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The hexosamine biosynthetic pathway (HBP) and the phosphatidylinositol 3-kinase

(PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway are considered

as nutrient sensors that regulate several essential biological processes. The

hexosamine biosynthetic pathway produces uridine diphosphate N-acetylglucosamine

(UDP-GlcNAc), the substrate for O-GlcNAc transferase (OGT), the enzyme that

O-GlcNAcylates proteins on serine (Ser) and threonine (Thr) residues. O-linked

β-N-acetylglucosaminylation (O-GlcNAcylation) and phosphorylation are highly dynamic

post-translational modifications occurring at the same or adjacent sites that regulate

folding, stability, subcellular localization, partner interaction, or activity of target proteins.

Here we review recent evidence of a cross-regulation of PI3K/AKT/mTOR signaling

pathway and protein O-GlcNAcylation. Furthermore, we discuss their co-dysregulation

in pathological conditions, e.g., cancer, type-2 diabetes (T2D), and cardiovascular, and

neurodegenerative diseases.

Keywords: O-GlcNAcylation, PI3K/AKT/mTOR, cancer, diabetes, cardiovascular, neurodegenerative diseases

INTRODUCTION

O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic modification of serine
(Ser) and threonine (Thr) amino acids of cytoplasmic, nuclear (1), and mitochondrial (2) proteins
with a single residue of N-acetylglucosamine (GlcNAc). This post-translational modification is
controlled by two single antagonist enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase
(OGA), which transfer and remove the GlcNAc moiety, respectively. The nucleotide sugar donor,
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), is the final product of the hexosamine
biosynthetic pathway that is at the nexus of glucose, amino acid, lipid, and nucleotide metabolisms
(Figure 1). Consequently, O-GlcNAcylation is considered as a cellular nutrient sensor linking
nutrient availability to intracellular signaling and biological responses. To date, thousands of
O-GlcNAcylated proteins endowing a wide range of functions have been identified and most of
them are also phosphoproteins (3). In fact, O-GlcNAcylation and phosphorylation can modulate
each other at the same or adjacent sites (4).
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Over the last decade, emerging evidence has indicated
that a cross-talk exists between O-GlcNAcylation and
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian
target of rapamycin (mTOR) signaling pathway (5). The
PI3K/AKT/mTOR signaling pathway is a key transducer of
metabolic and mitogen signals (such as energy, amino acids,
insulin or growth factors) that modulate gene expression, protein
translation and cellular metabolism, thus regulating cell growth
and proliferation (Figure 1). Aberrant activation of this signaling
pathway as well as altered protein O-GlcNAcylation have both
described in several types of cancer, cardiovascular andmetabolic
diseases, aging, and neurodegeneration in human (6–8). This
mini-review summarizes and discusses recent evidence linking
cross-regulation and co-dysregulation of O-GlcNAcylation and
PI3K/AKT/mTOR signaling pathway in physiological conditions
and in human chronic diseases, respectively.

THE PI3K/AKT/MTOR SIGNALING
PATHWAY AND ITS CROSS-REGULATION
WITH PROTEIN O-GLCNACYLATION

Binding of insulin or growth factors to their plasma membrane
tyrosine kinase receptors (RTK) triggers the phosphorylation
of PI3K, either directly by the RTK or indirectly via
phosphorylation of adapter signaling proteins such as insulin
receptor substrate-1 or 2 (IRS-1/2; Figure 1). Phospho-PI3K
catalyzes the formation of membrane phosphatidylinositol-
3,4,5-trisphosphate (PIP3) which drives the activation of the
phosphoinositide-dependent protein kinase-1 (PDK-1) and the
recruitment of AKT. The latter is partially activated through
initial phosphorylation at Thr308 by PDK-1 and fully activated
after phosphorylation at Ser473 by the mTOR complex 2
(mTORC2) (9). Once activated, AKT phosphorylates several
downstream effectors [e.g., mTOR, forkhead box proteins O
(FoxO), glycogen synthase kinase 3 β (GSK3β), BCL-2-associated
agonist of cell death (BAD) or endothelial nitric oxide synthase
(eNOS)] that in return regulate and coordinate a variety of
cellular responses including cell proliferation, survival and
growth, glucose metabolism, and angiogenesis (9). Tuberous
sclerosis complex 2 (TSC2), inhibited by AKT-dependent
phosphorylation, is a critical negative regulator of mTOR
complex 1 (mTORC1). mTORC1 induces protein synthesis
through phosphorylation of eukaryotic translation initiation
factor 4E (eIF4E)-binding protein-1 (4E-BP1) and ribosomal

