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Omics approaches are broadly used to explore endocrine and toxicity-related

pathways and functions. Nevertheless, there is still a significant gap in knowledge

in terms of understanding the endocrine system and its numerous connections and

intricate feedback loops, especially in non-model organisms. The fathead minnow

(Pimephales promelas) is a widely used small fish model for aquatic toxicology

and regulatory testing, particularly in North America. A draft genome has been

published, but the amount of available genomic or transcriptomic information is still

far behind that of other more broadly studied species, such as the zebrafish. Here,

we used a proteogenomics approach to survey the tissue-specific proteome and

transcriptome profiles in adult male fathead minnow. To do so, we generated a

draft transcriptome using short and long sequencing reads from liver, testis, brain,

heart, gill, head kidney, trunk kidney, and gastrointestinal tract. We identified 30,378

different putative transcripts overall, with the assembled contigs ranging in size from

264 to over 9,720 nts. Over 17,000 transcripts were >1,000 nts, suggesting a

robust transcriptome that can be used to interpret RNA sequencing data in the

future. We also performed RNA sequencing and proteomics analysis on four tissues,

including the telencephalon, hypothalamus, liver, and gastrointestinal tract of male fish.

Transcripts ranged from 0 to 600,000 copies per gene and a large portion were

expressed in a tissue-specific manner. Specifically, the telencephalon and hypothalamus

shared the most expressed genes, while the gastrointestinal tract and the liver

were quite distinct. Using protein profiling techniques, we identified a total of 4,045

proteins in the four tissues investigated, and their tissue-specific expression pattern

correlated with the transcripts at the pathway level. Similarly to the findings with the

transcriptomic data, the hypothalamus and telencephalon had the highest degree of
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similarity in the proteins detected. The main purpose of this analysis was to generate

tissue-specific omics data in order to support future aquatic ecotoxicogenomic and

endocrine-related studies as well as to improve our understanding of the fathead minnow

as an ecological model.

Keywords: fathead minnow, transcriptome, proteome, tissue-specific, endocrine system, proteogenomics

INTRODUCTION

Omics technologies have significantly improved our
understanding of how biological systems work. Their rapid
development and the large amount of data generated allowed for
the evolution of top-down approaches in order to understand
systems that would complement the reductionist bottom-up
approaches. These developments enabled rapid and broad
characterization of many levels of biology through genome
and transcriptome sequencing, proteomics, or metabolomics
(1–4). Due to the extremely rapid advancement of sequencing
technologies, it is now faster and more affordable than ever
to generate data for genomics and transcriptomics analyses.
As a result, omics techniques are increasingly being applied to
“unusual” species to generate information that allows better
understanding of novel biological characteristics (5, 6) in fields
ranging from evolution and adaptation to toxicology and
endocrine research (7). A key step in the development of omics
applications for endocrine research is to refine their utilization in
model species used in understanding both the highly conserved
and the species-specific aspects of the endocrine system (6, 8).
Here, we aim to further increase our knowledge of the fathead
minnow to improve its usefulness as an ecological and endocrine
model.

The fathead minnow (FHM, Pimephales promelas) is a
member of the Cyprinidae family with a broad distribution
in aquatic environments, both in running and still waters,
across North America (9). They tolerate a wide range of water
characteristics, including pH, alkalinity, and temperature (9–11).
Fathead minnows are sexually dimorphic and have a rapid life
cycle, with a well-defined developmental process, reproductive
cycle, and behavior (12–15). All of these characteristics together
with the well-established methods for its culture and husbandry
(16) make the FHM suitable as an ecologically relevant fish
model. In fact, the FHM is the most frequently used small fish
model for regulatory ecotoxicology in North America since the
1950s (17). After the US Environmental Protection Agency was
established in 1970, the FHM was adopted as a primary model
organism for standardized regulatory toxicity testing, leading to
the development of numerous testing guidelines (18–20). As a
consequence, the extensive toxicity data available offers the FHM
the greatest potential for linking molecular diagnostic indicators
to ecologically relevant outcomes (17).

The relatively recent interest in contaminants that act as
endocrine disruptors has focused on effects on the endocrine
system of fish, since these organisms are present in contaminated
environments. Studies analyzing effects on reproduction (21–23),
thyroid function (24, 25), neuroendocrine control (26–28)

or effects on sex differentiation during sensitive periods of
development (29–32) require good molecular tools for data
interpretation. Thus it is important to develop well-annoted
sequence databases to have a more comprehensive evaluation of
the effects of endocrine disruptors on fathead minnows using
functional genomic approaches. In addition, it is important to
understand the physiology and endocrinology of this useful
species. However, significantly less genetic information is
available for the FHM than other models such as the zebrafish
(Danio rerio), which has an assembled reference genome (https://
www.ncbi.nlm.nih.gov/grc/zebrafish).

The first FHM draft genome was published in 2016
(33) and was produced from Illumina sequencing at 120X
coverage. The genome annotation was later improved,
leading to a total of 43,345 gene predictions (34). In
addition, a web-accessible genome browser was created,
which enables simplified access to the sequence data and
its associated annotations (https://www.setac.org/page/
fhmgenome). Nonetheless, it is crucial to continue increasing
our basic understanding of the FHM model by expanding
on genome annotation studies, including characterizing both
the transcriptome and proteome. This will further facilitate
its use in a broad range of applications: from endocrine-
related studies, to predictive toxicology and development
of computational models, and its use as a surrogate to
study other species, including those that are threatened
and endangered.

