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Exercise training ameliorates nonalcoholic fatty liver disease (NAFLD) as well as

obesity and metabolic syndrome. Although it is difficult to eliminate the effects

of body weight reduction and increased energy expenditure—some pleiotropic

effects of exercise training—a number of studies involving either aerobic exercise

training or resistance training programs showed ameliorations in NAFLD that are

independent of the improvements in obesity and insulin resistance. In vivo studies

have identified effects of exercise training on the liver, which may help to explain

the “direct” or “independent” effect of exercise training on NAFLD. Exercise training

increases peroxisome proliferator-activated receptor gamma coactivator 1-alpha

(PGC1α) expression, improves mitochondrial function and leads to reduced hepatic

steatosis, inflammation, fibrosis, and tumor genesis. Crosstalk between the liver and

adipose tissue, skeletal muscle and the microbiome is also a possible mechanism for the

effect of exercise training on NAFLD. Although numerous studies have reported benefits

of exercise training on NAFLD, the optimal duration and intensity of exercise for the

prevention or treatment of NAFLD have not been established. Maintaining adherence of

patients with NAFLD to exercise training regimes is another issue to be resolved. The use

of comprehensive analytical approaches to identify biomarkers such as hepatokines that

specifically reflect the effect of exercise training on liver functions might help to monitor

the effect of exercise on NAFLD, and thereby improve adherence of these patients to

exercise training. Exercise training is a robust approach for alleviating the pathogenesis

of NAFLD, although further clinical and experimental studies are required.

Keywords: lifestyle modification, exercise protocol, training protocol, organ crosstalk, hepatokines, biomarkers

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease related to obesity and one
of the manifestations of metabolic syndrome. In accordance with the worldwide pandemic of
obesity, NAFLD is considered to be increasing and the global prevalence is estimated as 25.24%
(1). A recent systematic review indicated that physical activity and inactivity are associated
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with all-cause mortality, and high levels of moderate intensity
physical activity eliminate the increased risk of death associated
with prolonged sitting times (2). Moreover, a number of
epidemiological studies have demonstrated a strong correlation
between physical activity and non-communicable diseases
including diabetes, metabolic syndrome, cardiovascular diseases
and cancer (3–6). The prevalence of NAFLD is also related
to physical activity. Sitting time was positively correlated
with NAFLD prevalence as diagnosed by ultrasonography,
independent of body mass index (BMI), in a large cross-
sectional study (7). A recent longitudinal epidemiological study
involving 169,347 men and women showed a strong negative
correlation between habitual exercise and the development of a
fatty liver diagnosed by ultrasonography (8). Therefore, exercise
is thought to be a safe and economic choice as a therapeutic or
preventative strategy against NAFLD. Indeed, numerous clinical
trials have demonstrated the efficacy of exercise. However, the
independence of any exercise effect on weight loss remains to
be determined, and the molecular mechanism for the effect of
exercise on ameliorating the pathogenesis of NAFLD is also not
wholly understood. In this review, clinical evidence is analyzed
in a systematic review manner and experimental evidence is
summarized narratively to evaluate the therapeutic effects and
mechanisms of exercise training on NAFLD. Note that the
definition of “training” in this review is similar to “endurance
exercise” and refers to “the number of exercise sessions” over
weeks or months. “Exercise” refers to a single bout of exercise.
“Exercise training” is used to generalize both exercise and
training.

EXERCISE TRAINING EFFECT ON NAFLD
IN CLINICAL TRIALS: A SYSTEMATIC
REVIEW

Method
A published literature search was conducted in the PubMed,
Web of Science, and Scopas databases to December 31, 2017.
The following search terms were used to identify the relevant
articles: non-alcoholic steatohepatitis OR non-alcoholic fatty
liver OR fatty liver OR liver steatosis OR NAFLD OR NASH;
exercise OR training. Two readers independently (H.T and
K.T) reviewed the titles and abstracts of selected articles
for the determination of inclusion as well as the full texts
of selected studies. All relevant abstracts and full-text peer
reviewed articles published in English were collected for analysis
according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses statement for the conduct of meta-
analyses of observational studies (http://www.prisma-statement.
org/). Articles were selected if they met the following inclusion
criteria. (i) Study design: randomized controlled trial, non-
randomized controlled clinical trial, before and after clinical
trial, or observational cohort study. (ii) Study issue: the effects
of therapeutic exercise on hepatic steatosis in patients with
NAFLD. (iii) Study subjects: patients with NAFLD diagnosed by
liver biopsy or abdominal imaging including ultrasonography,
computed tomography, and magnetic resonance (MR) imaging.

Studies were excluded if they: (i) were not original research
reports (systematic reviews, narrative reviews, commentaries,
or editorials); (ii) were case reports or conference abstracts;
(iii) did not provide sufficient data for this study; (iv) were animal
studies; or (v) were in the non-English literature. Finally, 34
clinical studies were selected, and 39 exercise protocols were
tested for their efficacy in ameliorating liver steatosis in cases of
NAFLD [(9–36), Supplementary Material 1]. Spearman’s rank
correlation coefficient was used to test any correlations between
changes in liver steatosis evaluated with 1H magnetic resonance
(1HMR) and changes in BMI or training related-parameters.
Wilcoxon’s rank sum test was used to compare protocols with and
without dietary consultation.