Abbreviations: 4E-BP1, eukaryotic translation initiation factor 4E-binding

protein-1; AD, Alzheimer’s disease; AMPK, adenosine monophosphate-

activated protein kinase; BAD, BCL-2-associated agonist of cell death; eNOS,

endothelial nitric oxide synthase; FoxO, forkhead box protein O; GlcNAc, N-

acetylglucosamine; GLUT, glucose transporter; GSK3β, glycogen synthase kinase

3 β; HBP, hexosamine biosynthetic pathway; HIF-1α, hypoxia-inducible factor-1α;

IR, insulin receptor; IRS-1, insulin receptor substrate-1; mTOR, mammalian

target of rapamycin; mTORC, mTOR complex; O-GlcNAcylation, O-linked

β-N-acetylglucosaminylation; OGA, O-GlcNAcase; OGT, O-GlcNAc transferase;

p70S6K, ribosomal protein S6 kinase; PDK-1, phosphoinositide-dependent

protein kinase-1; PI3K, phosphatidylinositol 3-kinase; PIP3, phosphatidylinositol-

3,4,5-trisphosphate; T2D, type-2 diabetes; Tau, tubulin-associated unit;

UDP-GlcNAc, uridine diphosphate N-acetylglucosamine.

protein S6 kinase (p70S6K) (9). mTORC1 also regulates
nucleotide, lipid and glucose metabolisms, angiogenesis and
autophagy processes by regulating alpha-activating transcription
factor 4 (ATF4), lipin-1, hypoxia-inducible factor-1α (HIF-1α)
or Unc-51 like autophagy activating kinase 1 (ULK1) (10, 11).
In response to amino acid stimulation, mTORC1 is recruited
to the lysosomal surface where it is activated by Ras homolog
enriched in brain (Rheb) (9). Upon elevated AMP/ATP ratio,
AMP-activated protein kinase (AMPK) phosphorylates, and
activates TSC2 leading to inhibition of mTORC1 activity (10, 11).

In parallel, O-GlcNAcylation targets proteins involved in
transcription, translation, ubiquitin-proteasomal degradation,
signal transduction, stress response, cellular trafficking and
architecture, cell cycle, apoptosis, and development (12). OGT
activity is sensitive to UDP-GlcNAc levels, thus, addition
of glucose or glucosamine globally increases levels of O-
GlcNAcylation (13).

Many studies have established a complex interplay
between PI3K/AKT/mTOR signaling pathway and protein
O-GlcNAcylation (Figure 1). After insulin stimulation, the
C-terminal PIP-binding domain of OGT (PPO) allows its
translocation from the nucleus to the plasma membrane in
murine 3T3-L1 adipocytes (14) and African green monkey COS-
7 fibroblasts (15), and possibly to lipid rafts as observed in the
human hepatic cancer cell line HepG2 (16). This translocation
possibly facilitates the tyrosine phosphorylation of OGT by the
insulin receptor (IR), which increases its enzymatic activity (17).
The cellular energy sensor AMPK also regulates OGT. AMPK
phosphorylates OGT at Thr444, which induces its nuclear
translocation in differentiated C2C12 skeletal muscle myotubes
(18) and promotes its dissociation from chromatin in human
embryonic kidney 293T cells (19). In HepG2 cells, it has been
further shown that OGT phosphorylation by AMPK inhibits
histone H2B O-GlcNAcylation and gene transcription (19). In
contrast, OGT targets several actors from the PI3K/AKT/mTOR
signaling pathway, including IRS-1 (17, 20–24), PI3K (23), PDK1
(17), AKT (21, 25–27), AMPK (18, 19), 4E-BP1 (28), and p70S6K
(29). Indeed, these proteins are O-GlcNAc-modified in IR and
insulin growth factor-1 receptor (IGF-1R) expressing cell types
including adipocytes, myocytes, hepatocytes, pancreatic beta (β)
cells, endothelial cells, kidney and retina cells (30). However,
only few studies have investigated the molecular impacts of
O-GlcNAcylation on PI3K/AKT/mTOR signaling pathway and
the subsequent biological effects under physiological conditions.
O-GlcNAc modification of IRS-1 and AKT inhibits their activity
either by disruption of their interaction with PI3K and PDK1
kinases, respectively, in 3T3-L1 adipocytes and MCF-7 breast
cancer cell lines (17, 26), either by a “Yin-Yang” competition
mechanism with activating phosphorylation as described in rat
primary adipocytes and INS-1 pancreatic β cell lines (25, 27).
O-GlcNAcylation also enhances 4E-BP1 stability in vitro in
rat retinal TR-MUL Müller cells an in vivo in murine retinal
cells, potentially by preventing its phosphorylation-dependent
ubiquitin-mediated degradation (28). Protein O-GlcNAcylation
could hence potentiate cellular nutrient sensing capacity of the
PI3K/AKT/mTOR signaling pathway in order to regulate crucial
intracellular processes.
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FIGURE 1 | Complex interplay between O-GlcNAcylation and PI3K/AKT/mTOR signaling pathway controls numerous biological processes. The HBP integrates a