The main objective of this study was to increase the
value of the FHM as a model by creating comprehensive
transcriptomic and proteomic databases. This study also
aims to survey tissue-specific baseline transcriptomic and
proteomic expression profiles in select endocrine active organs
in adult male FHM to support aquatic ecotoxicogenomic
studies.

MATERIALS AND METHODS

Fish Rearing
All fish husbandry was conducted under the supervision of
the University of Florida Institutional Animal Care and Use
Committee. Adult fathead minnows (Pimephales promelas) were
obtained from an in-house culture at the Aquatic Toxicology
Core Laboratory at the University. Fish were maintained in the
laboratory in flow-through systems of dechlorinated tap water
prior to selection for sequencing experiments.

Fish were sacrificed at different times for three different
experiments by submersion in buffered 250 mg/L MS-222
(Western Chemical). Fish tissues were harvested for each
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experiment and flash-frozen in liquid nitrogen and stored at
−80◦C until needed. For the PacBio experiment, tissues were
harvested from a single male fish, including the whole brain, gut,
liver, gonad, heart, gill, head kidney, and trunk kidney. For the
RNA-seq experiment, three individual male fish were used, and
tissues collected included the telencephalon, hypothalamus, liver,
and gut, and the same 4 tissues were collected from two male fish
for the proteomics experiment.

RNA Extraction and Sequencing
Tissue extractions followed procedures previously described
(35, 36). Briefly, tissues were homogenized in RNA Stat-60
(TelTest) using a handheld rotary homogenizer followed by
organic separation with chloroform. RNA was then subjected to
a second round of RNA Stat-60/Chloroform extraction, followed
by precipitation in isopropanol overnight at −20◦C. RNA was
washed twice with 75% ethanol, dried, and reconstituted
in RNAsecure (ThermoFisher Scientific). Reconstituted
RNA was DNase-treated to remove possible genomic
DNA contamination using Turbo DNase (ThermoFisher
Scientific). The quality of the RNA was assessed using an Agilent
Bioanalyzer 2100. Only samples with RNA integrity numbers
(RINs) exceeding 8 were used for sequencing. Samples were
then quantified using a ThermoFisher Scientific Qubit 3.0
fluorimeter.

For the PacBio sequencing, an RNA pool was created
by adding equal mass of RNA from each of the extracted
tissues (brain, liver, gut, testes, heart, gill, head kidney, and
trunk kidney) into the pool. Pools were delivered to the
Interdisciplinary Center for Biotechnology Research (ICBR)
Sequencing Core Laboratory. For the RNA-seq experiments
telencephalon, hypothalamus, liver, and gut tissues from
three different fish were kept separate for downstream
analysis.

For RNAseq, library preparation and sequencing were
performed by Global Biologics LLC (Columbia, MO, USA). Total
RNA was quantitated using a Qubit RNA assay kit and Qubit
2.0 fluorometer (Life Technologies Inc.), and RNA integrity
was confirmed using the standard sensitivity Fragment Analyzer
Total RNA Assay and System (Advanced Analytical Inc.). Briefly,
five hundred nanograms of total RNA was used as input material
for the Illumina TruSeq Directional v2 high-throughput library
construction procedure (Illumina Inc.). Messenger RNA was
enriched from total RNA using oligo-dT magnetic beads and
fragmented to∼100–300 bp with a single shearing and RT primer
hybridization step before generating first- and second-strand
cDNA. The resulting DNA was prepared for sequencing by blunt
end repair, 3′ adenylation, multiplex compatible adapter ligation
(containing TruSeq indexes), and PCR amplification (98◦C for
30 s, 11–13 cycles [98◦C for 10 s, 60◦C for 30 s, and 72◦C for
30 s], 72◦C for 5min, and 10◦C hold). Library validation was
performed using the Fragment Analyzer (Advanced Analytical
Inc.) followed by quantitation using the Qubit HS DNA Assay
and qPCR Kit for Illumina (Kapa Biosystems Inc). Libraries
were diluted based on the quantitation obtained using the Qubit
fluorometer and sequenced using one lane (paired-read 100 bp
sequencing) on the HiSeq 4000 platform (Illumina Inc.).

Long Read Sequencing for Transcriptome
Construction
Long read sequencing was performed using the Pacific
Biosystems RSII long read sequencer. Full-length, RNA
sequencing libraries (i.e., Iso-SeqTM) were constructed according
to the recommended protocol by PacBio (37, 38), with a few
modifications. Briefly, only RNA preparations with a RIN
≥ 8 were used, as indicated by the Agilent BioAnalyzer or
TapeStation. RNA preparations of similar quality from brain,
liver, gut, testes, heart, gill, head kidney, and trunk kidney from
one male fathead minnow were pooled and used for IsoSeq
as a single sample. Briefly, one microgram of total RNA from
the pool described above was converted to full-length cDNA
using the SMRTer PCR cDNA synthesis reagents (Cat. # 634925)
(Clontech, Palo Alto, CA). The number of cDNA amplification
cycles was optimized to generate sufficient material that could
be used for PacBio SMRT bell library construction over four
fraction sizes (0.8–2 kb, 2–3 kb, 3–5 kb, and >5 kb). Fourteen
amplification cycles were required. Full-length total cDNA
was placed on the ELF SageSciences system (Electrophoretic
Lateral Fractionation System). Twelve cDNA fractions were
collected, of varying size between 0.8 and ∼15 kb. Further
amplification was needed to generate enough material (for
library construction) for the two larger size bins. Additional
amplification of the larger size bins resulted in small size
byproducts. Therefore, a second size selection (for 3–5 and
>5 kb fragments) was performed using an 11 cm x 14 cm agarose
slab gel. Library-polymerase binding was done at 0.01–0.04 nM
(depending on library insert size) for sequencing on the PacBio
RSII instrument. Diffusion loading was used for the short
fragments, while MagBead loading was used for the larger
fragments.

