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Obesity constitutes a global health care problem, and often eating habits are to blame.
For intervention, a thorough understanding of energy intake and expenditure is needed.
In recent years, the pivotal role of insulin in connection to energy intake was established.
Olfactory sensitivity may be a target of cerebral insulin action to maintain body weight.
With this experiment, we aimed to explore the influence of intranasal insulin on olfactory
sensitivity for the odors n-butanol and peanut in a placebo-controlled, double-blind
setting in a within-subject design. All subjects participated in two experimental sessions
on separate days and received either intranasal insulin or placebo in a pseudorandomized
order. Application was followed by two olfactory threshold tests for n-butanol and peanut
in a pseudorandomized order. After a single dose of intranasal insulin (40 IU) or placebo
(0.4 ml), olfactory sensitivity for the odorants n-butanol and peanut were examined in 30
healthy normosmic participants (14 females). Measured blood parameters revealed no
decrease in plasma glucose, however, insulin, leptin and cortisol levels were affected
following intranasal application. Females’ but not males’ olfactory sensitivity for n-
butanol was lower after intranasal insulin administration vs. placebo. In contrast, olfactory
sensitivity for peanut was not influenced by intranasal insulin application. Our results
indicate that the effects of cortical insulin levels on processing of specific odors is likely
modulated by gender, as central increase of insulin concentration led to a reduced
olfactory sensitivity for n-butanol in women only, which might be due to differentially
regulated insulin and leptin signaling in men and women.

Keywords: intranasal insulin, odor sensitivity, olfaction, olfactory threshold, n-butanol, peanut

INTRODUCTION

In the context of our modern way of life and nutrition, diabetes, and obesity, as well as their
serious sequelae, are among the most important health risks of the twenty-first century. Among
the multiple contributing factors connected to food intake and energy expenditure, the influence
of the chemical senses and their understanding are crucial. The olfactory system is considered to
be tightly intertwined with the endocrine system in the regulation of chemical state and nutritional
need and was suggested to have a secondary function as an internal nutritional sensor (1). One
of the most crucial factors might be insulin signaling. A study using slices of the olfactory bulb in
an animal model established that insulin can alter both spontaneous and olfactory nerve-induced
firing activities and thus could impact odor detection (2).
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The human brain is an insulin-sensitive organ and presents
an accumulation of insulin receptors in the hypothalamus, the
olfactory bulb, and the hippocampus (3-5). Those areas fulfill
crucial tasks during the processing of olfactory information
(6). Insulin receptors are not only found in those olfactory
processing sites, but also in the olfactory epithelium (1). Thus,
intranasal insulin might influence olfactory processing either on a
peripheral level at the olfactory receptors or on the level of central
olfactory processing. The ability of substances (e.g., insulin) to
enter the cerebrospinal fluid from the nasal mucosa has been
observed in various studies (7-12).

Two previous studies with healthy participants indicated
that an increased insulin level in the cerebrospinal fluid (CSF)
leads to a decrease of olfactory sensitivity for the odorant
n-butanol (13, 14). In the first study by Ketterer et al.
(13), the hyperinsulinemic clamp technique, a highly invasive
method during which plasma insulin concentration is acutely
raised while peripheral glucose levels are held constant at
euglycemic levels, was used. In the second study presented
by our group (14), a non-invasive technique, the intranasal
insulin administration, was utilized. This method effectively
delivers insulin to the central nervous system (CNS) in the
absence of relevant systemic absorption (9) and may allow a
selective examination of insulin effects on the human brain
avoiding side effects in the body periphery. Both studies
included men and women and did not investigate sex-specific
subgroups, as this would have resulted in insufficient sample
sizes.