RESULTS AND DISCUSSION

Clinical Question 1. Is the Exercise Training
Effect on NAFLD Independent of Body
Weight Reduction?
Exercise training is routinely recommended for the treatment
andmanagement of NAFLD (37, 38). Following the development
of imaging modalities to evaluate liver steatosis such as
1HMR, conventional B-mode ultrasonography, and controlled
attenuation parameters based on transient elastography, liver
steatosis has been used as an endpoint of exercise training
in many clinical studies. On the basis of findings from the
studies of exercise training and other lifestyle modifications,
Hannah et al. concluded that a 3% or more body weight
reduction with lifestyle modifications ameliorates liver steatosis
(39). Indeed, of the 39 exercise training protocols we reviewed,
four ineffective ones were found, of which three were without
significant body weight reduction and all were without dietary
consultation (Supplementary Material 2). In this context, the
question is raised of whether the effect of exercise on liver
steatosis is independent of nutritional control and body weight
reduction in NAFLD. In their systematic review, Hashida et al.
suggested that reduction of liver steatosis by aerobic training was
observed without a clinically significant weight loss, suggesting
that exercise alone might independently reduce hepatic steatosis
(40). Of the 39 protocols we reviewed, 22 evaluated changes in
liver steatosis (%) using 1HMR and assessed their correlations
with changes in BMI (Figure 1A). Although our results showed
a significant positive correlation between changes in liver fat and
changes in BMI (ρ = 0.63, p = 0.004), several studies reported
an improvement in hepatic steatosis without BMI reduction.
Moreover, there was no significant difference in changes in
hepatic steatosis between protocols with and without diet
consultation (Figure 1B). These findings suggest that exercise
per semight independently ameliorate hepatic steatosis.

Clinical Question 2. What Is the Optimal
Type and Dose of Exercise for NAFLD
Therapy?
Aerobic training protocols, resistance training protocols and
combined protocols are all effective on ameliorating hepatic
steatosis in patients with NAFLD. For aerobic training, walking,
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FIGURE 1 | Systematic review of training protocols. Effect of changes in body mass index (BMI) (A) and diet consultation (B) on liver steatosis measured by 1H

magnetic resonance (1HMR) imaging in exercise training programs for treating patients with nonalcoholic fatty liver disease (NAFLD). In (A), the blue, red, yellow, and

gray dots represent training protocols with aerobic, resistance, aerobic plus resistance, and stretching exercises, respectively. Effects of the total training time (C),

protocol period (D), training duration/session (E), and frequency of training (F) on liver steatosis measured by 1HMR imaging in exercise training programs for subjects

with NAFLD. Blue, red and yellow dots represent protocols with aerobic, resistance and combined exercise training, respectively.

jogging with or without a treadmill and ergometer exercise were
generally performed. In the protocols of resistance training,
major muscles were generally trained using the biceps curl, calf
raise, triceps press, chest press, seated hamstrings curl, shoulder
press, leg extension, and other exercises. A recent systematic
review confirmed that there are no significant differences
between aerobic training and resistance training in the extent
to which they decrease liver steatosis, as measured by 1HMR
(40). That review also indicated that the median effective
aerobic exercise protocol was 4.8 metabolic equivalents for 40
min/session, 3 times/week for 12 weeks, and the median effective

resistance training protocol was 3.5 metabolic equivalents for 45
min/session, 3 times/week for 12 weeks. However, the optimal
doses and intensity of exercise training remain unclear. In
this context, the EASL-EASD-EASO Clinical Practice Guidelines
recommend “moderate exercise” for “150–200 minutes/week”
that includes aerobic and resistance exercise (38). In our
systematic review, we found no significant differences in the
duration of sessions, frequency, protocol period, or total training
time between effective and ineffective protocols for liver steatosis
(Supplementary Material 3); however, there was a significant
negative correlation between changes in liver steatosis measured
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with 1HMR and total training time (Figure 1C; ρ = −0.38,
p = 0.049) and duration of the exercise protocol (Figure 1D;
ρ = −0.59, p = 0.007), and no significant correlation between
changes in liver steatosis and the duration of each session
(Figure 1E; ρ = 0.24, p = 0.351) or frequency/week (Figure 1F;
ρ = 0.06, p = 0.80). This suggests that at least total exercise
duration and amount might be important for ameliorating liver
steatosis. It is well known that adherence to lifestylemodifications
including exercise decreases over time (41). Therefore, keeping
the patients motivated for as long as possible and maintaining
adherence to protocols is key to the success of exercise therapy
for those with NAFLD.

MECHANISMS BY WHICH EXERCISE
IMPROVES NAFLD; A NARRATIVE REVIEW

Increasing energy expenditure in exercise sessions promotes
glucose and lipid metabolism and ameliorates obesity and
NAFLD. Based on clinical studies, experimental research has
focused on the effect of exercise and training on liver functions,
independent of body weight reduction. Numerous studies have
demonstrated that exercise and training have a beneficial effect on
liver function. In this section, classical and novel exercise training
effects on liver function and NAFLD are summarized.