Sample cleaning of SageELF fractions and SMRT bell library
construction was done following the manufacturer’s protocols
(39). In brief, fractions were purified using AMPure magnetic
beads (0.6:1.0 beads to sample ratio). Final libraries were eluted
in 15 µL of 10mM Tris HCl, pH 8.0. Library fragment size
was estimated by the Agilent TapeStation (genomic DNA tapes),
and this data was used for calculating molar concentrations.
Between 75 and 125 pM of library from each size fraction was
loaded onto eight SMRT cells for PacBio RS II sequencing. All
other sequencing steps were done according to the recommended
protocol by the PacBio sequencing calculator and the RS Remote
Online Help system.

Bioinformatics
De novo Assembly

The raw reads generated from multiple insert-size libraries by
PacBio RSII sequencer were processed with PacBio SMRT portal
system. The ROI (reads of inserts) from subreads, including
the full-length non-chimeric reads, were produced by RS_IsoSeq
(40). The iterative clustering for error correction (ICE) algorithm
and Quiver were applied for improving isoform accuracy and
removing redundancy (Table 1). All isoform sequences were
further clustered and assembled with PTA version 3.0.0 (Paracel
Transcript Assembler) (Paracel Inc, Pasadena, CA).
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TABLE 1 | PACBio sequencing data.

Libraries SMRT

cells

ROI Full length

of ROI

Mean length

of ROI

Mean quality

of ROI

Mean

passes

0.8–2kb 2 96194 61014 1133 0.95 17

2–3kb 2 92862 37347 1736 0.89 6.6

3–5kb 2 104117 16308 2216 0.86 2.5

>5kb 2 71778 14094 2997 0.88 4.5

Total 8 364951 128763 2020.5 0.895

Raw sequencing data generated from illumina NextSeq 500
system were processed with the program Cutadapt (41) to
trim off sequencing adaptors, primers, and low-quality bases
with respect to a quality value cutoff of 20 (phred-like score).
With masking and trimming sequencing repeats, primers and/or
adaptors used in cDNA library preparation and normalization,
the resulting reads with >=40 bp were assembled using Trinity
(42), SOAPdenovo (43), and Newbler assembler (version 2.8). A
hybridized transcriptome assembly of the contigs with ≥ 75 bp
from Trinity, SOAPdenovo, and Newbler was performed with
PTA version 3.0.0 (Paracel Transcript Assembler) (Paracel Inc,
Pasadena, CA). In PTA, the low-quality bases were trimmed and
the sequences with length <75 bp and the mitochondrial and
ribosomal RNA genes of FHMwere excluded from consideration
during initial pair-wise comparison. After cleanup, sequences
were passed to the PTA clustering module for pair-wise
comparison and then to CAP3-based PTA assembly module for
assembly.

The consensus sequences resulting from the PTA were
annotated against the NCBI NR and NT databases. For each
query sequence, the top 100 blast hits were retrieved and the best
scoring hit and the tentative GO term from Gene Ontology with
e-value ≤ 1e-4 were annotated to query sequences. These GO
term assignments were organized around GO hierarchies divided
into biological processes, cellular components, and molecular
functions. In addition, we also characterized the assembled
sequences with respect to functionally annotated genes by BLAST
searching against the NCBI reference sequences (RefSeq) of
Danio rerio (46,757 transcripts).

Analysis of RNA-seq Data

Reads acquired from the illumina HiSeq 4000 sequencing
platform were cleaned up with the Cutadapt program to trim
off sequencing adaptors and low-quality bases with a quality
phred-like score < 20. Reads < 40 bases were excluded from
RNA-seq analysis. The transcriptome consensus sequences were
used as reference sequences for RNA-seq analysis. The cleaned
reads of each sample were mapped independently to the Danio
rerio reference sequences using the mapper of bowtie 2 with a
maximum of 3 mismatches for each read. The mapping results
were processed with samtools and scripts developed in house at
ICBR to remove potential PCR duplicates and choose uniquely
mapped reads for gene expression analysis.

Differential gene expression was determined as follows: The
number of mapped reads for each individual gene was counted
using scripts developed in house at ICBR and analyzed by the

DEB application for all pairwise comparisons using the edgeR
algorithm and a 5% FDR cutoff (44). Significant up- and down-
regulated genes were selected using the FDR adjusted p-value,
fold-change, or both for downstream analysis.