fraction of the glucose entering the cell as well as lipid, nucleotide, and amino acid metabolites to produce UDP-GlcNAc. Then, OGT uses UDP-GlcNAc as a

nucleotide sugar donor substrate to add a GlcNAc group on serine and threonine residues of target proteins. Like phosphorylation, O-GlcNAcylation is a dynamic and

reversible post-translational modification. Its targets are involved in a wide range of biological processes such as transcription, translation, ubiquitin-proteasomal

degradation, signal transduction, cell traffic and architecture, cell cycle, apoptosis or development. In parallel, binding of insulin or growth factor to their RTK leads to

receptor activation and recruitment of IRS-1/2 and PI3K. PI3K produces PIP3 (from PIP2), which recruits AKT and PDK1 to the plasma membrane. PDK1 and mTOR

in mTORC2 activate AKT through phosphorylation. mTORC1 is activated by AKT through TSC2 inhibition and upon amino acid stimulation and, is inhibited in

response to low energy by AMPK. mTORC1 promotes protein synthesis via direct phosphorylation of p70S6K and 4E-BP1. By phosphorylating key substrates, AKT

and mTORC1 regulate metabolism, cell cycle, proliferation, survival, growth, angiogenesis and autophagy. OGT localization and activity are regulated through

phosphorylation by IR and AMPK. OGT stability is indirectly regulated at the protein synthesis level via mTORC1. Reciprocally, several actors of the PI3K/AKT/mTOR

signaling pathway are modified by O-GlcNAcylation such as IRS-1, PI3K, PDK1, AKT, AMPK, p70S6K, and 4E-BP1.

O-GLCNACYLATION AND PI3K/AKT/MTOR
SIGNALING PATHWAY
CROSS-DYSREGULATION IN HUMAN
DISEASES

Cancer
The Warburg effect is a metabolic reprogramming of the
cell from oxidative phosphorylation to aerobic glycolysis that
allows energy production and de novo macromolecule synthesis
required to sustain cancer cells proliferation and growth.
Enhanced glucose and glutamine uptake observed in the
Warburg effect would lead to an increased flux through HBP
and the hyper-O-GlcNAcylation that has been observed in many
cancers (31). Aberrantly activated PI3K/AKT/mTOR signaling

pathway is known to play a central role in aerobic glycolytic
reprogramming, tumor growth, and survival (32), and a cross-
talk between PI3K/AKT/mTOR signaling and O-GlcNAcylation
has been observed in several cancers.

Insulin or serum growth factors stimulation lead to increased
OGT expression in a PI3K-dependent manner in HepG2 and
MCF-7 cell lines (16, 33). Although it was not investigated in
these studies, it is likely that this effect could be related to mTOR

activation. Since it was observed that pharmacological inhibition

of mTOR enhances proteasomal and autophagic degradation

of OGT in HepG2 cells (34). We have also demonstrated that
inhibition of mTOR affects OGT protein level and overall O-

GlcNAcylation levels in HCT116 colon cancer cell line (35).
In breast cancer cell lines the positive regulation of OGT
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expression through mTOR is dependent on c-Myc-induced heat
shock protein 90A (HSP90A) transcription (36). This chaperone
binds to OGT and prevents its proteasomal degradation (36).
Additionally, the transcriptional regulator Yes-associated protein
(YAP) strongly activates the OGT promoter in hepatic cancer cell
lines. In turn,O-GlcNAcylation of YAP promotes its stability, and
its tumorigenic activity both in vitro and in vivo in liver cancer
mouse models showing that a positive feedback is set up in liver
tumorigenesis (37). YAP is activated by PI3K in hepatocellular
(38) and mammary carcinoma (39), but has been shown to
regulate PI3K/AKT/mTOR signaling in the MCF 10A human
immortalized mammary epithelial cell line (40). These recent
works highlight once more the tight link that exists in cancer cells
between PI3K/AKT/mTOR axis and OGT activity.

