from EBV-transformed lymphoblastoid cells. It has
been suggested that HA95 binds to the EBNA-LP repeat domain
which is the principal co-activator of virus transcription. In
this way, EBNA-LP co-localizes with HA95 and the C subunit
[Figure 2 (12)]. Moreover, C subunit expression down-regulated
the strong co-activating effects of EBNA-LP with EBNA-2 which
also regulates the expression of the EBV oncogene, LMP1.
Interestingly, over-expression of the C subunit or HA95 down-
regulates LMP1 expression in EBV-infected cells. Together
this demonstrates a functional consequence of co-locating C
with C-KAP, in this case with HA95 and EBNA-LP to affect
transcription from specific promoters. In this context it is
interesting to note that DNA-protein kinase (DNA-PK) also
associates with the EBNA-LP/HA95/PKA-C subunit complex
(154). Together this demonstrates that PKA targeting is involved
in regulating the complex processes of gene transcription.
An interesting question is then, whether PKA targeting is
required for precursor-messenger RNA (pre-mRNA) transport
and processing.

During the last decade accumulating evidence shows that
PKA C interaction with other proteins is involved in regulating
precursor-messenger RNA (pre-mRNA) splicing. Pre-mRNA
splicing is a highly complex process in the eukaryotic cell and
involves a tight regulation of protein-protein, protein-DNA and
protein-RNA interactions in time and space (155). We have
shown that PKA C co-locates with splicing factor compartments
(SFC) in the nucleus and that PKA promotes distal splicing
of the E1A minigene. We were also able to show that some
of the most heavily PKA phosphorylated proteins belong to
the family of serine and arginine rich proteins, or SR-proteins.
Some of the proteins phosphorylated were the SR splicing
factors SRSF1, SRSF2, and SRSF9 (156). It has previously been
demonstrated that the SR proteins have central roles in the
regulation of constitutive and alternative RNA splicing (157).
Later it has been demonstrated that both R and C subunits
of PKA can bind to splicing factor arginine/serine-rich 17A
(SFSR17A) defining this protein as an AKAP as well (158)
[Figure 2 (13)]. SFSR17A targets PKA in close proximity to
several members of the SR family of proteins. Furthermore,
several independent reports show that the PKA C subunit
interacts with the SR protein SRSF1 (159–161). PKA-dependent
phosphorylation of SRSF1 was found to enhance its RNA-
binding capacity (159), and to modulate its activity as a splicing
regulator (159–161). Furthermore, another SR protein, SRSF7
is not only phosphorylated by but also interacts with Cα1
(161) [Figure 2 (14)]. Also, the adenoviral splicing factor L4-
33K is phosphorylated by PKA and DNA-PK. Interestingly,
the two kinases have opposite effects on alternative splicing

of virus-specific proteins (154). Finally, the G-patch domain
and KOW-motifs containing protein (GPKOW) has been
shown to be a nuclear protein that binds RNA in a PKA-
regulated fashion (162). For a summary of known C-KAPs see
Table 1.

DETERMINANTS FOR THE REGULATION
OF C SUBUNIT ACTIVITY

Together, these reports imply that PKA is involved in
the regulation of multiple steps in the splicing process by
phosphorylation. This also demonstrates that the process
requires discrete positioning of the C subunit in proximity
to relevant substrates. This raises the question, what are the
determinants in the C subunit dictating localization and binding
to other proteins? The inhibitory site of the R subunit vs.
the C subunit is a distinguishing feature between the RI and
RII isoforms (163). The RII subunits have a phosphorylation
site (P-site) in their inhibitor motif and therefore act both
as substrates and inhibitors. By contrast, the RI subunits
are encoded with Ala or Gly at the RII P-site and thus,
act as pseudosubstrates. Despite that both RI and RII bind
C with a sub nanomolar Kd (0.1 nM) the mechanism of
binding is different. RI, but not the RII subunits, requires
ATP and divalent cations to form stable interactions (31,
164).

Moreover, autophosphorylation of the P-site in RII subunits
promotes holoenzyme dissociation.

The structure of the C:RI, C:RII and C:PKI interactions
show major similarities in how catalytic activity is regulated
as the regions P−3 to P+1 in the C subunit are occupied
by both RI, RII as well as PKI upon binding. It should also
be noted that the mechanism of PKI binding to the active
cleft in C is more similar to that of RI than RII, both being
pseudosubstrates and needing ATP and two divalent cations for
stable interactions.