Confirmation of RNAseq Transcripts With
Quantitative PCR
To cofirm the expression of select transcripts from the RNAseq
data set, five healthy male fathead minnows were obtained
from culture at the Center for Environmental and Human
Toxicology, euthanized, and hypothalamus, telencephalon, liver
and gut tissues were collected for RNA extraction and analysis.
RNA extraction followed the same procedures described above
for RNAseq. Primers were designed and validated for the
following transcripts: lipoprotein lipase (lpl), estrogen receptor
βb (erβb), peptide transporter 1 (pept1), and cytochrome
P450 19a1b (cyp19a1b). Primer Sequences and conditions are
found in Supplementary Table 1. Isolated RNA was reverse
transcribed into cDNA (Quanta cDNA synthesis kit), and
mixed with forward and reverse primers and SYBR Green
for amplification and measurement on the BioRAD CFX96
Real-Time PCR Detection System using the following cycling
parameters: 95◦C for 3min followed by 40 cycles of 95◦C
for 10 s, 58–60◦C for 30 s (see Supplementary Table 1 for
gene specific annealing temperatures). Replicate gene expression
Cq values were normalized to the average Cq value for the
hypothalamus for each gene, and presented as average fold
change ± standard deviation in each tissue compared to the
hypothalamus.

Protein Extraction and Digestion
Tissue samples were mechanically disrupted in 300 µL
RIPA buffer (25mM Tris–HCl, pH 7.6, 150mM NaCl, 1%
nonylphenoxylpolyethoxylethanol-40, 1% sodium deoxycholate
and 0.1% SDS) (Thermo) containing a protease inhibitor tablet
(proprietary formulation containing AEBSF HCl, aprotinin,
bestatin, E-64, leupeptin, pepstatin, EDTA) (Pierce) and
subsequently incubated on ice for 30min with intermittent
vortexing. Samples were spun at 10,000 x g for 20min at 4◦C
and supernatants were removed and protein content quantified
by Bradford Protein Assay (Biorad). To 100 µL of supernatant,
400 µL of methanol was added followed by vigorous vortexing.
Chloroform was added at 1:4 v/v methanol and samples were
vigorously vortexed. Thereafter, 300 µL ddH2O was added to
the samples and vigorously vortexed. Samples were then spun
at 14,000 x g for 2min at room temperature, the top aqueous
layer was removed, and 400 µL methanol was added followed
by vigorous vortexing. Samples were spun at 14,000 x g for
3min and methanol was removed. Samples were dried and
resuspended in 100µL RIPA buffer containing protease inhibitor
tablets.

Total protein (100 µg) from each sample was acetone-
precipitated. The samples were dissolved in 0.1% SDS, 0.5M
triethylammonium bicarbonate (TEAB), pH 8.5; then reduced,
alkylated, trypsin- (Promega, USA) digested and labeled
according to manufacturer’s instructions (ABsciex Inc. USA).
Extra labels were quenched by adding 100 µL of ultrapure
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water and left at room temperature for 30min. After quenching,
samples were mixed together and dried down in a speedvac.
The peptide mixtures were cleaned up with C18 spin columns
according to manufacturer’s instructions (Supelco, USA). Sample
labeling was as follows; gut tissue biological replicates (113
and 118), hypothalamus biological replicates (114 and 117),
telencephalon biological replicates (115 and 119), and liver
biological replicates (116 and 121). The samples were then
dissolved in strong cation exchange (SCX) solvent (25% v/v ACN,

10mM ammonium formate, pH 2.8) and injected onto a Agilent
HPLC 1100 system using a polysulfoethyl A column (2.1mm x
100mm, 5µm, 300 Å, PolyLC, Columbia, USA). The peptides
were eluted at a flow rate of 200 µL/min with a linear gradient
from 0 to 20% solvent B (25% v/v ACN, 500mM ammonium
formate) over 80min, followed by a ramping up to 100%
solvent B in 5min and holding for 10min. The peptides were
detected at 214 nm absorbance and a total of 10 fractions were
collected.

FIGURE 1 | Schematic showing the experimental protocol followed to generate tissue-specific mRNA and protein data for four tissues including the telencephalon,

hypothalamus, liver, and gut. Tissue-specific mRNA expression was evaluated with RNA-seq using 3 male biological replicates while tissue-specific protein expression

was evaluated using iTRAQ in 2 male biological replicates.

FIGURE 2 | Size distribution of contigs obtained from (A) sequences obtained from the Pac Bio instrument for brain, liver, gut, testes, heart, gill, head kidney, and

trunk kidney from one male fathead minnow; (B) assembled sequences from the PacBio data with several Illumina RNAseq datasets including the one performed in

this study. The assembled sequences include transcripts from male and female fathead minnows obtained in various other experiments.
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FIGURE 3 | Comparison of transcriptional profiles for gut, liver, hypothalamus,

and telencephalon. Heat map depicts Log2 (FPKM) of transcripts identified

with at least 50 counts in at least three samples and a Max Value-Min Value

>5. Hierarchical clustering was performed using Cluster 3.0 and visualized

using Java Treeview.