O-GlcNAcylation impacts PI3K/AKT and mTOR axis in
cancer cells. Pre-B acute lymphocytic leukemia (pre-B-ALL)
cells overexpress OGT and exhibit a higher O-GlcNAcylation
levels and an overactivation of PI3K, AKT and c-Myc compared
to normal B cells. This dysregulation is associated with the
overexpression of the transcription factor HIF-1α and its
target glycolytic genes such as glucose transporter 1 (GLUT1),
hexokinase 2 (HK2), phosphofructokinase-1 (PFK-1) and lactate
dehydrogenase A (LDHA). OGT knockdown, in pre-B-ALL cells,
decreases PI3K and AKT activation and glycolysis, resulting
in a reduced cell proliferation and apoptosis. These inhibitory
effects can be partly rescued by IGF-1 mediated stimulation of
PI3K/AKT, indicating that effect of OGT on glycolysis is, in
part, PI3K/AKT-dependent (41). Similarly, in 3D cultures of T4-2
breast cancer cells, OGT inhibition or silencing suppresses AKT
signaling and glycolytic activity (42) (Figure 2).

In addition to glycolysis, regulation of PI3K/AKT signaling
by O-GlcNAcylation was shown to modulate proliferation,
growth and invasion properties of cancer cells (32, 42–47).
We have demonstrated that knockdown or pharmacological
inhibition of OGT decreases PI3K activation and prevents
serum-stimulated cyclin D1 synthesis, leading to a delay in
proliferation of MCF-7 cells (33). Since AKT prevents ubiquitin-
mediated degradation of cyclin D1 by inhibiting GSK3β activity
in the murine NIH/3T3 fibroblast cell line (43), it is likely that
the decrease in cyclin D1 level could result from an increase
of its proteasomal degradation under low O-GlcNAcylation
levels. Reciprocally, enhanced O-GlcNAcylation level stimulates
PIP3 production and AKT phosphorylation in MCF-7 cells
(44). Similar results showed that hyper-O-GlcNAcylation
induced by OGA down-regulation in 8305C thyroid anaplastic
tumor cell line stimulates proliferation through increased
phosphorylation of AKT at Ser473 and cyclin D1 amount
(45). Additionally, glucose deprivation in osteosarcoma U2OS
cell line attenuates protein O-GlcNAcylation, phosphorylation
of IRS-1 and AKT, production of PIP3 and suppresses cell
growth (46). Importantly, in these cell line, insulin signaling
pathway, and tumor growth can be rescued by glucosamine-
mediated increased HBP flux and O-GlcNAcylation (46). In
parallel, increased O-GlcNAcylation promotes gastric and
thyroid cancer cells invasion in a PI3K/AKT dependent
manner, since the pro-invasion effect of O-GlcNAcylation
is suppressed by PI3K inhibition or AKT silencing (47, 48).

This may result from the regulation that O-GlcNAcylation
exerts on AKT-mediated control of a myriad of downstream
substrates, such as matrix metalloproteinase-2 (MMP-2)
and MMP-9 (49) (Figure 2). However, other studies report
contradictory results regarding the effect of O-GlcNAcylation
on the activation of AKT signaling pathway (26, 50). OGA
overexpression reduces AKT O-GlcNAcylation and promotes
its activation, albeit in a PI3K-independent manner, both
in HepG2 cells and in liver of euglycemic mice (50). Our
group also demonstrated that OGT silencing prevents AKT
Ser473 phosphorylation in HepG2 (16) and MCF-7 (33)
cell lines. More recently, this effect has also been described
in cholangiocarcinoma cell lines (51). Furthermore, AKT
O-GlcNAcylation at Thr305 and Thr312 reduces MCF-
7 cell proliferation and migration via inhibition of AKT
phosphorylation at Thr308 and disruption of its interaction with
PDK1 (26).