As several of the C-KAPs apart from R and PKI also inhibit
the C subunit upon binding, a highly relevant question is
whether C-KAPs share the same mechanism of inhibition as R
and PKI. In the case of Caveolin-1, it has been demonstrated
that residues between Trp85 and Trp98 associate with several
amino acids scattered between Phe54 and Tyr247 in the C
subunit (165). Moreover, when PDK1 phosphorylates the C
subunit at Thr197, this involves anchoring of the C-terminal
hydrophobic motif Phe-x-x-Phe to the small lobe of PDK1 (166).
It has also been shown that Goα through its GTPase domain
interacts directly with Cα1 (129). However, few of these papers
mapped the domains in the C subunit responsible interaction
with the C-binding protein. One example of mapping of such
domains has been done by studying the Cα1:AKIP1 interaction
(75, 167). In these two reports it was demonstrated that AKIP1
binds to the A helix residues 15–30 in the Cα1 subunit and
that this interaction is the mechanism responsible for targeting
the C subunit to the nucleus. This may suggest that the C
subunit N-terminal end is involved in targeting the kinase to
relevant target proteins and hence subcellular compartments
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TABLE 1 | Overview of selected C kinase anchoring proteins (C-KAPs).

Protein Primary functions Localization Site of interaction Effects of interaction References

Protein kinase

inhibitor peptide

(PKI)

Inhibits PKA catalytic activity Cytoplasm and nucleus Pseudosubstrate sequence of

PKI interacts with the substrate

binding sites in the catalytic cleft

of the C subunit

Inhibits PKA C phosphorylation

PKI contains a NES that assists

export of the C subunit out of the

nucleus

(107–109, 112–

114)

Ribosomal S6

kinase1 (RSK1)

Ser/Thre kinase that

phosphorylates some of the

same targets as PKA

Cytoplasm and nucleus Cα1 binds to the 13 C-terminal

amino acids in Ser732

phosphorylated RSK1

Inhibits C subunit activity by

stimulating the reassociation of

the R and C subunits

(135–138)

Heat shock factor

1 (HSF1)

Controls heat shock responses

Implicated in cancer and

neurodegenerative disease

Cytoplasm and nucleus Not known Phosporylation by PKA on

Ser320 in HSF1 is important for

nuclear localization of HSF1

Unknown effects on the C

subunit

(139–143)

A-kinase

interacting protein

(AKIP)

Interacts with the p65 subunit of

NF-κB

Brings the C subunit in close

proximity to NFκB for

phosphorylation by the C subunit

Nucleus The C-terminal end of AKIP

interacts with the N-terminal

α-helix (aa 14–39) of the C

subunit

Targets and retains Cα1 in the

nucleus

(75, 127, 128)

Inhibitor of NF-κB

(IκB)

Inhibits NF-κB-dependent

transcription by binding to its

DNA-binding site

Cytoplasm Unknown part of IκB binds to the

N-terminal end of the C subunit

(aa 46–76)

Inhibits C subunit activity by

blocking the ATP-binding site

cAMP independent mechanism

(127)

Heterotrimeric G

protein GαO

Heterotrimeric G protein

hydrolysing GTP to GDP. Links

GPCR to enzymes such as AC

and phospholipases.

Cytoplasm The GTPase domain in GαO
interacts with an unknown part

of Cα1

Targets active Cα1 to the

cytoplasm

(129)

Phoshodiesterase

7A1 (PDE7A1)

Hydrolysis of cAMP to 5′ AMP

Targets the C subunit to AKAP

CBFA2T3, independent of the R

subunit.

Cytoplasm Two N-terminal pseudosubstrate

sequences in PDE7A1 interacts

with the C subunit

Inhibits C subunit activity by

blocking the substrate binding

site

(130–133)

Caveolin-1 Principal components of

caveolae membranes and

involved in receptor-independent

endocytosis

Forms a complex with the C

subunit to promote

phosphorylation of Perilipin

Cytoplasm Scaffolding and C-terminal

domain of Caveolin-1 binds to

unknown part of the C subunit

Inhibits C subunit activity (117–120)

Homologous to

AKAP95 (HA95)

Regulation of DNA replication,

nuclear envelope dynamics and

HDAC pathway.

Nucleus Not known Targets the C subunit to the

nucleus

(147–154)

Rab13 GTPase with regulatory function

in epithelial tight junctions

Cytoplasm Not known Inhibits C subunit-dependent

phosphorylation of VASP in

epithelial cells

(115, 116)

p73 Transcription factor that

promotes apoptosis and cell

cycle arrest

Nucleus N-terminal (aa 63–130) and

C-terminal (aa 469–636) interact

with unknown domain of the Cβ1

subunit

C subunit-dependent

phoshorylation inhibits

transcriptional and proapoptotic

activity of p73

(144, 145)

SRSF7 Several functions in RNA

processing, including pre-mRNA

splicing

Cytoplasm and nucleus Not known Upregulated PKA activity

prevents inhibition of tau exon 10

inclusion by SRSF7

(161)

GPKOW RNA-and protein-binding protein Nucleus Not known C-subunit-dependent

phosphorylation of Ser27 and

Thr316 inhibit GPKOWs ability to

bind total RNA

(162)