Besides those effects of intranasal insulin on olfactory
processing, there is compelling evidence that an increase of
cerebral insulin levels has an impact on the mediation of
satiety leading to a reduction of snack size (15-18). Insulin
as endogenous satiety signal suggests an anorexic effect of
intranasal insulin and hints towards an involvement of cerebral
insulin in the regulation of food intake. It can be considered
a metabolic key signal in the homeostatic mediation of
satiety (19). More specifically, Hallschmid et al. reported that
regular treatments with central insulin reduced body weight
in men but not in women (20). This sex-specific differential
sensitivity might be crucial for insulin modulation on the
olfactory system as well. The anorexic effect of intranasal
insulin is likely to be transmitted via a manipulation of
the chemosensory signaling cascade on a peripheral receptor
level or a central processing level. Since insulin is such a
crucial metabolic hormone during the mediation of satiety, it
is possibly associated with altered olfactory sensitivity. Since
the effects of intranasal insulin on energy homeostasis are
sex-specific (20, 21), sex effects related to odor detection are
probably relevant as well. As a gold standard for investigating
olfactory thresholds in humans, the Sniffin’ Sticks with the
odor threshold, discrimination, and identification (TDI) score
(22) are commonly applied for assessment of olfactory function
in healthy participants and patients suffering from various
diseases (23-26). Research investigating olfactory sensitivity
after intranasal insulin application is scarce, nonetheless in
patients with hyposmia, intranasal insulin is reported to increase
odor detection sensitivity for n-butanol (27, 28) while in

healthy participants the performance is reduced (13, 14). In all
experiments, sex-specific effects were set aside by investigating
mixed samples of men and women, and in all studies, n-butanol
was used.

With regards to olfactory function, women often outperform
men (29), but regarding weight loss after insulin administration,
only men were susceptible to this effect (20). Based on this
incoherent landscape of current knowledge on intranasal
insulin and the chemical senses, it appears plausible to explore
not only the effects of intranasal insulin on olfaction in
both sexes, but also on olfactory sensitivity to n-butanol in
comparison to other olfactory stimuli. Olfactory threshold
tests with an alternative odor than n-buntanol are rarely
used. To our knowledge, no study evaluated olfactory
detection thresholds after intranasal insulin application with an
alternative odor to n-butanol, nor with a focus on sex-specific
effects.

With our current study, we aimed to investigate the effects
of intranasal insulin (40 IU) on sensitivity for the odors
n-butanol and peanut in healthy men and women. With
this follow-up study, we intend to evaluate insulin effects
on test performance for n-butanol in a larger cohort and
additionally address possible intranasal insulin effects for the
odor peanut as well as sex-specific differences regarding the
insulin effects.

MATERIALS AND METHODS

Participants and Preliminary Screening

This study was carried out in accordance with the
recommendations of local ethics review board. The protocol
was approved by the local ethics review board. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

Only healthy participants were included. During the
timeframe of the study, none of the participants was taking
medication or showed any abuse of substances. All subjects
had normal weight, were non-smokers and were instructed
not to wear perfume or get in contact with products that
have a strong smell during experimental sessions. All females
used oral contraceptives but no other medication. In our
preliminary screening session, all participants underwent a
laboratory screening of standard clinical blood parameters
(Gamma-GT, creatinine, TSH, LDL, HDL, triglyceride, leptin,
glucose, insulin, and cortisol) and the Body Mass Index (BMI)
was calculated to ensure general healthiness. Based on the
preliminary screening session, five participants with abnormal
blood levels were excluded, resulting in a final sample size of
30 normosmic subjects (16 males/14 females; age: M = 24.63,
SEM = 3.61 years; BMI: M = 21.93, SEM = 1.69 kg/m’®).
Further, subjects completed three clinical questionnaires for
general psychopathology, depression, and cognitive function
[SCID I—Structured Clinical Inventory for DSM-IV Axis I
Disorder, BDI—Beck Depression Inventory II; BDI cut-off
> 9; females: M = 1.21, SEM = 0.39; males: M = 2.43,
SEM = 0.75; tpg) = 1.388, p = 0.176, MoCA—Montreal
Cognitive Assessment] (30-32). Females demonstrated a higher
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performance during the MoCA test [cut-off > 26; females:
M = 28.86, SEM = 0.23; males: M = 27.63, SEM = 0.28;
ts) = —3.282, p = 0.003]. Females and males did not differ
regarding age [f(,5) = 1.135, p = 2.67] and BMI [¢(,5) = 1.582,
p = 0.125] (see Table 1). The extended version of the Sniffin’
Sticks identification test [MONEX-40 (33)] was used as a
screening tool to categorize the subjects as normosmic. None
of the subjects scored less than the cut-off value of 27 in the
MONEX-40. All participants were considered normosmic and
included in the experimental procedures.