Classical Effects of Training on Liver
Metabolism
A number of studies have analyzed the effect of exercise training
on liver functions (Figure 2). These began with an analysis of
lipidmetabolism in the 1970s (42). Thus, training reduced plasma
and liver triglycerides in obese Zucker rats and high fat diet-
fed rats (42, 43). The Otsuka Long-Evans Tokushima Fatty rat

FIGURE 2 | Classical effect of training on subjects with NAFLD.

model was well analyzed in terms of its response to exercise
training. Decreases in the lipogenic proteins fatty acid synthase
(FAS) and acetyl-CoA carboxylase (ACC) with relative increases
in the deactivation of ACC by phosphorylation were observed
(44–47). Training also increased mitochondrial content markers
and oxidation in the liver (44–48), which activates adenosine
monophosphate-activated protein kinase (AMPK) and decreases
lipogenic processes with a complementary increase in lipid
oxidation.

The liver supplies energy substrates to peripheral tissues
by glycogen catabolism; therefore, the effect of training on
glycogen metabolism has also been studied. Training reduces
gluconeogenesis and has a glycogen-sparing effect on the liver to
maintain glucose homeostasis during exercise (49, 50). Hepatic
glycogen is reduced in subjects with obesity and diabetes by
activating hepatic glycogen synthase kinase 3β, which suppresses
glycogen synthase (51). Moreover, the increased synthesis of liver
glycogen improved the metabolic phenotype of high fat diet-fed
mice (52). Taken together, increasing hepatic glycogen might be
one of the mechanisms by which training ameliorates hepatic
insulin resistance and NAFLD. Increased glycogen contributes
to a decrease in the AMP/ATP ratio, which activates AMPK
(53, 54). Correlation between glycogen synthesis in skeletal
muscle and hepatic de novo lipogenesis was also reported. It
is well established that exercise increases glycogen synthesis in
skeletal muscle, and insulin resistance in skeletal muscle reduces
glycogen synthesis because of defects in insulin-stimulated
glucose transport activity in skeletal muscle (55, 56). Rabøl
et al. demonstrated that a single bout of exercise improved
postprandial skeletal muscle glycogen synthesis concomitant
with decreased postprandial de novo lipogenesis and hepatic
triglyceride synthesis in young, lean, insulin-resistant individuals
(56). Their finding suggests that improvements in insulin
resistance and increased glycogen synthesis in skeletal muscle
induced by exercise training or pharmacological therapy can be
a therapeutic strategy for patients with NAFLD.

While training decreases hepatic gluconeogenesis, it is well
known that the hepatic capacity for gluconeogenesis, as well
as the lactate transport capacity and oxidative capacity, are
increased by training (57). Training also increases antioxidant
enzymes including superoxide dismutase-1 (SOD1) and SOD2,
catalase (CAT) and glutathione peroxidase in the liver, and
oxidative damage is reduced (58–60). This antioxidant effect is
a possible mechanism for the effect of training on NAFLD, which
is characterized by hepatic steatosis, inflammation, and oxidative
damage (61). In the metabolism of amino acids, training reduced
the hepatic catabolism of branched-chain amino acids in rats with
streptozotocin-induced diabetes (62).

Organ Crosstalk and Novel Mechanisms of
the Effect of Training on Liver Functions
Training affects multiple organs in addition to skeletal muscle.
Many studies have identified organ crosstalk involving the liver,
which is a possiblemechanism for NAFLD amelioration. In terms
of the direction of organ crosstalk involving the liver, the training
effect can be categorized as liver to other organs or other organs
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to liver. Recently, the term “hepatokine” has been proposed
to describe the proteins secreted from hepatocytes (63, 64).
Because the liver is one of the major endocrine organs, hormonal
crosstalk involving growth factors from the liver to other organs
has already been studied in the context of the training effect
(Table 1, Figure 3). Proteins secreted from adipose tissue known
as adipokines and those from skeletal muscle known as myokines
are also putative factors in the effect of exercise training on
ameliorating NAFLD. Secreted proteins induced by exercise
training can be used as a “training biomarker” of NAFLD.

Exercise Training-Induced Protein
Secretion From Liver: Hepatokines
Insulin-like growth factor (IGF)-1 is released from the liver
in response to hypothalamic hormones. In humans, the serum
IGF-1 concentration is lower in patients with diabetes and
NAFLD than in healthy subjects (65, 66). Moreover, serum IGF-
1 concentrations correlated negatively with the severity of liver
fibrosis in patients with NAFLD (67). Zanconato identified that
Igf-1 mRNA expression was enhanced by resistance training in
rats (68). In alloxan-induced diabetic rats, serum and hepatic
IGF-1 concentrations were reduced compared with those of
control rats but recovered to control levels after 8 weeks-of
swimming training (69). Training also increased serum IGF-
1 concentrations in humans (70). IGF-I stimulates insulin-like
actions in vitro, including glucose transport, glucose oxidation
and translocation of the glucose transporter GLUT-4 to the
plasma membrane (71). Skeletal muscle is particularly sensitive
to IGF-1 reactions that decrease blood glucose concentrations
(65). In addition, a deficiency of IGF-1 in vivo results in
increased concentrations of growth hormone (GH). These high
GH concentrations lead to anti-insulin effects in both liver and
adipose tissues, which increase insulin resistance (72). IGF-
1 plays an important role in exercise training and increasing
IGF-1 levels mediate a lowering of the GH concentration in
terms of skeletal muscle growth and repair (73). It mediates
protein kinase B activation and concomitantly promotes protein
synthesis and inhibits protein degradation (74). It also modulates
muscle growth, promoting muscle cell activation, differentiation
and hypertrophy (75–77). Moreover, skeletal muscle mass has
been linked to the pathogenesis of NAFLD; thus, sarcopenia
was an independent risk factor for nonalcoholic steatohepatitis
(NASH; nonalcoholic steatohepatitis) and NAFLD with severe
fibrosis (78, 79). Taken together, increased or sustained IGF-1
concentrations in the blood and liver are putative factors in the
effect of exercise training on ameliorating NAFLD.