Finally, it was shown that O-GlcNAcylation regulates the
mitogenic mTOR signaling pathway through targeting themTOR
inhibitor AMPK (35, 52, 53). Increased O-GlcNAcylation in
colon cancer cells, either by OGT overexpression or OGA
inhibition, reduces phosphorylation of AMPK at Thr172,
activates mTOR and induces cell growth in vitro in LoVo cell line
and in vivo in LoVo cell-derived tumors of BALB/c-nu/nu mice
(52). We have confirmed that O-GlcNAcylation activates mTOR
in HCT116 colon cancer cell line but not in CCD841CoN normal
cells (35). Reciprocally, OGT silencing or inhibition increases
phosphorylation of AMPK, decreases phosphorylation of mTOR
downstream effectors 4E-BP1 and p70S6K, decreases HIF-1a,
GLUT1, and LDHA expression and impairs glucose uptake and
growth in breast cancer cell lines (53) (Figure 2).

Together, these studies establish the involvement of
O-GlcNAcylation in cancer biology (increased glycolysis,
proliferation, growth, and invasion) through direct activation
of the PI3K/AKT/mTOR axis. One may consider this post-
translational modification as a key node between metabolism
and cell signaling. However, intricate ties linking metabolism
and cancer are not completely elucidated and need further
investigations. In parallel, anti-cancer inhibitors targeting
mTOR axis are currently in clinical development and must
be encouraged (54). Tumor cells resistant to GDC-0941,
a PI3K inhibitor, exhibit an increased activation of the
PI3K/AKT/mTOR signaling pathway and OGT expression
in comparison to GDC-0941-sensitive cells. Interestingly,
OGT silencing sensitizes these cells to GDC-0941 (55). In
this sense, targeting OGT in cancer cells and/or adapting
patients to low caloric diet could increase the efficiency of
anti-PI3K/AKT/mTOR therapeutic strategies and foil drug
resistance.

Type 2 Diabetes
Insulin resistance, a hallmark of type 2 diabetes (T2D), refers
to impaired insulin sensitivity and glucose uptake of target
tissues (liver, skeletal muscle, and adipose tissue). PI3K/AKT
signaling pathway plays a key role in the regulation of
glucose homeostasis by inhibiting gluconeogenesis and activating
glycogenesis via the inhibition of FoxO1 and GSK3β respectively
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FIGURE 2 | O-GlcNAcylation and PI3K/AKT/mTOR signaling pathway cross-dysregulation in human chronic diseases. O-GlcNAcylation dysregulation (represented by

red arrows) modulates the PI3K/AKT/mTOR signaling pathway and promotes development of human chronic diseases such as cancer, T2D and cardiovascular and

neurodegenerative diseases. In cancer, increased O-GlcNAcylation stimulates the PI3K/AKT/mTOR signaling pathway by up-regulating expression and activity of

IRS-1, PI3K, and AKT and by inhibiting AMPK. mTOR enhances glucose absorption and glycolysis through stimulation of expression of the transcription factor HIF-1α

and its target genes such as GLUTs, HK, PFK, and LDHA. AKT enhances cancer cell proliferation through increased cyclin D1 expression possibly through GSK3β

inhibition. Moreover, AKT has anti-apoptotic and pro-invasion activities and these effects may result in the regulation of several targets including BAD, MMP-2, and

MMP-9. In T2D, increased O-GlcNAcylation associated with hyperglycemia promotes insulin resistance in skeletal muscle, liver and adipose tissue by inhibition of

IRS-1/PI3K interaction and down-regulation of IRS-1 and AKT activity. AKT inhibition induces reduced glucose absorption through down-regulation of GLUT4

translocation to the plasma membrane which might be mediated by AS160. Moreover, repression of AKT inhibits glycogenesis and stimulates gluconeogenesis

through regulation of GSK3β, FoxO1, and respective targets (GS, G6Pase, and PEPCK). Additionally, O-GlcNAc-mediated AKT inhibition induces pancreatic β cell

apoptosis. In hyperglycemic or diabetic cardiovascular tissues, O-GlcNAcylation reduces vasodilatation vessels and angiogenesis via inhibition of AKT, and probably

eNOS and VEGF. Enhanced O-GlcNAcylation in these tissues could also promote calcification and therefore vessel obstruction through Runx2 overexpression

possibly mediated by AKT regulation of SMURF2 and/or FoxO. Finally, increased O-GlcNAcylation stimulates Tau and α-synuclein aggregations involved in AD and

Parkinson’s disease respectively. These processes are mediated by AKT inhibition and Tau kinase GSK3β activation in AD, and by mTOR activation and reduced

autophagy in Parkinson’s disease, which could result from ULK1 inhibition. Furthermore, O-GlcNAc-mediated AKT repression promotes neural cell apoptosis in part,

by up-regulation of BAD.