SRSF1 Several functions in RNA

processing, including pre-mRNA

splicing

Cytoplasm and nucleus Not known C-subunit-dependent

phosphorylation of SRSF1

modulates its effect on splicing

(156, 157)

independent of the R subunit. However, the specificity in this
form of targeting remains elusive. It has been speculated that
splice variant-specific features of the C subunits which are

associated with the first exon may play an important role. In
addition, anchoring of Cα1 and Cβ1 may involve myristoylation
(56).
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CATALYTIC SUBUNIT STRUCTURAL
FEATURES AS DETERMINANT FOR PKA
SPECIFICITY

The Cα1 and Cβ1 proteins are both made up of 350 aa residues,
containing only short N- and C-terminal segments that are
not part of a conserved catalytic core comprising Cα1/Cβ1
residues 40–300 (168). Whereas, the flanking N- and C-terminal
sequences are more specific to the C subunit, and hence vary
considerably the catalytic core consists of a large C-terminal lobe
which is also named the C-lobe or large lobe, and a smaller N-
terminal lobe also known as the N-lobe or small lobe (Figure 3A)

(171). The large lobe is shaped by seven α-helices in addition
to contributing to the formation of a sheet of four antiparallel
β-strands in the surface facing the cleft between the two lobes
(172). The large lobe contains most of the substrate-binding
surface as well as much of the catalytic machinery (85). The
small lobe, mostly composed of β-strands, five in total in an
antiparallel orientation in a single sheet, contains most of the
residues binding to ATP (172). The small lobe also contains two
helices; the αB and αC helix (172). The segment that connects
the small and large lobes is called the hinge region (173). The
cleft between the small and large lobes has been termed the active
site cleft. This cleft shapes the ATP binding pocket, with the

FIGURE 3 | Three dimensional structure of the PKA C subunit. (A) The C subunit is composed of a small lobe, large lobe, and an active site cleft with a binding site for

an ATP molecule (yellow sticks) and two Mg2+ ions (yellow spheres). The figure is based on the experimental structure with Protein Data Bank (PDB) identifier 3FJQ

(169). (B) Schematic representation of the active site cleft of PKA Cα1. Motifs and residues described in the text are indicated. Dashed lines indicate the chain of

interactions leading from pThr197 to Phe185 in the DFG motif when the enzyme is in the active conformation. The structure is solved with Mn2+ as the divalent

cations, although Mg2+ is thought to be the most relevant biological chelating agent (170). ATP and the Mn2+ ions are shown in yellow, and the DFG motif (teal),

Gly-rich loop (salmon), catalytic loop (yellow), and activation loop (cyan) are also highlighted. PDB identifier 3FJQ (169).
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γ-phosphate facing outwards toward the solute and substrate-
binding site. Most of the highly conserved residues of Cα and Cβ

are located around the active site cleft. ATP functions as “glue”
coupling the small and large lobe together, partially through
forming hydrogen bonds with residues in the hinge region (173).
Hence, in the absence of ATP the catalytic cleft is relatively
uncoupled (174).

Several structural motifs and residues important for function
are identified in the catalytic core (Figure 3B). The activation
loop (residues 191–197) includes Thr197, which has to be
phosphorylated in order for the C subunit to be catalytically
active. Phosphorylation of Thr197 leads to a cascade of
interactions in the protein structure, contributing to organizing
the kinase in the active conformation (see below) (175). The
catalytic loop (residues 166–171) contains several residues
important for catalysis. One of the most flexible segments of the
catalytic core is the glycine-rich loop (residues 50–55) (172, 176).
This loop is important for positioning of the γ-phosphate of
ATP for phosphoryl transfer during catalysis (174). The Mg2+

positioning loop (residues 184–187), containing the DFG (Asp-
Phe-Gly) motif (residues 184–186), is among the most conserved
segments encompassed in the catalytic core. The catalytic core
not only binds anATPmolecule, but also has binding sites for two
divalent cations, preferentially magnesium ions (Mg2+) termed
activating and inhibitory Mg2+, or Mg1 and Mg2, respectively,
which are necessary for catalysis (170), but also RI binding
(177). The traditional view has been that in presence of ATP, the
binding affinity for Mg1 is higher than for Mg2, and binding
of Mg2 is thought to stabilize the protein but also to inhibit
catalysis (170, 178–180). Other reports have suggested that the
presence of twoMg2+ in the active site of other related eukaryotic
protein kinases (ePKs) such as CDK2 is necessary for efficient
phosphoryl transfer, but also leads to stabilizing the binding of
ADP to the active site, which is the rate-limiting step of the
catalytic cycle (181). Moreover, Ca2+ may exist in local high
concentrations near calcium channels, and it is proposed that
fluctuations in Ca2+-concentrations may influence C subunit
function through reduced enzyme activity and PKI affinity (182).
After phosphorylation of Thr197, the interaction cascade that
is initiated leads to optimal orientation of Asp184 in the DFG
motif for coordination of the γ-phosphate of ATP for phosphoryl
transfer. It is believed that Mg1 interacts with the β- and γ-
phosphates of ATP and Asp184, while Mg2 is bound by the α-
and γ-phosphates of ATP and the side chain of Asn171 of the
catalytic loop (179, 180).