Adropin consists of 76 amino acids and has been linked to
metabolic homeostasis, cardiovascular function and endothelial
cell function (80, 81). It is expressed in multiple tissues, including
the brain, heart, kidney, liver, pancreas, skeletal muscle, and
small intestine (82, 83). Kumar et al. suggested that adropin
is an hepatokine that is decreased in diet-induced obese mice
and showed that transgenic overexpression or systemic adropin
treatment attenuated steatosis by suppressing the expression of
Fas and the gene for Stearoyl-CoA desaturase-1 (Scd1) (80).
Aerobic training increased serum adropin levels in humans,

and this was associated with reduced arterial stiffness (84) and
improvements in endothelial function (85).

Angiopoietin-like protein 4 (ANGPTL4) is secreted from
multiple tissues including the liver (86) and is considered to
be an exercise-induced hepatokine (87). ANGPTL4 has been
associated with lipid homeostasis (86, 88), but its effect on
glucose metabolism remains equivocal (89, 90). ANGPTL4 was
found to stimulate lipolysis (91) and to inhibit the clearance
of triglycerides from plasma by inhibiting lipoprotein lipase
(92, 93). ANGPTL4 overexpression in either normal chow diet-
fed mice or high fat diet-fed mice reduced the weight of
adipose tissue but increased liver steatosis and elevated plasma
triglycerides, free fatty acids, glycerol, total cholesterol and high-
density lipoprotein cholesterol (89, 90). Therefore, the effect of
ANGPTL4 on NAFLD can be explained as being both positive
and negative: increasing liver steatosis and decreasing adiposity.
Plasma ANGPTL4 concentration was increased by a single bout
of acute exercise but not by chronic exercise or training in
humans (87, 88, 94). IncreasedAngptl4mRNA expression in liver
was also recognized in mice after treadmill exercise (95). During
exercise, ANGPTL4 levels are positively regulated by free fatty
acids, glucagon and cAMP, and negatively regulated by AMPK
(87, 88). ANGPTL4 is also related to the microbiome; thus,
conventionalization of germ-free mice suppressed ANGPTL4
expression in gut epithelial cells (96). Further research is required
to elucidate the link between ANGPTL4 and the microbiome in
cases of NAFLD.

Circulating sex hormone-binding globulin (SHBG) secreted
from the liver regulates the biological action and signaling of sex
hormones (97). The relationship between these hormones and
glucose homeostasis is complicated. For example, testosterone
levels correlate positively with insulin resistance, glucose
intolerance and an increased risk of type 2 diabetes in women,
whereas the opposite appears to be true in men. Conversely, high
estradiol levels are associated with elevated insulin resistance
and increased risk of type 2 diabetes in both genders (98,
99). The relationship between SHBG and glucose metabolism
is more consistent than that between the sex hormones and
glucose metabolism across the genders. Circulating SHBG
concentrations correlate positively with insulin sensitivity in
humans, suggesting that circulating SHBG might prevent the
development of type 2 diabetes (100). In a cross-sectional study
that measured plasma SHBG in 233 dysmetabolic men, there was
a significant correlation between plasma SHBG concentration
and intrahepatic fat measured by ultrasonography (101). In
addition, circulating SHBG increased with lifestyle modifications
including diet control and aerobic exercise, and the response
to increasing SHBG correlated more strongly with decreasing
liver steatosis than with visceral adiposity (100). According to
in vitro experiments, adiponectin positively regulates SHBG
production in hepatocytes through the transcription factor
hepatocyte nuclear factor 4α (102). SHBG also suppresses
proinflammatory cytokines including interleukin (IL)-1β (103)
and tumor necrosis factor-alpha (TNF-α) (104), reactions that are
mediated by hepatocyte nuclear factor 4α. Changes in SHBG after
training have been analyzed, with some reporting an increase in
circulating SHBG concentrations (105, 106). Daily walking for 3
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TABLE 1 | Hepatokines and exercise training.

Hepatokine Effect on

metabolism

and NAFLD

Secretion in

NAFLD and

obesity

Changes of secretion or blood concentration by exercise training

Experimental model Clinical study

Significance Protocol (ref) Significance Protocols (ref)

Adropin Positive Decreased – – Increase (plasma) Ergometer

55min, 3 days/weeks , 8 weeks (D42).