Mass Spectrometry
Each SCX fraction was lyophilized in a speedvac and resuspended
in loading buffer (3% acetonitrile, 0.1% acetic acid, 0.01% TFA)
and cleaned up with C18 ZipTips according to manufacturer’s
instructions (Ziptip Millipore). After C18 solid phase extraction,
samples were resuspended in loading buffer and 10 µL was

injected onto an Acclaim Pepmap 100 precolumn (20mm x
75µm; 3 µm-C18) and then separated on a PepMap RSLC
analytical column (250mm x 75µm; 2 µm-C18) at a flow rate
of 350 nL/min on a 1200 nano Easy LC (Thermo Fisher). Solvent
A composition was 0.1% formic acid (v/v); whereas solvent B was
99.9% ACN v/v, 0.1% formic acid (v/v). Peptide separation was
performed with a linear gradient from 2 to 24% solvent B for
95min, followed by an increase to 98% solvent B over 15min
and final hold for 10min. Eluted peptides were directly sprayed
onto an Q Exactive Plus hybrid quadrupole-Orbitrap mass
spectrometer (ThermoFisher Scientific) for MS/MS analysis.
The instrument was run on a data-dependent mode with a
full MS scan 400–2,000 m/z and resolution of 70,000. MS/MS
experiments were performed for the top 10 most intense ions
using the following settings: an HCD NCE = 28%, isolation
width = 3 Th, first mass = 105 Th, 5% underfill ratio, peptide
match set to “preferred,” and an AGC target of 1e6. Dynamic
exclusion for 60 s was used to prevent repeated analysis of the
same peptides.Themass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE
(45) partner repository with the dataset identifier PXD010216.
An excel spreadsheet containing mass spectra information for
identifying the proteins is found in supplementary information.

Database Searching and Protein
Identification
A custom database was constructed for searching protein
identification. This database was a composite of an in-house
FHM protein database and the zebrafish (Danio rerio) database
on uniprot. The in-house FHM database was created by selecting
the longest open reading frame from the 6-frame translation of
each sequence in our transcriptome database consisting of the
PacBio reads generated in this study and reads from previous
sequencing data from our labs in Blast2Go with the ORF
Predictor function. The software chose the longest open reading
frame for each sequence, which was subsequently annotated
against zebrafish NR database using blastx and blastp and
resulted in 56,099 annotated sequences. Once combined with
the Uniprot zebrafish protein database our composite database
consisted of 117,445 sequences.

The identification and quantification of proteins were

performed using ProteinPilot
TM

Software 5.0.1 (AB SCIEX,
Concord, ON) utilizing the Paragon and Progroup algorithms.
The previously described protein database was appended before
use to include common lab contaminants, and then the entire
search field was doubled by the inclusion of decoys for calculating
the FDR by the target-decoy method. The search parameters
were as follows: iTRAQ 8-plex (peptide labeled), MMTS as
a fixed modification on cysteine, trypsin digestion, orbi MS
(1-3 ppm), Orbi MS/MS, no special factors, and ID focus
of biological modifications and amino acid substitutions. The
Unused ProtScore (Conf) was set at > 0.05 (10.0%) and p-value
< 0.05 to ensure that quantitation was based on at least three
unique peptides.

Additionally, because iTRAQ is a relative quantitation
method, all data are reported as ratios of expression against
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TABLE 2 | Subnetwork enrichment analysis of gene sets specific for the gastrointestinal tract.

# Total # of neighbors # of measured neighbors Gene set seed Median change p-value

1 215 50 Intestinal absorption 15.92 2.85E-07

2 122 17 Gut development 31.84 1.19E-05

3 72 18 Lipid absorption 47.80 5.68E-05

4 139 27 Lipid export 19.38 2.99E-04

5 102 19 Bile secretion 29.33 3.77E-04

6 155 18 Lipoprotein metabolism 15.17 8.50E-04

7 44 10 Gastrointestinal system absorption 106.84 8.68E-04

8 66 16 Drug transport 29.33 1.33E-03

9 47 9 Gastrointestinal system digestion 115.65 1.45E-03

10 573 47 Energy homeostasis 6.83 1.71E-03

11 209 19 Transcytosis 8.63 1.85E-03

12 100 15 Intestine function 29.33 1.96E-03

13 245 22 Fluid secretion 7.26 2.00E-03

14 159 22 Intestine barrier 23.44 2.13E-03

15 55 13 Gallstone formation 31.43 2.68E-03

TABLE 3 | Selected subnetwork enrichment pathways for the liver.

# Total # of neighbors # of measured neighbors Gene set seed Median change p-value

1 174 18 Fibrinolysis 81.23 6.46E-06

2 78 15 Blood clot lysis 81.23 7.66E-06

3 242 13 Neutrophil chemotaxis 215.03 3.36E-04

6 158 16 microcirculation 25.18 3.01E-03

8 81 8 Sex maturation 90.17 3.17E-03

13 330 26 Liver development 17.51 1.13E-02

21 438 40 Hepatic regeneration 9.67 1.66E-02

22 409 23 Tissue remodeling 13.26 1.72E-02

30 325 12 Immunomodulation 47.50 2.81E-02

31 631 41 Fertilization 8.51 3.11E-02

33 129 11 Leukocyte accumulation 10.00 3.41E-02

34 52 8 Glycogenesis 70.15 3.45E-02

37 106 10 Glycogen degradation 9.45 3.73E-02

44 228 31 Liver metabolism 7.90 4.64E-02

46 72 11 Lipid absorption 7.90 4.73E-02

another tissue, we chose hypothalamus. Our samples
were expected to have a high percentage of differentially
expressed proteins because they originate from different
tissues; therefore, no bias or background corrections were
applied. For a protein to be used for quantitative analysis
and downstream pathway analysis it had to meet a series of
conditions: it had to be identified at a 1% global FDR and
ratio calculation p-value of < 0.05. Quantified proteins with
a p-value >0.05 were not supported with enough evidence
to reject the null hypothesis that differences observed in
iTRAQ label ratios were random. For each replicate, the
ratio to both normalizing hypothalamus replicates was
averaged in log space. Then both replicates for each tissue
were averaged in log space to calculate the overall tissue
ratio.