We and others have shown the crucial importance of the
Gly186 residue in Cα (Cα1 numbering) for catalytic activity. We
performed a thorough search for naturally occurring mutations
in the human PRKACA gene using both publicly available
databases as well as through sequencing of exons 2–10 in
498 individuals (183). The search revealed several missense
mutations, including Arg45Gln, Ser109Pro, Gly186Val, and
Ser263Cys. Kinase activity and R subunit binding of the mutated
C subunits was determined. Mutation of residues 45 and 263
did not significantly alter catalytic activity or R subunit binding.
Mutation of Ser109 on the other hand led to decreased kinase
activity, whereas R subunit binding was unaltered. Mutation of

Gly186 to Val however, rendered the kinase completely inactive,
and the resulting C subunit was unable to form holoenzymes
with RI subunits, both confirming Gly186 as crucial for catalytic
activity and instrumental in divalent cation binding.

The Local Spatial Pattern (LSP) alignment method, developed
by Kornev et al. (175, 184), has revealed two conserved spatial
motifs in ePKs. The motifs, termed Catalytic (C-) and Regulatory
(R-) spines (Figure 4A), were identified as necessary structural
motifs in catalytically active kinases. For an intact C-spine, the
adenine nucleobase of ATP needs to bind to the active site.
In PKA, the R-spine depends on phosphorylation of Thr197
in the activation loop. Equivalent Thr residues serve the same
regulatory function in other kinases. Thus, assessment of the
C- and R-spines in a kinase structure is helpful in determining
whether a kinase is catalytically active or not.

The N- and C-terminal sequences outside of the kinase core
are designated N- and C-tail, respectively (Figure 4B). Both tails
are anchored to the core and facilitate its active conformation (85,
171). Except for PKI, C subunit interactions are predominantly
mediated through binding to either the C- or N-tail (63, 75, 185).
The C-tail is divided into three segments; the C-lobe tether (CLT),
N-lobe tether (NLT), and the active site tether (AST). When PKA
C is phosphorylated in the activation loop, the CLT and NLT
are quite stable and seem to play an important allosteric role
in organizing the active conformation (85). Most AGC kinases
appear to be activated by the kinase PDK1, which is an AGC
kinase itself, docking to the NLT of the C-tail (Figure 4B, “PDK1
recognition site”). Thus, the C-tail is a conserved structure in
all AGC kinases (85). The CLT contains a PxxP (Pro-x-x-Pro)
motif (residues 313–316 in PKACα1) (Figure 4B, “PxxPmotif”),
which is also conserved in almost all AGC kinases. The PxxP
motif may represent a site for allosteric regulation of AGC kinase
activity, possibly by binding to SH3 domains, which recognize
Pro-rich regions (85, 186). The AST is more dynamic and
contains Phe327 which is a part of the ATP binding site, and
Tyr330 which is essential for the closed conformation of the
enzyme (85).

STRUCTURAL RELATIONSHIPS OF THE
N-TERMINAL END OF THE C SUBUNIT AS
DETERMINATES FOR THREE
DIMENSIONAL STRUCTURE AND
SUBCELLULAR TARGETING

There are isoform-specific sequence variations in the N-tail of
the PKA C subunit. The role and function of Cα1 and Cβ1 N-
terminal modifications are largely unknown but may influence
localization, activity and interactions of the C subunit with other
proteins (187).

Recently we performed alignments of exon 1-1 encoded
Cα1/Cβ1 across species after the gene duplication yielding
Cα and Cβ isoforms, and pre-duplication catalytic subunit
[designated C1, (188)] residues reveals several conserved features
in the N-terminus during evolution of the C subunit. Out of
all 15 positions, position 1 and 2 is invariably Gly1 and Asn2
in both Cα1 and Cβ1, as well as C1, an ancient form of Cα
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FIGURE 4 | Core and tail structures of the PKA C subunit. (A) C- and

R-spines in Cα1. In the active conformation of kinases, the C- and R-spines

are assembled. In the case of PKA Cα1, the residues constituting the C-spine

(yellow) are Ala70, Val57, Leu173, Ile174, Leu172, Met128, Met231, and

Leu227. The adenine nucleobase of ATP (slate stick presentation) is also part

of the C-spine. The R-spine (red) consists of Cα1 residues Leu106, Leu95,

Phe185, and Tyr164. One-letter aa abbreviations are used in the figure. Figure

is based upon (175). PDB identifier 3FJQ (169). (B) Presentation of the

conserved kinase core (rendered as a surface in slate) of Cα1, including the

N-tail (salmon) and C-tail (green) in cartoon presentations. Myristic acid (gray)

is shown bound to the hydrophobic pocket. Selected structures and residues

in the N- and C-tails are highlighted and described in the text. PDB identifier

1CMK (73).