Experimental Setting

After the preliminary screening session, all 30 subjects
participated in two experimental sessions on separate days
during which they received either an intranasal insulin
application (40 IU, human insulin, Novo Nordisk Pharma
GmbH) or a placebo solution (0.4 ml, Novo Nordisk Pharma
GmbH) in a pseudorandomized order (for a detailed overview of
experimental protocol illustration see Figure 1). Experimenter
and participants were blinded regarding the applied substance.
The nasal spray solution containing insulin or placebo (spray
bottles, Aero Pump GmbH, Germany) contained the same liquid
solvent, which causes a mild irritation in the nose for a few
minutes; the only difference between the treatment conditions
was that the placebo solution did not contain insulin. In an
independent pilot study in our lab, 12 normosmic participants
evaluated the odor quality of the insulin and placebo solution as
perceptually similar (14), and a bias arising from the chemical
solvent can be ruled out. The experimental sessions started in
the morning at 08:00 a.m. after a 12h overnight fast and the
second session was conducted within the following 1-8 days
(M = 2.5, SEM = 0.35 days) after the first session. During each
experimental session, all subjects completed ratings regarding
their current satiety status on a 100-mm visual analog scale
(0 = not hungry/not craving for food/stomach feels empty,
100 = very hungry/strong craving for food/stomach feels
full). The first rating was given before intranasal application
and the second at the end of each session. Following the first
satiety rating, blood parameters glucose, insulin, leptin, and
cortisol were taken before and 20 min after insulin or placebo
administration (9). For the intranasal application, the participant
was instructed to lean back in the chair, lift the chin and the study

TABLE 1 | Preliminary screening parameter for BDI, BMI, and age (n = 30
subjects, males = 16, females = 14).

Screening parameter Cut-off value Sex Mean SEM
BDI >9 Males 2.43 0.75
Females 1.21 0.39
BMI >24.99 Males 22.37 0.43
Females 21.42 0.42
Age - Males 25.31 1.05
Females 23.86 0.73

Females and males did not differ regarding BDI, BMI, and age. Data are provided as
means and standard error of means.

experimenter sprayed the substance into the subject’s nostrils,
2 puffs each nostril. This was followed by a 20 min break for
expected substance delivery from the nose to the brain (9). One
session lasted 50 min and an increased level of cerebral insulin is
probably maintained for at least 60 min (9). Subjects performed
two olfactory threshold tests with the odorants n-butanol
and peanut in a pseudorandomized and counterbalanced
study design. For the n-butanol olfactory threshold test, a
standardized test of the Sniffin’ Sticks (Burghart, Medizintechnik
GmbH, Germany) (22) was used. For the peanut olfactory
threshold test, a custom-made test with glasses containing
16 dilution steps with concentrations ranging from 0.0029 to
17.53% of peanut oil (Takasago “Natural & Artificial Peanut”
Flavor OS) in diethylphthalate (Sigma-Aldrich, Germany) was
used. During both threshold tests subjects were blindfolded.
Subjects completed the odor identification test MONEX-40 with
subjective ratings of pleasantness and intensity on 100-mm visual
analog scales (0 = very unpleasant/low intensity, 100 = very
pleasant/high intensity). To control for effects of olfactory
adaptation, the extended MONEX-40 test was conducted after
each threshold test. We further checked if olfactory identification
ability as well as intensity and hedonic evaluation of the odors
changed due to intranasal insulin application.