Aerobic training

90min, 3-5 days/weeks. 12 weeks (D43)

ANGPTL4 Negative/

positive

Decreased Increase (liver

mRNA)

Treadmill

60min, single bout

(D55)

Increase (plasma) One-legged cycling

60-180min, single bout (D 45)

Endurance exercise

120min, single bout (D54)

Knee-extensor exercise

120min, single bout (D44)

SHBG Positive Decreased – – Mostly Increase (serum) Walking

30-45min, daily, 3 weeks s with diet

therapy (D64)

Line dance

60min, 3 days/weeks, 16 weeks (D65)

Fetuin A Negative Increased Increase up to

normal level

(serum)

Treadmill

60min, 5 days/weeks,

16 (D80)

Decrease (serum,

plasma)

Ergometer

60min, 5 days/weeks, 12 weeks (D75,

D76)

Walking

60min, daily, 1 weeks (D77)

FGF21 Positive Increased Increase in acute

exercise (serum

and liver mRNA)

Treadmill

30min, single bout

(E12)

*Running wheel

8 weeks (E13)

Increase (plasma) Treadmill running

60min, single bout (D79)

Treadmill running

30min, single bout (E12)

Hepassocin Negative Increased – – – –

LECT2 Negative Increased – – No change (plasma) Treadmill running

60min, single bout (D79)

RBP4 Negative Increased Probably decrease Treadmill

60min, 5 days/weeks,

10 weeks (D99)

Decrease (serum,

plasma)

Resistance training

5 days/weeks, 12 weeks (D98)

Stepping training

60min, 3 days/weeks, 10 weeks (D100)

Selenoprotein P Negative Increased No change

(plasma and liver

mRNA)

Treadmill

30min, 6 days/weeks,

1 weeks (F3)

Treadmill

30min, 5 days/weeks,

4 weeks (F3)

No change (plasma) Treadmill running

60min, single bout (D79)

Military training

360min, 5 days/weeks, 12 weeks (F2)

Cycling and walking

30-45 min, 3 days/weeks, 8 weeks (F3)

*non-significant protocol.

weeks combined with dietary therapy increased serum SHBG by
38% in obese men (105). Aerobic exercise training for 16 weeks
increased serum SHBG by 6% in obese postmenopausal women
(106). However, a single bout of running exercise for 45min
in healthy, physically active men showed only a nonsignificant
tendency for increased serum SHBG (107).

Alpha-2-HS-glycoprotein, also known as fetuin-A, shows
diverse functions including osteogenesis and bone resorption,
and regulation of the insulin and hepatocyte growth factor
receptors and responses to systemic inflammation (64, 108).
Fetuin-A is predominantly secreted by the liver (109) and inhibits
the insulin receptor tyrosine kinase in liver and skeletal muscle
(110, 111). Mice with deletion of the Ahsg gene, encoding

fetuin-A, showed improved insulin signaling (112). Fetuin-A is
also an adaptor protein for saturated fatty acids, allowing them
to activate Toll-like receptor 4 and increase insulin resistance
(113). A clinical study confirmed a positive correlation between
circulating fetuin-A concentrations and insulin resistance (114).
Exercise training including aerobic exercise using an ergometer
or walking generally reduces (115–117) or tends to reduce (118,
119) circulating fetuin-A in subjects with type 2 diabetes and
NAFLD. Improvements in hepatic insulin resistance correlated
with decreasing levels of blood fetuin-A (116). Sedentary and
cholesterol diet-fed mice with low-density lipoprotein receptor
deficiency showed a lower serum fetuin-A concentration than
sedentary control mice fed a normal chow diet, but treadmill
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FIGURE 3 | Hepatokines and organ crosstalk in exercise training for subjects with nonalcoholic fatty liver disease (NAFLD).

running (60 min/day, 5 days/week) for 16 weeks negated the
dietary effect of cholesterol by increasing the serum fetuin-
A concentration to the level of control mice (120). According
to those findings, training generally reduces the increased
circulating fetuin-A in obesity but increases fetuin-A in the case
of low-density lipoprotein receptor deficiency. Fetuin-B, also
considered to be a hepatokine, has been shown to impair glucose
tolerance and is associated with hepatic steatosis in mice (121).
Further research is required to elucidate the effect of exercise
training on the regulation of fetuin-B.

Hepassocin is important for the regeneration and
proliferation of hepatocytes, acting through extracellular
signal-regulated kinase 1/2 (122–124). It appears to be a
hepatokine (125) and is related to glucose intolerance and insulin
resistance. Hepassocin levels are increased in human subjects
with prediabetes, type 2 diabetes, and NAFLD (126, 127).
Administration of recombinant hepassocin increased NAFLD
activity including steatosis and induced insulin resistance in both
liver and skeletal muscle tissues (126). To date, there have been
no reports analyzing the effect of exercise training on hepassocin
expression or secretion.

Leukocyte cell-derived chemotaxin 2 (LECT2) was originally
identified as a neutrophil chemotactic protein (127) and is
considered to be a hepatokine (128, 129). It impairs insulin
signaling and increased c-jun N-terminal kinase signaling,
suggesting that LECT2 has a pro-inflammatory role (130).
Indeed, deletion of Lect2 in mice improved high fat diet-induced
insulin resistance with decreased c-jun N-terminal kinase
signaling in skeletal muscle (130). In humans, serum LECT2
concentrations correlated positively with insulin resistance (130).

Changes in circulating LECT2 or secretion of LECT2 from
liver during exercise training have not been well-studied. A
single bout of exercise on a moderate-intensity treadmill for
1 h failed to increase the serum LECT2 concentration in
humans (119).