Pathway Analysis
Subnetwork enrichment analysis (SNEA) was conducted in
PathwayStudioTM 10 (Elsevier) operating on the ResNet 11.0
mammalian database using the Fisher’s Exact Test Subnetwork
Enrichment Analysis option limiting subnetworks to those with
p < 0.05.

RESULTS AND DISCUSSION

The FHM is the model of choice for ecotoxicology in North
America as there are many studies relating toxicant exposures
to changes in apical endpoints in these fish [for a review, please
see (17)]. In the present study, we chose one male FHM for
single DNA molecule sequencing using the PacBio instrument in
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TABLE 4 | Selected subnetwork enrichment pathways for the hypothalamus.

# Total # of neighbors Overlap Percent overlap Gene set seed p-value

4 319 7 2 Neuron development 6.03E-05

5 1,100 12 1 Brain development 1.31E-04

9 1,017 11 1 Nervous system development 2.78E-04

12 1,405 13 0 Neurogenesis 3.36E-04

15 338 6 1 Axon cargo transport 6.46E-04

16 951 10 1 Locomotion 6.76E-04

30 16 2 11 Neuroimmunomodulation 1.26E-03

32 159 4 2 Pituitary gland function 1.56E-03

35 887 9 1 Transmission of nerve impulse 1.64E-03

36 19 2 10 Olfactory bulb development 1.75E-03

37 430 6 1 Nerve regeneration 2.21E-03

52 106 3 2 Nerve potential 4.53E-03

87 944 8 0 Neuroprotection 8.77E-03

94 49 2 4 Neurotransmitter uptake 1.06E-02

95 50 2 3 Hormone biosynthesis 1.10E-02

TABLE 5 | Selected subnetwork enrichment pathways for the telencephalon.

# Total # of neighbors # of measured neighbors Gene set seed Median change p-value

1 264 10 Neuron development 9.19 2.23E-03

2 105 7 Forebrain development 6.26 3.31E-03

3 1,129 21 Neurogenesis 3.31 5.76E-03

4 182 7 Cell fate specification 3.80 2.08E-02

5 425 9 Axonogenesis 4.01 2.23E-02

6 2,002 26 Transcription activation 3.31 2.36E-02

7 492 9 Stem cell proliferation 2.37 3.51E-02

8 136 5 Neurulation 6.26 3.57E-02

9 478 6 Organogenesis 4.30 3.68E-02

10 471 8 Neuronal migration 5.87 4.04E-02

11 5,848 63 Cell differentiation 2.77 4.17E-02

12 346 7 Axon guidance 3.38 4.23E-02

13 207 10 Neuron differentiation 2.82 4.34E-02

14 6,886 62 Cell proliferation 2.61 4.83E-02

15 1,107 23 Cell fate 2.42 4.86E-02

16 446 6 Neuronal plasticity 7.95 4.89E-02

order to generate long reads. The transcriptome for FHM was
assembled and it was used as a scaffold for interpreting RNA-
seq and proteomics data to determine tissue-specific transcripts.
The schematic in Figure 1 describes the overall experimental
approach.

Generation of FHM Transcriptome
To generate a good quality transcriptome for FHM, we utilized
the PacBio instrument, which provides single molecule, full-
length transcript sequencing. This instrument can sequence very
long reads (up to 100 kb) directly from a single DNA molecule
(46). This technology sequences DNA from a closed circle using a
template called the SMRTbell, which can diffuse into a nano-well
called the zero-mode waveguide [for more information about
the technology, please see (47)]. The circles can be very large

and encompass an entire mRNA. This is the ideal instrument
to assemble a transcriptome and aid the assembly of a reference
genome. One disadvantage that has been pointed out by several
studies is its relatively high error rate, about 11–15%, on any
read. However, it is possible to work around this error rate as
the errors are distributed randomly and the machine can read
around the circle multiple times. It has been estimated that a 99%
sequence fidelity can be determined by lining up the multiple
sequences. PacBio reads are typically longer than the full-length
cDNA sequence, allowing each molecule to go through several
passes of sequencing. This routinely works, as the read length is
up to 100 kb (47).