Statistical Analyses

All data were analyzed using SPSS software (IBM SPSS Statistics
22.0, Chicago, US). A repeated-measures ANOVA for each
threshold test with the within-subject factor “treatment” (insulin
vs. placebo), the between-subject factor “sex” (women vs. men)
and “application order” (insulin first vs. placebo first) was
computed. For analyzing blood parameters, repeated-measures
ANOVAs including the within-subject factor “treatment” (insulin
vs. placebo), “time” (before vs. after) as well as the between-
subject factor “sex” (women vs. men) and “application order”
(insulin first vs. placebo first) were calculated. Partial eta-squared
(nP2) was used as an index of effect size. Subsequent post-hoc tests
with Bonferroni correction were computed to further inspect
the comparisons. Additionally, repeated-measures ANOVAs
with the within-subject factor “treatment” and the between-
subject factor “sex” were utilized for the analysis of the
satiety questionnaires and MONEX-40 identification data with
pleasantness and intensity ratings. All data are presented as
means (M) and standard error of means (SEM). A p < 0.05 was
considered significant.

Data Availability

The datasets generated and analyzed during the current study
are available from the corresponding authors, without undue
reservation, on reasonable request.

RESULTS
Olfactory Tests

The two-way repeated-measures ANOVA for n-butanol
threshold testing showed no main effect of treatment (insulin
vs. placebo), but a significant interaction effect of treatment*sex
[F(1,28) = 4.49, p = 0.043, nP2 = 0.138]. Paired comparisons
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2. Beck Depression Inventory (BDI)

4. Evaluation of blood samples

2. Evaluation of satiety level

4. 20 minutes break

8. Evaluation of satiety level

Screening on day 1
1. Montreal Cognitive Assessment (MOCA)

3. Structured Clinical Inventory for DSM-IV Axis | Disorder (SCID)
Session 1 on day 1 / session 2 on day 2

1. Evaluation of blood samples for glucose, insulin, cortisol, and leptin
3. Application of either insulin or placebo

5. Evaluation of blood samples for glucose, insulin, cortisol, and leptin

6. Olfactory threshold tests with peanut and n-butanol (pseudo random order)
7. MONEX-40 (olfactory identification test)

~

FIGURE 1 | Study design. Each subject was measured twice in the morning after 12 h of overnight fasting. In the beginning and at the end subjects answered a
questionnaire about their satiety status. Following the questionnaire, 30 normal-weight, and normosmic participants got either an intranasal application of insulin (40
IU) or placebo solution (0.4 ml) and performed two threshold tests, one with n-butanol and one with peanut odor. Blood samples were taken before and 20 min after
intranasal administration. Each session ended with the MONEX-40 identification test.

showed, that only in female subjects olfactory sensitivity for
n-butanol was significantly reduced after intranasal insulin
compared to the placebo application [insulin: M = 7.63,
SEM = 0.60, placebo: M = 8.77, SEM = 0.45; F(y 55) = 441,
p = 0.045, n*? = 0.136]. Male subjects showed no effect of
treatment for the odorant n-butanol [F(; ;) = 0.738, p = 0.400]
(Figure 2A). No main and no interaction effects were found for
the odorant peanut (Figure 2B). As no effect of the between-
subject factor “application order” was established for any of
our threshold tests, we excluded this parameter from further
analyses.

Blood Parameter Analysis of Glucose,

Insulin, Leptin, and Cortisol Levels

As expected, no effect of the intranasal application on
circulating plasma glucose level (p > 0.494 for all ANOVA
effects) was established (Figure 3A). There was a significant
treatment®time interaction in serum insulin levels [F(; ,g) = 5.01,
p = 0.033, W2 = 0.152] with lower insulin levels after
placebo treatment (before insulin treatment M = 6.813,
SD = 0.444; after insulin treatment M = 6.872, SD = 0.341;
before placebo treatment M = 7.385, SD = 0.472; after
placebo treatment M = 6.373, SD = 0.364). The paired
comparisons revealed no significant results (all p > 0.205)
(Figure 3B).