and Cβ. In fact, Gly1 and Asn2 have been identified even
in the C1 homologs of the early branching metazoans Hydra
vulgaris (sequence identifier XP_002163934.1) and Amphimedon
queenslandica (sequence identifier XP_011405630.1). It is well-
established that Gly1 may have a function in mammals through
its modification of myristoylation by the enzyme NMT (74). We
have suggested that N-myristoylation of PKA C subunits is a
feature found in all vertebrate Cα1/Cβ1 subunits, and maybe
even all metazoan C1 subunits in general (188). N-terminal
myristoylation of proteins appears to be an ancient mechanism,
with the common ancestor gene of NMT possibly arising in early
eukaryotic cells (189).

Deamidation of the neutrally charged residue Asn2 is likely
the only way of obtaining a negatively charged residue adjacent
to myristoylated Gly1, since the presence of a negatively charged
residue next to Gly1 inhibits N-myristoylation (83, 190). Thus,
the conservation of Asn2 may serve as a means for achieving
myristoylated Gly1 and also obtaining a negatively charged aa
number 2 through later deamidation of Asn2 to Asp2. Negatively
charged residues next tomyristoylated residuesmay contribute to
promote their association to membranes. Studies from our group
support the proposed cooperative function of Gly1 and Asn2,
being both highly conserved. The β-Aspartyl shift mechanism
(83), i.e., deamidation of Asn into Asp, occurs especially in
the case of Asn being followed by residues Gly, Ser, or Ala
(82). Indeed, alignment reveals that position 3 of vertebrate
Cα1/Cβ1 subunits is either Ser, Ala, or Thr (188). Whether the
rate of deamidation of Asn2 of isoforms such as Cβ1 of mouse,
containing Thr3, is reduced (and as a consequence reduced
phosphorylation of Ser10) has not been determined.

When exclusively studying vertebrate exon 1-1 encoded
sequences except for lamprey, i.e., sequences after the C subunit
gene duplication, six positions have been shown to be invariant
(188). These are Gly1, Asn2, Lys8, Gly9, Glu11, and Ser14. Also,
there is a high degree of conservation of similar aa properties
among several of the positions that do vary among vertebrate
Cα1/Cβ1 sequences. For example, residue 7 is either Lys or
Arg which are both basic aa’s, and the residue at position 13
is always occupied by an acidic aa, either Glu or Asp. The
function of some of these residues has already been proposed.
N-myristoylated proteins depend on an additional signal in
order to associate with membranes. The basic residues in PKA
Cα1/Cβ1 position 7 and 8 may serve this function, through
forming electrostatic interactions with acidic phospholipids in
membranes (191). Moreover, this is in line with the general
N-terminal myristoylation motif, (M)GNXXXXRR (189, 192).
Ser14 is solvent exposed, and potential functions of this residue
are not known. Glu11 faces into the molecule and forms
a salt bridge with Lys292, and may therefore contribute to
structural stability. Hence it is reasonable to propose that Gly9
is structurally important in order for the N-terminus to adopt
the right conformation, i.e., through the absence of potentially
destructive steric hindrances.

Moreover, Ser10 is not highly conserved among vertebrate
Cα1/Cβ1 homologs, despite its proposed role in regulation of
myr-in/myr-out conformation (74). Aa position 10 has only
been found to be Ser in mammalian Cα1 and Cβ1, in addition
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FIGURE 5 | Different configurations of N terminal parts of C subunit isoforms. For all figures, the C subunit is represented in cyan with the hydrophobic pocket

highlighted in purple. Alternative exon 1 encoded parts of the C subunit are in orange cartoon presentation, in addition to the mainly exon 2 encoded A helix.

Hypothesized (i.e., not supported by published crystal structure data) structures of N-terminal residues are colored red. (A) Representation of human myristoylated

Cα1. The structure of unphosphorylated (Ser10), unmodified (i.e., not deamidated) Asn2, and Gly1-myristoylated Cα1 shows a fully ordered N-terminus. The

modifiable residues in the 5′ encoded exon are highlighted in stick presentations, and myristic acid (yellow) occupies the hydrophobic pocket. Based on the structure

with PDB identifier 1CMK (73). (B) Proposed model of N-terminal structure of CαL/Cβ2 homologs. Our study identified a conserved Trp59 (human Cβ2 numbering)

(stick presentation, slate) residue which potentially occupies the hydrophobic pocket. The most conserved part of the N-terminus was predicted to encode a helix

structure, which we hypothesize may be ordered upon binding to interaction partners. The figure is modeled from the experimental structure of Cα1, with the

N-terminal residues encoded by exon 1 modeled. PDB identifier 1CMK (73). (C) Proposed model of N-terminal structure of CαShort variants. Short N-terminal

transcripts in Cα were identified in most vertebrate species investigated. The short N-terminal end displays the open hydrophobic pocket as earlier proposed for Cα2.