(9) (Figure 2). Some studies have also established a link
between dysregulation of O-GlcNAcylation cycling and insulin
resistance.

Interestingly, single nucleotide polymorphisms (SNPs) on
OGA (also called MGEA5 for meningioma expressed antigen
5) gene and GFPT2 (for GFAT isomerizing 2) gene, coding
the glutamine fructose-6-phosphate amidotransferase (GFAT)
rate-limiting enzyme controlling the production of UDP-
GlcNAc, are associated with increased T2D risk in American-
Mexican and Caucasian populations, respectively (56, 57). These
mutations may lead to reduced OGA expression and increased
GFPT2 expression respectively (56, 57), and an up-regulation
of cellular O-GlcNAcylation levels. O-GlcNAcylation levels are

significantly increased in skeletal muscle, liver, heart, colon-
rectum, erythrocytes, and leukocytes of diabetic animals and
humans (35, 58–62). Consistent with these epidemiologic data,
db/dbmice overexpressingOga showed improved hepatic insulin
sensitivity (63), whereas Ogt overexpression and subsequent
elevation of global O-GlcNAcylation level inhibits insulin
signaling pathway, both in vitro in 3T3-L1 adipocyte and Fao
hepatic cell lines, and in vivo in skeletal muscle and adipose
tissue in mice (15, 64, 65). Skeletal muscle-specific Ogt knockout
mice have increased glucose uptake, insulin signaling and
whole-body insulin sensitivity (62). Likewise, inhibition of OGA
with O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-
N-phenylcarbamate (PUGNAc) induces insulin resistance in
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3T3-L1 and rat primary adipocytes by perturbing both insulin-
signaling pathway and glucose absorption (17, 21). Indeed,
blockade of OGA increases O-GlcNAcylation of IRS-1 and AKT
while decreasing their phosphorylation (17, 21). Consequently, a
reduction of insulin-stimulated PI3K/IRS-1 interaction, GSK3β
phosphorylation (15, 17, 64) and GLUT4 translocation to
the plasma membrane is observed (17, 21). This reduced
translocation of GLUT4 might be related to the decrease in
AKT phosphorylation since phosphorylation of AKT substrate of
160 kDa (AS160) is required for insulin-stimulated translocation
of GLUT4 to the plasma membrane (66). Reciprocally, in
euglycemic HepG2 and mice hepatic cells, the reduced global
O-GlcNAcylation levels induced by OGA overexpression is
associated with an increase of AKT activation but not of
PI3K (50). This results in inhibition by phosphorylation of
GSK3β (Ser9) and FoxO1 (Ser166), leading to a decrease
of gluconeogenic genes transcription, including glucose-6-
phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase
(PEPCK) (50). In addition, glycogen synthase (GS), substrate
of GSK3β, is also O-GlcNAc-modified in 3T3-L1 cells and
this modification blocks its activation, which is associated with
insulin resistance (67). These data clearly establish the impact of
O-GlcNAcylation in the etiology of insulin resistance and, thus,
potentially in metabolic related diseases such as diabetes.

However, there are studies showing that OGA inhibition does
not cause insulin resistance in 3T3-L1 adipocytes, rat liver and
muscle (68, 69), while others show that OGA inhibition induces
insulin resistance in rat skeletal muscle in an AKT and GSK3β-
independent manner (70). In these studies, authors suggest that
conflicting primary results might result from the use of the
non-selective OGA inhibitor PUGNAc which has been shown
to also inhibit lysosomal hexosaminidases and alter plasma
membrane oligosaccharide structures that are critical in signal
transduction (71, 72). These contradictory findings could also be
due to supraphysiological concentrations of insulin (12 nmol/L)
used for stimulation (70). These findings raise the question of
whether high O-GlcNAcylation levels are responsible for insulin
resistance and show to what extent the understanding of the
role of O-GlcNAcylation in cell signaling regulation in such
multifactorial disease needs to be deepened.