Although serum fibroblast growth factor 21 (FGF21) is
predominantly secreted from the liver, it has also been
found in the pancreas, testis, duodenum and adipose tissue.
Administration of FGF21 improved the metabolic phenotype
and reduced hepatic triglyceride levels in high fat diet-fed
mice, diabetic monkeys, and humans with diabetes (131, 132).
Hepatocytes are a main source of FGF21; thus, FGF21 is
considered to be a hepatokine. Fletcher et al. tested the effect
of FGF21 on exercise-induced hepatic mitochondrial adaptations
in FGF21 knockout mice (133). FGF21 gene knockout mice
showed 30–50% lower hepatic mitochondrial complete palmitate
oxidation, β-hydroxyacyl-CoA dehydrogenase activity, and
nuclear content of peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α) in the sedentary condition;
however, the effect of exercise on these markers was minimal.
Although the direct effect of FGF21 on liver is still controversial
because of the lack of an FGF receptor 1 in hepatocytes, NAFLD
might be alleviated through the effect of training on adipose
tissues: namely, the development of brown fat-like cells in white
adipose tissue (the “beiging” phenomenon) and increased levels
of adiponectin (134, 135). A single bout of exercise increased
circulating FGF21 levels in mice and humans and FGF21 mRNA
expression in the liver of mice (119, 136), whereas wheel running
failed to increase FGF21 mRNA and protein expression in the
livers of mice (137). This suggests that acute rather than chronic
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exercise or training contributes to increasing hepatic FGF21
production.

Retinol-binding protein 4 (RBP4) is secreted from hepatocytes
and adipocytes and is considered to be both a hepatokine and
an adipokine (138). It was originally identified as a transport
protein for vitamin A (139), and its expression is linked to
obesity, metabolic syndrome, and insulin resistance. SerumRBP4
concentration correlated positively with the magnitude of insulin
resistance in subjects with obesity or diabetes (140). Elevated
serum RBP4 levels were also associated with components of
the metabolic syndrome (140). Transgenic overexpression of
human RBP4 or injection of recombinant RBP4 in normal
mice caused insulin resistance (138), whereas deletion of
RBP4 enhanced insulin sensitivity (138, 141). Improvement of
metabolic syndrome with diet therapy and bariatric surgery
decreased serum RBP4 concentrations (142, 143). Exercise
training also reduced circulating RBP4 levels and resistance
training decreased circulating RBP4 in people with type 2
diabetes (144). Training with aerobic exercise for 10 weeks also
decreased the circulating RBP4 levels in healthy women (145),
whereas a single bout of resistance exercise failed to decrease
the RPB4 concentration (146). In spontaneously hypertensive
rats with insulin resistance, treadmill running reduced circulating
RBP4 concentrations (147). Circulating RBP4 decreased in
streptozotocin-induced diabetic rats (148). Interestingly, RBP4
mRNA expression decreased in visceral fat tissue but not in the
liver, suggesting that adipocytes are predominant in the response
of circulating RBP4 levels to training.

Selenoprotein P (SeP) is a liver-derived secretory protein,
and a significant positive correlation in humans between SeP
mRNA expression and insulin resistance was identified using
serial analysis of gene expression and DNA chip methods
(149). SeP-deficient mice showed more endurance capacity after
training through upregulation of reactive oxygen species and
AMPK (150); however, there was no change in SeP secretion
with exercise training in rodents (150) or humans (119, 151),
suggesting that inhibition of SeP is an exercise-enhancer rather
than an exercise mimicker.

Effects of Training Through Adipokines and
Myokines on the Liver and NAFLD
Regular physical activity and exercise training have long
been known to cause adaptations to white adipose tissue,
including decreases in cell size and lipid content and increases
in mitochondrial proteins (152). Exercise training also alters
adipokine secretion. According to a recent systematic review
including 1774 obese subjects, exercise training significantly
reduced serum leptin and increased adiponectin concentrations
(153). Leptin regulates appetite through an afferent signal,
and acute intravenous or intracerebroventricular administrations
of leptin increased glucose turnover and glucose uptake
independently of the blood insulin and glucose levels (154).
Leptin treatment improved insulin resistance and diabetes
in mice with congenital lipodystrophy (155). In general,
serum leptin levels correlated positively with adiposity and
hyperleptinemia and leptin resistance were observed in obese

subjects (156, 157). In the liver, leptin directly promotes
fibrogenesis. Leptin induced transforming growth factor β