The figure is based upon the experimental structure of human Cα2 with PDB identifier 4AE9 (63).
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to selected amphibian and non-teleost fish Cα1 sequences. A
more in depth analysis of different eutherian, i.e., placental
mammalian, Cα1 and Cβ1 sequences from a range of species

have revealed that Ser10 is conserved in all eutherian nucleotide
sequences investigated. This may be interpreted as a possible
case of convergent evolution of Cα1 and Cβ1 proteins in and

FIGURE 6 | Hypothesis of localized pools of isoform-specific PKA signaling. (A) Most of the variations in the Core16−350 residues in Cα and Cβ proteins are located

to 11 solvent exposed residues in the small lobe. This opens for the possibility of Cα- and Cβ-specific interaction partners interacting with the small lobe [described in

(196)], possibly locating the two subunits into separate intracellular signaling pools. (B) Evolution of alternative N-termini in Cα and Cβ provides another mechanism for

acquiring localized pools of isoform-specific PKA signaling [described in (188)]. The Cα1 and Cβ1 pool (left) shares the myristic acid with a regulatory mechanism,

evolved in mammals, through phosphorylation/dephosphorylation of Ser10 for switching myristic acid in and out of the hydrophobic pocket (phosphate group

presented as a red dot, and myristic acid presented as a yellow chain). This represents the main source of PKA C activity in most human cells. The conserved,

putative inducible α-helix opens for the possibility of a CαL/Cβ2-specific pool (middle), docking the C subunits via a flexible linker to a CαL/Cβ2-specific subcellular

assembly of proteins (purple). The Cα2 protein (CaShort pool, right) has a conserved sperm-specific expression in all mammals, and possibly interacts with

Cα2-specific proteins (bright yellow) binding to the hydrophobic pocket. Similar CαShort-specific proteins may exist in other tissues in non-mammals. Figure created

using the Servier Medical Art resource (http://www.servier.com/Powerpoint-image-bank).
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FIGURE 7 | Model of evolution of PKA C subunits. The catalytic core is a

conserved feature of the eukaryotic-like kinases (ELKs). The ePKs differ from

ELKs through the attainment of the activation loop, typically involving a

phosphorylatable Thr which can regulate the catalytic core into active/inactive

conformations, and the G, H, and I helices (“GHI domain”), serving as docking

(Continued)

FIGURE 7 | motifs for substrates (197). The C-tail is a conserved feature of the

AGC group of ePKs, and is highly regulated and essential for catalytic activity

(171). The N-tail of PKA Cα and Cβ includes the A helix, which interacts with

AKIP in Cα1 residues 15–29 (128). This segment is shared among all C

subunit isoforms, whereas the alternative N-termini are located N-terminal to

the AKIP-docking site. These alterations give rise to possible functional effects

in different C subunit isoforms (“myristic acid,” “inducible helix,” “…”). Figure

inspired by Taylor et al. (171, 197). PDB, 3FJQ.

it may be speculated that Ser10 has an important function in
Cα1 and Cβ1, possibly unique to mammals, and may involve the
phosphorylation switch. Moreover, the fact that Ser10 is pointing
into solution, it is therefore likely that it is highly solvent exposed.

To be noted all the vertebrate species where the
PRKACA/PRKACB exon 1-1 do not encode Ser10 the residue
at position 10 is always Gly in Cα and Asn10 in Cβ (188).
Due to the size and charge of Asn compared to Gly, this
may further imply a larger fraction of Cβ in the myr-out
conformation compared to Cα. This may further imply that
mammalian C subunits have acquired a post-translational
method through evolution of regulating myr-conformation
(through phosphorylation/dephosphorylation of Ser10). This
also suggests that most other vertebrates only regulate this
feature at the level of transcription through transcribing either
PRKACA or PRKACB.

Recently, we also identified two positions that are consistently
different in the mammalian Cα1 vs. Cβ1 N-terminus. Residue 5 is
invariably Ala5 in Cα1 and Thr5 or Ile5 in Cβ1, whereas residue
12 is invariably Gln12 in Cα1 and Val12 in Cβ1. Gln12 is a more
bulky and polar residue as opposed to the smaller and nonpolar
aa Val12. Gln12 of Cα1 myr-in is oriented into the molecule,
possibly stabilizing the N-terminus. Thus, it may be suggested
that Val12 of Cβ1 makes the N-terminus more flexible and
encourage the myr-out conformation. Alternatively, aa position
12 may serve other functions in the myr-out conformation, when
it is solvent exposed and able to interact with other compounds.
A model of N-terminal features associated with the Cα1 and Cβ1
proteins is shown in Figure 5A.