In addition to its role in insulin resistance, O-GlcNAcylation
could also take part in pancreatic islet β cell dysfunction.
Pancreatic β cells are the cells in the body in charge
of producing, storing and releasing insulin upon increased
blood glucose concentration; its dysregulation is a cause of
diabetes. OGT and global O-GlcNAcylation levels are increased
in pancreatic islets of Goto-Kakizaki diabetic rats (73). In
murine pancreatic β cells, glucosamine-mediated hyperglycemia
increases O-GlcNAcylation of AKT and concomitantly reduces
its Ser473 phosphorylation (27). Glucosamine induces β cells
apoptosis likely through O-GlcNAc-mediated inhibition of AKT
(27) (Figure 2). In contrast, β cell-specific Ogt knockout mice
develop β cell failure and diabetes. In this model, a reduction
of AKT phosphorylation at Ser473 was observed (74). These
data suggest that the phospho/O-GlcNAc interplay on AKT
may play a pivotal role as a regulator of downstream signaling
cascades in response to nutrient conditions. The impact of

O-GlcNAcylation dysregulation may be tissue-specific (75).
In conclusion, increased O-GlcNAcylation in diabetes toward
PI3K/AKT-mediated insulin resistance in target tissues could
contribute to the maintenance of the pathology.

Cardiovascular Diseases
Many studies suggest that elevated protein O-GlcNAcylation
levels contribute to cardiovascular complications (76). Chronic
hyperglycemia is a risk factor for cardiovascular diseases and
patients with diabetes may develop atherosclerotic carotid
plaques with a marked increase of O-GlcNAcylation levels (23).
Aorta from streptozotocin-induced hyperglycemic mice exhibits
high levels of O-GlcNAcylation and impaired vascular sprouting
(77). Endothelial dysfunction is a feature of cardiovascular
diseases that is characterized by reduced bioavailability of nitric
oxide (NO) produced by endothelial nitric oxide synthase
(eNOS). Endothelial production of NO plays indeed a key
role in preventing vascular diseases by preventing thrombosis,
inflammation, vascular tone, and remodeling (78). O-GlcNAc
modification is known tomodulate NOproduction in endothelial
cells, promoting macro- and microvascular complications. In
response to insulin, AKT induces vasodilatation in primary
human aortic endothelial cells (HAEC), and it may exert anti-
atherogenic effects by increasing activating phosphorylation of
eNOS at Ser615 and Ser1177 (79) (Figure 2). Federici and
collaborators showed that hyperglycemia or HBP activation
decreases eNOS activity through a reduction of AKT and
eNOS phosphorylation in human coronary artery endothelial
cells (HCAEC) (23). In vitro, glucosamine-induced protein O-
GlcNAcylation also modulates the angiogenic properties of
EA.hy926 endothelial cells, most probably by a concomitant
increase of AKT O-GlcNAcylation that leads to inhibition of its
pro-angiogenic activity (77). AKT could directly up-regulate the
production of the pro-angiogenic factor NO (80). In addition,
PI3K/AKT/mTOR signaling pathway stimulates angiogenesis by
increasing expression of HIF-1α and its target, the vascular
endothelial growth factor (VEGF) (80) (Figure 2). Elevated O-
GlcNAcylation levels also induce vascular calcification in vitro
in murine cells, and in vivo in aortic arc and descending
aorta of diabetic mice. It has been shown, in primary mouse
vascular smooth muscle cells (VSMC), that this process results
from increased Thr430/Thr479-AKT O-GlcNAcylation, which
promotes its activation and the expression of osteogenic runt-
related transcription factor 2 (Runx2) (81). AKT-mediated Runx2
stabilization by degradation of E3 ubiquitin ligase SMURF2 or by
the nuclear exclusion of its transcription regulators FoxO could
take part in this mechanism (82) (Figure 2). Thus, angiogenesis
impairment and vessel obstruction are among the biological
effects related to aberrant O-GlcNAcylation of AKT-mediated
signaling involved in cardiovascular complications associated
with diabetes.