We obtained 30,385 reads from PacBio sequencing, covering
a large portion of the transcriptome for a single male. The
read lengths ranged from 264 to over 9,720 nts. We binned the
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FIGURE 4 | Pathway studio representation of expression targets identified for (A) gut, (B), liver, and (C) brain. All of the expression targets identified in any tissue were

mapped by pathway studio to their cellular location by the GO categories. The ID’s for the expression targets are found in Supplementary Table 6.

sequences into groups based on their lengths with 250 nts per
group, giving us 40 different groups (Figure 2A). We had 17,382
transcripts that were≥1,000 nts and 182 that were≥5,000 nts. At
the high end of the distribution the five longest transcripts ranged
from 7,726 to 9,720 nts long. In addition to transcripts identified
by PacBio sequencing, we added sequences that we obtained from
several Illumina RNA-seq projects for a large group of fathead
minnows. This addition greatly increased the coverage of shorter
contig lengths and enhanced some of the longer sequences giving
us 21,183 transcripts >1,000 nts and 308 transcripts >5,000 nts
(Figure 2B).

In preparing libraries of cDNA for sequencing by the PacBio
instrument, it is possible to use barcodes to identify sequences
from different tissues. However, in the present investigation,
due to cost, we decided to pool RNAs from a variety of
tissues and used a strategy that would ensure some long reads.
Also, we wanted to enhance sequences that may lead to the
identification of splice variants, as the PacBio is the ideal Next
Gen sequencer for this purpose (48). For this work, we used
a single adult male FHM, to prevent confounding by single
polymorphic sequences from a population of fish (Manuscript
in preparation).

Tissue-Specific Transcriptome Information
for FHM
We performed RNA-seq on hypothalamus, telencephalon,
liver and gut of three different adult male FHMs to evaluate
tissue-specific expression of genes. For a review of RNA-seq
methodologies, please see Bayega et al. (49). As expected, each
of the tissues, composed of different cell types, showed specific
expression fingerprints. Overall, the RNA aligned to 30,378
different putative transcripts in our database. Transcript copies
ranged from 0 to 600,000 copies. The mean number of copies of
mRNAs in our sampling per tissue ranged from 80 to 266 when
sequences with >50 hits were excluded. This is an arbitrary cut
off, as some genes with important cellular functions may be
expressed with lower copy number, but we think it is a reasonable
cut off as estrogen receptor 2b (esr2b) ranged from 243 counts
in the telencephalon to 2,517 counts in the liver, values similar

to those published by Filby and Tyler using real time qPCR
in adult male fathead minnows (50) Similarly, esr2a ranged
from 35 in the telencephalon to 195 in the gut, relative values
again similar to published data. Additionally, there were very
low number of hits in males for esr1. Published data indicates
that esr1 should be high in the liver of males and not found
in the other tissues (50) and while we also found that to be
the case in our study, the number of hits were well below our
cutoff of 50 hits per gene. Pairwise comparisons were made for
each tissue for all transcripts that were measured in at least 2
replicates of at least 1 tissue (Supplementary Figure 1). Overall,
28,616 transcripts met the requirements for statistical testing
in DEB. Of those, 12,610 transcripts were not changed in any
of the tissues. These are likely important housekeeping genes
that are essential for all tissues. The number of significantly
different transcripts varied by tissue and were 200 for
hypothalamus to telencephalon (Supplementary Figure 1A),
11,282 transcripts comparing the hypothalamus to liver
(Supplementary Figure 1B), 10,775 transcripts comparing the
liver to telencephalon (Supplementary Figure 1C), 10,816 for
the gut to telencephalon (Supplementary Figure 1D), 6,237
for gut to hypothalamus (Supplementary Figure 1E), and
10,143 for gut to liver (Supplementary Figure 1F). Comparison
of expressed genes in the four tissues analyzed is shown in
Figure 3. It is clear from this heatmap that the telencephalon
and hypothalamus share the most expressed genes, with the
three biological samples intermingling in the figure, while the
gut and the liver are quite distinct. A recently published study
mapping the human proteome also found lower correlations
between brain and digestive tissues and higher correlations
between liver and digestive tissues when investigating transcript
expression (4).

A better and more holistic approach to analyzing the data is
to compare subnetworks of genes involved in cellular processes
for each of the tissues (Tables 2–5, Supplementary Tables 2–
5). To do this, FHM transcripts were converted to human
homologs, and transcripts that shared the same human
homolog were summed. Transcript counts were normalized
to the hypothalamus to compare to the proteomics data.
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FIGURE 5 | Confirmation of RNAseq results with quantitative PCR. Selected genes from the RNAseq data set were used to confirm the results by qPCR. Results are

presented as mean ± standard deviation fold change from the hypothalamus tissue. (A) Peptide Transporter 1 (pept1). (B) Estrogen Receptor 2b (esr2b). (C)

Lipoprotein Lipase (lpl). (D) Cytochrome P450 19a1b (cyp19a1b).

Transcripts that were expressed at least 2-fold higher than in the
hypothalamus were imported into PathwayStudioTM for SNEA.