Exon 1-2 in PRKACB encodes 62 unique residues at the N-
terminal end of Cβ2. Whereas Cβ2 is identified in all major
vertebrate groups, a paralogous PRKACA exon 1-L encoding a
long N-terminal Cα variant designated CαL has been identified
at the mRNA level in all major vertebrate groups except for
a likely loss in birds and mammals (188). The CαL/Cβ2 N-
termini share several conserved features, by the fact that they
firstly are all considerably longer than any other 5′ encoded
exon variants of PRKACA and PRKACB identified. Secondly, the
entire PRKACA/PRKACB exon 1-L/1-2 encoded N-termini have
been predicted to be intrinsically disordered regions (IDRs). The
identification of the CαL/Cβ2 N-termini as putative IDRs does
not exclude the possibility that they are containing regions that
transiently become ordered and bind to other macromolecules.
Wiemann et al. predicted the presence of an amphipathic
helix in the N-terminus of Cβ2 (67), and this putative α-helix
encoding region was the most conserved part of the CαL/Cβ2

Frontiers in Endocrinology | www.frontiersin.org 15 September 2018 | Volume 9 | Article 538

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Søberg and Skålhegg Determinants for Specificity in the PKA Signaling Pathway

N-terminus when the two sequences were aligned. In fact, using
DISOPRED3 prediction (193) it may be suggested that this part
may be protein binding. We propose that the putative IDRs of
the CαL/Cβ2 N-termini contain an inducible amphipathic α-
helix which is formed when interacting with so far unidentified
CαL-/Cβ2-specific interaction partners (Figure 5B, “Putative
inducible helix”). Flanking the predicted α-helix are stretches of
residues with less evolutionary pressure that are also predicted
to be disordered. The segment spanning from the predicted α-
helix to the start of peptide sequence encoded by exon 2 may
function as a flexible linker, analogous to a fishing line with the
inducible α-helix functioning as the “bait.” In fact, putative, long
(>30 residues) disordered segments occur in more than 30%
of eukaryotic proteins, and these proteins with IDRs are often
involved in regulation of transcription and cell signaling (194).
Coupled folding and binding provides a means for interactions
of high specificity and relatively low affinity, which may be
beneficial in signal transduction pathways, with the demand for
transient signals and dissociation of proteins after a certain time
(195).

Lacking the N-terminal Gly for myristoylation, we expect
that the hydrophobic pocket of CαL/Cβ2 is either empty or
occupied by structures other than myristic acid. In Cβ2 we
identified a conserved Trp59 (human Cβ2 numbering) predicted
to be located in proximity to the hydrophobic pocket (188). We
speculate that Trp59 may function to occupy the entrance to the
hydrophobic pocket, analogous to a lid, illustrated in Figure 5B

(“Conserved Trp59”).
We have also identified short exons, which were called

exon 1-S, in PRKACA of all major vertebrate groups except
the Coelacanth (188). In mammals, including marsupials and
monotremes, this was demonstrated to be orthologs of the
previously identified human sperm-specific Ca2 protein exon
1-2. Later we found that the sperm-specific expression pattern
was also conserved in all mammals which suggests that Cα2
serves a role for male fertility not only in mice (65), but possibly
in mammals in general. Whether or not exons 1-S of non-
mammalian species are orthologs of mammalian 1-S (i.e., exon
1-2) was not possible to be verified, as described in Søberg et
al. (188). Alignments of the Cα2 proteins show low degree of
conservation, and no obvious hydrophobic pocket-occupying
properties. Purified human Cα2 protein has been demonstrated
to be able to bind hydrophobic moieties (63). We therefore
suggest that Cα2, and possibly CαS in general, is conserved
through its ability to associate with other proteins or structures
binding to the hydrophobic pocket (Figure 5C).

CONSERVED HETEROGENEITY IN PKA C
SUBUNITS SUGGESTS
ISOFORM-SPECIFIC SIGNALING POOLS

It has been shown that all active Cα and Cβ splice variants are
invariant in the core region encoded by PRKACA and PRKACB
exons 2–10, respectively (196). This spans the residues 16–
350 in Cα1. However, residues distinguishing Cα from Cβ are
located to solvent-accessible loops in the small lobe as a signature

motif distinguishing Cα from Cβ as paralogs. This together
with the identification of key characteristics of the variable N-
terminal Cα and Cβ splice variants has made us suggest the
existence of PKA isoform-specific signaling pools. We propose
that Cα and Cβ proteins may associate with Cα- and Cβ-
specific C-KAPs, resulting in Cα- and Cβ-specific downstream
signaling (Figure 6A). Similarly, splice variant-specific pools may
be achieved through alternative interaction partners binding to
the heterogeneous N-termini (Figure 6B).