Neurodegenerative Diseases
Dysregulated O-GlcNAcylation has been implicated in the
pathogenesis of neurodegenerative disorders such as Alzheimer’s
disease (AD) and Parkinson’s disease (83). Neurofibrillary
degeneration associated with aggregation of abnormal
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hyperphosphorylated tubulin-associated unit (Tau) proteins
is one the features of AD. The latter undergoes a “Ying-
Yang” competition mechanism between O-GlcNAcylation
and phosphorylation (83). Using thiamet-G, a blood-brain
barrier-permeable OGA inhibitor, several in vivo studies
evidenced the ability of O-GlcNAcylation to protect against Tau
aggregation (84–86). Increased levels of O-GlcNAcylation in
mice brain by intracerebroventricular injection of thiamet-
G is associated with Tau site-dependent increased and
decreased phosphorylation further confirming the complex
relation between modifications on Tau protein (87). Elevated
phosphorylation of Tau at Ser199, Ser202, Ser396, and Ser422
is likely to result from the combination of increased Tau O-
GlcNAcylation, PI3K-independent inhibition of Ser473-AKT
phosphorylation and the subsequent over-activation of GSK3β,
a key Tau kinase (87) (Figure 2). Elevated O-GlcNAcylation
of proteins is found in Parkinson’s disease postmortem brains
(88). In rat primary cortical neurons, thiamet-G treatment
increases accumulation of α-synuclein, a neuronal protein
that aggregates in this pathology, through activation of mTOR
and reduction of autophagy (88) (Figure 2). Conversely, α-
synuclein is O-GlcNAcylated at Thr72 and Ser87, leading to
reduced aggregation in vitro (89, 90). But, these discrepancies
could be due to different experimental approaches. Evidence
that excessive O-GlcNAcylation is detrimental to neurons by
increasing α-synuclein accumulation was demonstrated in vitro
and related to mTOR pathway (88), while O-GlcNAc-reduced
aggregation of α-synuclein was demonstrated by biochemical
approaches (89, 90). Taken together, these results indicate that
the mitigation of pathological aggregation of neuronal proteins
by direct O-GlcNAc modification is a complex mechanism that
could be indirectly counterbalanced by AKT/mTOR signaling
pathway.

Another common pathological hallmark of neurodegenerative
diseases is the loss of neurons as a consequence of neuronal
cell death (91). Although not yet studied in such pathological
conditions, indirect evidence suggests that O-GlcNAcylation
could be involved in the regulation of neuronal apoptosis.
Elevation of protein O-GlcNAcylation after cerebral ischemia
is responsible for O-GlcNAc-mediated AKT inhibition, BAD
activation and neuronal apoptosis in mice (25). An increase
of O-GlcNAcylation levels is also associated with a default
in Thr308-AKT phosphorylation and cellular apoptosis during
cortical differentiation of human embryonic stem cells (hESC)
(92) (Figure 2). These studies strongly support that O-GlcNAc-
mediated AKT inhibition might be involved in neuronal
cell loss of function and apoptosis in neurodegenerative
diseases.

CONCLUSION

Highlighted by the studies discussed above O-GlcNAcylation
and the PI3K/AKT/mTOR signaling pathway appear to be
intimately cross-linked. Both are considered as metabolic sensor
that regulate folding, stability, subcellular localization, partner
interaction, and therefore the activity of a plethora of targets

involved in key biological functions. Here, we summarized
evidence that O-GlcNAcylation can modulate the activation of
the PI3K/AKT/mTOR signaling pathway by targeting different
signaling actors, and that, reciprocally; expression, localization
and activation of OGT are regulated by these signaling pathways
(Figure 1). Although, further works are required to clarify the
roles ofO-GlcNAcylation on PI3K/AKT/mTOR regulation under
normal physiological context, their interplay is highlighted by
their associated dysregulation in several types of cancer, T2D, and
cardiovascular and neurodegenerative diseases (Figure 2). Under
pathological glucose conditions, aberrant O-GlcNAcylation
levels result in activation or inhibition PI3K/AKT/mTOR
signaling pathway as found in cancer and diabetes, respectively.
Because of the key role of the PI3K/AKT/mTOR signaling
pathway in cellular metabolism and physiology, these regulatory
mechanisms contribute to pathogenicity by promoting, on
one hand, glycolysis, proliferation, growth and invasion of
cancer cells, and on the other hand, insulin resistance in
insulin target tissues and/or pancreatic β cell dysfunction
and death. Moreover, O-GlcNAc-mediated disturbance of AKT
activity in endothelial cells leads to impairment of angiogenesis
and vessel obstruction, supporting cardiovascular diseases
associated with T2D. Finally, O-GlcNAcylation regulation of the
PI3K/AKT/mTOR signaling pathway can indirectly modulate
aggregation of neuronal proteins, such as Tau and α-synuclein
that are involved in AD and Parkinson’s disease, respectively,
as well as in neuronal cell death. Taken together, evidence
presented here shows that targeting OGT or OGA with selective
small molecules to inhibit their activity or their interaction
with specific actors of the PI3K/AKT/mTOR signaling pathway,
in association with an adapted diet, may be a promising
combined therapeutic approach to treat chronic metabolic-
related diseases.
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