Leptin values of one subject could not be analyzed, thus the
results of leptin blood levels are based on a group of 29 subjects.
There was a significant main effect of time for serum leptin level
[F(1,27) = 7.92, p = 0.009, nP? = 0.227] with a lower serum level
in the second blood sampling (before: M = 5.60, SD = 0.620;
after: M = 5.01, SD = 0.555). However, no interaction effect
treatment*time was found in serum leptin levels [F(; »7) = 0.011,
p = 0.919]. For cortisol levels a significant main effect of time

for the serum cortisol level emerged [F(; 25y = 60.43, p < 0.001,
nP? = 0.683] also with a lower serum cortisol level in the second
blood sampling (before: M = 25.32, SD = 0.869; after: M = 23.14,
SD = 0.854). Further, no interaction effect treatment*time was
established for serum cortisol [F(; 25y = 8.30, p = 0.370]. To
rule out any modulation effect of the lower serum leptin and
cortisol level on olfactory sensitivity for the odorant n-butanol,
post-hoc Pearson’s correlations between post-treatment serum
leptin and cortisol level with olfactory sensitivity score for n-
butanol in the insulin condition were computed but did not
yield significant results (leptin: r;9 = —0.191, p =.321; cortisol:
r30 = —0.180, p = 0.340). Additionally, we also controlled for the
contribution of leptin and cortisol levels using the blood levels
as covariates in the repeated-measures ANOVAs on olfactory
performance and established that this did not change the results
reported above. In the calculated repeated-measures ANOVAs
for the blood levels of glucose, insulin, leptin, and cortisol no sex
effects were found.

Satiety Questionnaires

The results of the satiety questionnaires showed a main
effect of time, independently of treatment for level of hunger
[F,28) = 5.624, p = 0.025, nP2 = 0.167] and food craving
[Fuos) = 12.643, p < 0.001, n*2 = 0.311]. Participants
were less hungry (before: M = 5.38, SEM = 0.40; after:
M = 632, SEM = 0.30, and felt less craving after the
experimental session (before: M = 4.66, SEM = 0.42; after:
M = 6.14, SEM = 0.34). There was no effect for fullness
of stomach. We found no sex effects. Further, there was no
correlation between post-treatment serum leptin levels and
the satiety questionnaires with intranasal insulin application
(hungry: r9 = 0.028, p = 0.887; craving: r9 = —0.088,
p=0.651].
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olfactory sensitivity score for N-BUTANOL

all (n=30) males (n=16) females (n=14)

Einsulin - OPlacebo

11 4

olfactory sensitivity score for PEANUT

all (n=30) males (n=16) females (n=14)
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FIGURE 2 | Acute effects of intranasal insulin (40 1U, black bars) and placebo
(0.4 ml, white bars) on olfactory sensitivity (highest olfactory sensitivity

score = 16) for the odorants peanut (A) and n-butanol (B). n = 30 (males

n = 16, females n = 14). While females showed reduced olfactory sensitivity
for n-butanol (p = 0.045) after intranasal insulin, males did not. Olfactory
sensitivity for peanut was not influenced by intranasal insulin in both genders.
Data are provided as means and SEMs; *p < 0.05.