(TGF-β) in hepatic stellate cells through indirect effects on
Küpffer cells in an animal model (158). Therefore, reducing
circulating leptin levels by exercise training might contribute to
ameliorating liver fibrosis in subjects with NAFLD. On the other
hand, no association between circulating leptin levels and the
severity of liver fibrosis has been confirmed in human (159).
Adiponectin is secreted from adipose tissues and is abundant
in serum (160). Adiponectin negatively correlates with serum
triglyceride and with apolipoprotein B (ApoB) levels, which is
a triglyceride-rich very-low-density lipoprotein (VLDL) (161,
162). In hepatocytes, adiponectin reduced triglyceride and ApoB
levels and served to reduce VLDL secretion from the liver
(163). Numerous studies have revealed the beneficial effect of
adiponectin on the pathogenesis of NAFLD (164). Adiponectin
administration suppressed the expression of sterol regulatory
element-binding protein (SREBP) 1c in the liver of leptin-
receptor deficient (db/db) mice as well as in cultured hepatocytes
(165). Choline and L-amino acid-deficient diet fed-mice showed
more severe hepatic steatosis in adiponectin-deficient mice than
in wild type mice (166). In db/db mice and high fat diet-fed mice,
reduced adiponectin signaling genes and protein expression
including adiponectin receptor levels were linked with the severe
hepatic phenotype of NASH, reduced mitochondrial biogenesis
markers and reduced AMPK signaling (167). Peroxisome
proliferator-activated receptor alpha (PPARα) is a key regulator
of lipid metabolism and associates with fatty acid oxidation in
the liver. In human subjects with NASH, hepatic expression
of the gene encoding PPARα was correlated positively with
serum adiponectin levels (168). Serum adiponectin levels were
negatively correlated with hepatic steatosis in such subjects (169).
Adiponectin has demonstrated beneficial effects against hepatic
inflammation and fibrosis. In several mouse models of immune-
mediated hepatitis, adiponectin reduced TNF levels and induced
IL-10 release from Küpffer cells (170). Lower nuclear factor
kappa B (NFκB) levels were also reported (171, 172). Adiponectin
receptor 2 (AdipoR2)-deficient mice fed a methionine-choline
deficient diet showed higher levels of steatosis, inflammation and
fibrosis (173). Moreover, overexpression of AdipoR2 inhibited
TGF-β signaling and stimulation of PPARα activity (173).
Adiponectin reduced the proliferation of human stellate cells
and lowered the levels of alpha smooth muscle actin induced in
activated hepatic stellate cells (174). Adiponectin also inhibited
leptin-induced STAT3 phosphorylation in activated hepatic
stellate cells and leptin-mediated upregulation of tissue inhibitor
of metalloproteinase 1 (TIMP-1) release both in vitro and in vivo
(175). These studies suggest that adiponectin ameliorates hepatic
steatosis, inflammation and fibrosis in NAFLD through multiple
mechanisms and increased adiponectin levels by exercise training
is one potential explanation for the benefit of exercise training on
NAFLD.

Perilipin 5 (PLIN5) is a lipid droplet-associated protein that
is highly expressed in oxidative tissue. In high fat diet-fed
mice trained on a treadmill, mice with muscle-specific PLIN5
overexpression showed decreased liver fat and mRNA expression
of genes encoding proinflammatory cytokines (176). In these
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mice, the increase in serum FGF21 was double that of the control
mice, suggesting that increased PLIN5 expression might mediate
an increase in the levels of circulating FGF21 after training.

IL-6 is released from contracting muscle, and was first
identified as a myokine (177, 178). In skeletal muscle, IL-
6 increases glucose uptake and fatty acid oxidation through
activation of AMPK and/or phosphatidylinositol-3-kinase (PI3-
kinase) pathways (179). Circulating IL-6 released from skeletal
muscle directly affects whole body metabolism in distant organs.
In adipose tissues, IL-6 induces lipolysis and increases fatty
acid oxidation through activation of AMPK (180). IL-6 also
increases the proliferation of pancreatic β cells and increases
glucose-stimulated insulin secretion from them (181, 182). In the
liver, muscle-derived IL-6 enhances hepatic glucose production
during exercise (183) and has been reported to upregulate
the expressions of gluconeogenic genes directly leading to
increased hepatic glucose production (183, 184). These action
of IL-6 in the liver might contribute to maintain glucose
homeostasis during exercise. Indeed, circulating IL-6 levels
negatively correlates with those of plasma glucose during exercise
in humans (185), suggesting that IL-6 might be a sensor of
carbohydrate availability (186). L-6 infusion reduced hepatic
steatosis and ischemia/reperfusion injury and promoted the
proliferation of hepatocytes in rodent models (187–190). As
well as skeletal muscle and adipose tissue, these effects in the
liver were linked with an increase in mitochondrial fatty acid
oxidation. IL-6 also affected PPARα levels in the liver (188),
mediated the levels of fatty acid binding protein and positively
regulated PPARα production in the liver (191). PPARα was
shown to upregulate the expression of genes including those
involved in fatty acid transport and mitochondrial fatty acid
oxidation (192). These experimental studies suggest that IL-
6 might be involved in the way exercise training alleviates
NAFLD. In addition, findings from IL-6-deficient mice, which
develop mature-onset obesity, demonstrated a suppressive effect
of IL-6 on the development of obesity (191). On the other
hand, it is well known that IL-6 is an inflammatory cytokine
and serum IL-6 concentrations are generally increased in
subjects showing obesity, diabetes and NAFLD (193, 194).
TNF-α upregulates obesity-induced IL-6 production and causes
hepatic inflammation through activation of extracellular signal-
regulated kinase (ERK) and signal transducers and activator
of transcription 3 (Stat3) signaling (195). IL-6-deficient mice
gained body weight slower than wild type mice under high fat
diet-fed-conditions (196). Moreover, IL-6-deficient mice showed
less severe steatosis and inflammation in the liver (195). In a
clinical study including subjects with NASH, IL-6 was decreased
significantly in those subjects who received either aerobic exercise
training or resistance exercise training (197). Taken together,
there are discrepancies among studies in terms of the effects of
IL-6 on obesity and NAFLD, and further research is required
to clarify the effects of IL-6 on NAFLD as a myokine and as an
inflammatory cytokine.