This model supports the view of increased complexity and
evolution into highly dynamic molecules in ePKs, where the
conserved catalytic core contains most of the catalytic machinery
necessary for enzymatic activity, whereas structures such as
the N- and C-tails are involved in “fine-tuning” of PKA
signaling through localization (197). This model also gives an
understanding for why inactivation of kinase activity occurs
when Gly186 is changed for a Val in Cα. This mutation is located
in the highly conserved region of the kinase, shared among most
PKs. The structures that are shared among all these kinases
are typically important for catalysis. The evolved structures that
build upon this framework (Figure 7, “activation loop,” “GHI
domain,” “C-tail,” and “N-tail”) can be viewed as sophisticated
modifications of PK structures, enabling a highly regulated
PK, both in terms of kinase activity and protein/membrane
interactions. We suggest that the alternative PKA C isoforms
represent an extension of this concept, and show the conservation
of such alternative modifications located to the area around
the hydrophobic pocket (Figure 7, dashed ellipse) and the small
lobe. Similar increases in complexity in PKA signaling has been
reported in other parts of the PKA signaling pathway, such as
increases in R subunit and AKAP encoding genes throughout
evolution (198, 199).

ARE OFF-TARGET EFFECTS OF PKA C
SUBUNIT ASSOCIATED WITH DISEASE?

Evidence for the idea that targeting PKA C subunit activity in
space and time is crucial for regulating PKA catalytic activity has
emerged over the past decades. The first evidence for this was
demonstrated in mice by Cummings and coworkers who showed
that RIα compensation in RIIβ null mutated was associated
with dislocated PKA holoenzyme and increased basal PKA C
subunit activity not regulated by cAMP due to lower affinity
for the C subunit by RIα compared to RIIβ (51). Additional
support for this idea came from studies on RIα ablation in
mice which is associated with severe developmental defects.
Interestingly, the phenotype could be rescued by crossing the
RIα ablated mice with the Cα null mutated mice, suggesting
that the phenotype is caused by abrogated regulation of C
subunit activity (200). In man, the same research group
also showed that haploinsufficiency at the PRKAR1A locus
found in ∼75% of patients suffering from Carney complex
(CNC), in addition to suffer from spotty skin pigmentation,
cardiac and cutaneous myxomas, and endocrine tumors such as
micronodular adrenocortical hyperplasia (MAH), these proteins
also had reduced fertility due to unregulated C subunit activity
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in male germ cells (201). Interestingly, Forlino and coworkers
reported that a young woman (19 of age) who suffered from
CNC and who had developed MAH carried a triplication of
chromosome 1p31.1. Chromosome 1p31.1contains the PRKACB
gene which led the authors of this paper to suggest that this
patient encoded increased levels of Cβ. Based on this they further
suggested that increased C subunit activity may be associated
with disease pathogenesis and development of MAH (202).

Increased C subunit activity associated with disease
pathogenesis is further supported by the identification of
a frequent mutation in the PRKACA gene. The mutation
Leu205Arg is located in the P+1 loop of Cα1 but not Cβ1,
rendering the C subunits insensitive to inhibition by the R
subunits (203). This hotspot mutation was demonstrated
to be the likely cause of nearly 70% of cortisol-producing
adrenocortical adenomas (C-PAA) in Cushing patients (204).
This finding was verified in a study by others (205).

Finally, two recent studies hamper the importance of locating
C subunit activity. In fibrolamellar hepatocellular carcinoma (FL-
HCC), which is a rare liver tumor, a ∼400-kilobase deletion
on chromosome 19 leads to a chimeric gene product consisting
of exon 1, also including parts of exon 2, of DNAJB1 fused
with exon 2–10 of PRKACA (DNAJB1-PRKACA) (206, 207).

The resulting DNAJB1-Cα1 fusion protein retains R subunit
binding capacity, and basal PKA C kinase activity in FL-HCC
cell lysates is comparable that of lysates from normal liver cells.

However, DNAJB1-Cα has a reduced avidity for R subunits, and
catalytic activity is greatly increased upon cAMP stimulation
compared to WT Cα (29). In addition, the fusion transcript
is expressed 10-fold higher than PRKACA (29). Moreover, the
fusion protein interacts with β-catenin, and overexpression of
WT Cα does not fully recapitulate the oncogenic activity of
DNAJB1-Cα1. The latter may suggest that the pathogenesis of
FL-HCC is not only dependent on altered PKA C activity but
also on localization (208). Taken together these reports provide
evidence that gain of function of Cα and Cβ, respectively, provide
two non-identical phenotypes (MAH and C-PAA) suggesting
non-redundant functions. In addition, dislocation of PKA C
subunits leads to off-target effects which are associated with
disease.
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