MONEX-40 Identification Test

The results of the MONEX-40 identification test extended by
hedonic odor ratings of pleasantness and intensity remained
unaffected in response to intranasal insulin (all p > 0.349). All
subjects were normosmic and neither olfactory identification
capability [insulin: M = 32.92, SEM = 0.449; placebo: M = 32.91,
SEM = 0.389, F(1,23) = 0.002, p = 0.969, n** < 0.001] nor
hedonic ratings of pleasantness [insulin: M = 64.64, SEM = 1.77;
placebo: M = 64.85, SEM = 1.50; F(; 55y = 0.051, p = 0.822] and
intensity [insulin: M = 74.97, SEM = 2.35; placebo: M = 75.65,
SEM = 2.15; F(y,28) = 0278, p = 0.602] differed between
treatments. Females and males did not differ concerning the
MONEX-40 score and the pleasantness and intensity ratings.

DISCUSSION

In this double-blind crossover study, we explored the effects of
intranasal insulin on human olfactory sensitivity for the odorants

n-butanol and peanut. The decision to use a single dose of
insulin administration (40 IU) was based upon our preceding
work in which we already demonstrated an olfactory sensitivity
reduction for n-butanol in 17 healthy participants (14). Since
intranasal insulin might mediate satiety, we hypothesized a
reduced olfactory sensitivity for the odors n-butanol and peanut,
as well as a reduced pleasantness and intensity rating during the
MONEX-40 identification test.

Blood levels of insulin, glucose, leptin, and cortisol were
monitored before and 20min after intranasal insulin and
placebo administration. This was necessary to prevent a relevant
influence of intranasal insulin application on peripheral insulin
and blood glucose level but also on neuronal circuits activation
for the endogenous glucose production (20, 34). Since glucose
homeostasis is also regulated by leptin, causing effects on
the glucose-insulin metabolism (35), leptin blood levels were
measured as well. Also, cortisol level was measured, because it is
involved in carbohydrate metabolism and might be secreted due
to low blood glucose levels. To be able to assume that intranasal
insulin acts centrally, we did not expect relevant influences of
intranasal insulin application on peripheral glucose and insulin
levels, however, we expected time effects for leptin and cortisol,
independently of insulin or placebo application, possibly caused
by an 12 h overnight fast of our subjects.

Olfactory sensitivity for n-butanol in the whole group of
subjects was not decreased. However, this olfactory sensitivity
decrease for the odorant n-butanol emerged when looking at
the subgroup of female subjects only. Olfactory sensitivity for
the odorant peanut and the hedonic ratings of pleasantness and
intensity remained unaffected by intranasal insulin in both sexes.

Concerning the subgroup of females, we were able to
demonstrate again (14) that a single dose of intranasal insulin
(40 IU) reduces olfactory sensitivity for n-butanol in contrast to
a placebo solution, but we failed to show this effect for the whole
group of subjects. Interestingly, while our previous research did
not yield significant sex differences of olfactory sensitivity for
the odorant n-butanol following intranasal insulin application
(14), we did observe sex differences in the current study with a
larger cohort. Taking a closer look at our previous study, a reason
for this inconsistency might be the low number and unequal
distribution of females and males. However, when we pooled
the data of the current study with the data from our previous
study (14), the result of decreased olfactory sensitivity for n-
butanol in females is distinctly stable (both studies: n = 47,
females = 21, males = 26). Interestingly, an animal study
reported that male rats decreased food intake with increased
cerebral insulin for 24 h, while female rats did not show this
effect, but displayed greater effects with leptin (36). Probably a
complex interaction of insulin, leptin and other factors regulates
a balanced energy consumption. Recent evidence in research
shows a reduction of highly palatable food intake in women
after applying postprandial intranasal insulin of 160 IU (15). This
data indicates that enhanced brain insulin levels play a tentative
role during the postprandial phase. One remarkable difference
concerning the previously described studies in comparison to our
experiment is that in those studies intranasal insulin application
in relation to real food intake was tested, which may contribute to
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FIGURE 3 | Plasma glucose concentration before and after intranasal insulin and placebo for n = 30 subjects. (A) No effect of intranasal application on circulating
plasma glucose level is evident, (B) significant treatment*time interaction in serum insulin levels [F(1,28) =5.01, p =0.033, nP2 = 0.152; before insulin M = 6.813,
SD = 0.444; after insulin M = 6.872, SD = 0.341; before placebo M = 7.385, SD = 0.472; after placebo M = 6.373, SD = 0.364). The paired comparisons revealed