Irisin is a 112 amino acid proteolytically cleaved form
of fibronectin type III domain-containing protein 5 that has
been identified as a training-induced secretion factor (135).
Irisin is secreted from muscles during or after exercise and

induces beiging of white adipose tissue by activating PGC1α,
resulting in an improvement in glucose and lipid metabolism
in multiple organs (133, 198). The effect of irisin on liver has
also been investigated. Recombinant irisin protein significantly
inhibited the increase in the palmitic acid-induced lipogenic
markers ACC and FAS and prevented palmitic acid-induced
lipid accumulation in primary hepatocytes (199). The researchers
also identified an anti-inflammatory effect of irisin with
reductions in inflammatory mediators including TNF-α, IL-
6 and NF-κB, which might be mediated by protein arginine
methyltransferase 3, an enzyme actively participating in the
hepatic lipogenesis pathway. Serum irisin concentrations were
increased in human subjects with NAFLD (200), and this was
considered to be a protective compensatory response. Irisin
also acts against oxidative stress and serum irisin concentration
correlates with hepatic and muscle malondialdehyde levels
(201, 202). As for its anti-inflammatory effect, the antioxidative
effect of irisin mediates the inhibition of protein arginine
methyltransferase 3 (199).

Other Mechanisms of the Effects of
Exercise Training on the Liver
MicroRNAs (miRNAs) are small untranslated RNA transcripts
frequently expressed under the control of nuclear receptors. They
are involved in multiple cellular pathways including metabolism.
The association between exercise training and miRNAs has
been studied. Thus, a comparative analysis of livers from mice
subjected to exercise training showed significant changes in
miRNAs (203). It was reported that miR-33 positively regulated
hepatic fatty acid oxidation and insulin signaling and reduces
lipogenesis (204). In high fat diet-fed mice, the expression of
hepatic miR-33 was decreased significantly, whereas aerobic
exercise on a treadmill for 10 weeks increased miR-33 expression
to the level of the normal chow-fed control mice (205). Another
miRNA array study on mice showed that increased levels of miR-
212 in high fat diet-fed mice was reduced by treadmill running
for 16 weeks (203). In that study, a negative correlation between
miR-212 and FGF21 levels was also demonstrated in HepG2
cells, suggesting that decreased miR-212 might underlie the effect
of exercise training on reducing lipogenesis through increasing
FGF21 production (206).

Numerous clinical and experimental studies have indicated a
strong correlation between the microbiome and the pathogenesis
of NAFLD (207, 208). Lifestyle disturbances including excess
“Western-style” diet consumption and diet-induced obesity
cause severe microbial dysbiosis and have a direct impact on
hepatic metabolism (209). Lipopolysaccharides produced by
the Negativicute and Halanaerobiale bacteria, which belong
to the Phylum Firmicutes, are associated with the progression
of NASH, including liver inflammation and fibrosis (210).
Intestinal permeability is involved in the pathogenesis of
NAFLD and affects the microbiome (211). Increased intestinal
permeability results in increased inflammation-based and
bacterial metabolite-driven pathways (212, 213). Lifestyle
modifications can affect the microbiome. Indeed, numerous
studies have demonstrated that training and physical activity
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changes the microbiome (214, 215). Both treadmill running
and voluntary wheel running increased microbiome diversity in
mice, and this effect was also observed in high fat diet-fed mice
(216, 217). However, the effect of exercise training on the ratio
of Firmicutes to Bacteroidetes, which is generally considered to
increase in cases of obesity and diabetes (209, 218), is inconsistent
in the literature because of differences in training protocols and
sampling locations between studies (214–217). Bifidobacterium
is a known regulator of intestinal permeability (219, 220) and
several studies have reported an increase in Bifidobacterium with
exercise training (218, 221), suggesting that exercise improves gut
barrier function. This suggests that alteration of the microbiome
is involved in the effect of exercise training on ameliorating
NAFLD, and further research is warranted.

FUTURE DIRECTION OF EXERCISE
TRAINING TREATMENT FOR ALLEVIATING
NAFLD

According to recent studies and consensus, liver fibrosis is the
most significant factor for determining the prognosis of NAFLD,
independent of age and concomitant disease including diabetes
(222, 223). Therefore, it is important to identify whether exercise
training ameliorates or prevents liver fibrosis and improves the
prognosis of subjects with NAFLD. Moreover, it is necessary
to investigate the molecular pathways involved in the exercise
training effect on the pathogenesis of liver fibrosis. To date, few
studies have evaluated liver fibrosis in liver specimens (9, 224).
In this context, the development of a noninvasive method to
evaluate liver fibrosis in subjects with NASH including magnetic
resonance imaging and transient elastography will contribute
to further clinical trials targeting liver fibrosis with exercise
training (225, 226). In experimental research, comprehensive
analyses including gene microarrays, next generation sequencing
and metabolomics, developed in the 2000s, have indicated
possible molecular mechanisms by which NAFLD might be
ameliorated in rodent models and humans (227–230). These
technologies are expected to reveal the molecular mechanisms
and contribute to translational research on exercise training in
subjects with NAFLD. Another aspect of investigation into the
effect of exercise training onNAFLD is the potential development
of a therapeutic agent as a “training mimicker.” It is well
known that maintaining adherence to lifestyle modifications

including exercise training and dietary therapy is difficult
(41). Moreover, concomitant disease and complications of
obesity including diabetes, cardiovascular disease and inactivity
linked with orthopedic diseases and aging frequently disrupt
exercise training for subjects with NAFLD. Training mimickers
would provide these patients with the benefits of exercise
training.

CONCLUSION

To conclude, exercise training is a robust treatment for subjects
with NAFLD. There are multiple mechanisms by which this acts
on the liver, including organ crosstalk. Although further clinical
research is needed to evaluate the effect of exercise training
on liver fibrosis and prognosis for patients with NAFLD, it is
important to increase physical activity and promote lifestyle
modification for the management of this disorder.
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