increased meal-related effects in the tested subjects (15, 21). Since
serum cortisol levels in humans have been correlated to olfactory
sensitivity previously (37) and leptin has effects on the glucose-
insulin metabolism (35, 38), cortisol and leptin blood levels were
measured in our study. However, we did not find significant
correlations between post-treatment serum leptin and cortisol
levels as well as olfactory threshold score. Neither did post-
hoc tests for serum insulin show any correlations in our study.
This suggests no direct link between serum blood parameters
of leptin or cortisol and decreased olfactory sensitivity for n-
butanol in females. Notably, in our current study participants
showed no sex difference regarding BMI, age and olfactory
identification performance (MONEX-40). Only in respect to
cognitive performance (MoCA), females performed significantly
better. Whether this is linked to the reduced olfactory sensitivity
for n-butanol remains unclear, as we did not address this topic
and cannot provide an explanation for this result. Olfactory
sensitivity reflects the functionality of the peripheral olfactory

system (6) and cognitive performance should have only minor
influences on olfactory sensitivity estimation. Contrarily to our
expectations, a possible anorexic effect of intranasal insulin on
sensitivity to the odor peanut did not occur. Possibly, peanut
odor is not representing an odorant sufficiently distinctive as
food-related. We would restrain from transferring our results
of olfactory sensitivity to further non-food and food odorants.
There also seems to be a high interindividual variability of test
performance. Furthermore, the inconsistent results for peanut
and n-butanol sensitivity might be in association with their
chemical compositions. N-butanol is a single compound, whereas
peanut is a mixture comprised of multiple chemical compounds.
Further studies should aim to elucidate differences regarding
insulin effects on single molecule vs. multiple molecules odorants
to further investigate the specificity of centrally acting insulin in
olfaction (39). Albeit, we cannot explain those results based on
the current data and would need more studies using different
odorants to get deeper insights. Another explanation could be
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that our dose of 40 IU of intranasal insulin was too low to
modulate food-related brain areas compared to previous human
studies with a dose of 160 IU of insulin (21). Nevertheless, our
experimental design using 40 IU insulin was based on previous
experiments, in which we already demonstrated insulin effects on
human olfactory sensitivity (14).

Finally, our subjects felt less hungry and craved less for food,
an effect that was not affected by treatments of intranasal applied
insulin or placebo. An explanation could be that the subjects were
distracted by the olfactory tests and paid less attention to their
physical state during the second evaluation (40).

As insulin receptors are found in the olfactory epithelium (1),
this is where first odor detection takes place. Nevertheless, since
higher cognitive processes are necessary during odor sensing, it
is likely that enhanced cerebral insulin signaling is associated
with the effects of intranasal insulin on olfactory perception in
our study. The spectrum of enhanced brain insulin activity and
its influence on body energy metabolism is poorly understood.
Possibly, females’ and males’ different responses on cerebral
insulin signaling are associated with a biphasic response of
central insulin on the peripheral insulin metabolism (41). Born
et al. (9) revealed the biphasic course of insulin concentration
in the cerebrospinal fluid, consisting of a first peak 10 min
and a second peak 30 min after intranasal insulin application.
We would like to encourage further research to examine the
effect of stimulus complexity regarding chemical compounds and
timing of insulin release. Sex differences regarding the effects of
intranasal applied insulin should be further investigated using
odor stimuli that signal edibility.

In conclusion, intranasal insulin application led to a reduced
olfactory sensitivity for the odorant n-butanol in females but not
in males. Naturally, the modulation of olfactory performance
by insulin in healthy subjects only reflects a section of the
complexity of human energy homeostasis. However, insulin was
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