As expected, SNEA revealed tissue-specific enrichment of
cellular processes relevant to known functions of each tissue.
For example, 76 cellular processes had a p-value < 0.05 in
the gut, including intestinal absorption, gut development,
lipid absorption, gastrointestinal system absorption, and
gastrointestinal system digestion (Table 2). In the liver, 48
cellular processes had p-values < 0.05 including fibrinolysis,
liver development, hepatic regeneration, glycogenesis and
glycogen degradation, and liver metabolism (Table 3). For
the hypothalamus, 100 cellular processes had p-values < 0.05
and are involved in a myriad of processes such as neuron and
brain development, nervous system development, neurogenesis,
axon cargo transport, locomotion, neuroimmunomodulation,
pituitary gland function and hormone generation, transmission
of nerve impulse and nerve regeneration and potential, and
neuroprotection and neurotransmitter uptake (Table 4),
underscoring the importance of this part of the brain in
controlling multiple organs and their functions. Finally, only

16 cellular processes in the telencephalon had p-values < 0.05
(Table 5) and included neuron development, neurogenesis,
axogenesis, stem cell proliferation, neuron differentiation, and
neuronal plasticity. As expected, there was a lot of overlap
between the hypothalamus and the telencephalon, but discrete
differences could also be identified.

Although we did not detect mRNA or proteins for all
nuclear receptors, we were able to predict which nuclear
receptors and transcription factors would be expected to regulate
downstream gene expression in each tissue, using the RNA-
seq results in a more holistic, network-based approach. Lack
of detection of nuclear receptors is a common result due
to their poor stoichiometry and this supports the use of
network-based analyses to delineate nuclear receptor-mediated
signaling mechanisms. We also identified upstream regulatory
targets, including transcritption factors and signaling pathway
components, that were likely to drive the expression of the
genes that were highly expressed in each tissue (Fold Change
> 2). A list containing all of the gene symbols and names for
transcriptional regulators identified is available in supplemental
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FIGURE 6 | Tissue level comparisons of all confidently quantified protein ratios. All tissue comparisons had a p-value ≤ 0.001. Hypothalmus to telencephalon

correlation was made by using the liver as the denominator of the ratio calculation (A); while the gut to liver (B), liver to telencephalon (C), and gut to telencephalon (D)

were made using the hypothalamus as the normalizing tissue. The R2 value for each correlation is displayed on the corresponding graph.

FIGURE 7 | Tissue specific correlations between protein log ratios and RNA

log ratios for genes that were identified in both experiments. Solid lines are

tissue-specific regression lines. Examples discussed in the manuscript text are

denoted with the following symbols; * fatty acid binding protein 7 (fabp7),

** (gapdh), the arrow points to dipeptidase 1 (dpep1) and the blue circle

encloses carboxypeptidase A1 (cpa1) in the liver and the gut.

information (Supplementary Table 6). For the gut tissue, 79
expression targets were identified (Figure 4A), 49 expression
targets were identified in the liver tissue (Figure 4B), and there
were 106 combined expression targets for the hypothalamus
and telencephalon (Figure 4C). The liver and gut shared more
expression targets (17) than either the liver and brain (2) or
the gut and brain (2). Only two expression targets were shared

among all tissues, which were two isoforms of fibroblast growth
factor (FGF), a mediator of differentiation and development of
numerous cell types throughout the body (51). Interestingly, in
the gut and liver, the majority of the upstream regulatory targets
were nuclear transcription factors (48% gut, 47% liver, 31%
brain); however, in the brain a higher proportion of the upstream
regulatory targets were extracellular proteins and ligands (18%
for gut and liver and 27% for brain), or membrane receptors (26%
gut, 22% liver, 38% brain). These data are intriguing given the
growing appreciation for the importance of membrane receptors
and endocrine ligands and their signaling mechanisms in the
brain, particularly for neuroendocrine functions and responses to
endocrine modulators such as ethinylestradiol or levonorgestrel
(28, 52).

Confirmation of RNAseq Transcript Data
With Quantitative PCR
Results from qPCR analysis of select tissue specific transcrips
indicated good agreement between RNAseq data and qPCR.
RNAseq data indicated that Peptide transporter 1 (pept1), a
transporter that is responsible for moving small polypeptides
from the gastrointestinal lumen into the gastrointestinal system,
was highly expressed (>200 fold) in the gastrointestinal tissues,
when compared to all other tissues (36). Results from the qPCR
analysis confirmed this finding with a >50 fold increase in
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FIGURE 8 | Subnetwork enrichment analysis of the transcriptome for the gut. The figure represents the joining of 4 top pathways identified by the analysis. Genes

encircled in green were also found to be enriched in the gut in the proteomics experiment. ABCA1, ATP-binding cassette, sub-family A (ABC1), member 1; ABCB1,

ATP-binding cassette, sub-family B (MDR/TAP), member 1; ABCB4, ATP-binding cassette, sub-family B (MDR/TAP), member 4; ABCC2, ATP-binding cassette,

sub-family C (CFTR/MRP), member 2; ABCG5, ATP-binding cassette, sub-family G (WHITE), member 5; ABCG8, ATP-binding cassette, sub-family G (WHITE),

member 8; ACSL1, acyl-CoA synthetase long-chain family member 1; ANPEP, alanyl (membrane) aminopeptidase; APOE, apolipoprotein E; CASP3, caspase 3,

apoptosis-related cysteine peptidase; CCL20, chemokine (C-C motif) ligand 20; CD36, CD36 molecule (thrombospondin receptor); CD4, CD4 molecule; CDX1,

caudal type homeobox 1; CFD, complement factor D (adipsin); CYP7A1, cytochrome P450, family 7, subfamily A, polypeptide 1; DAB2, disabled homolog 2,

mitogen-responsive phosphoprotein; DGAT1, diacylglycerol O-acyltransferase 1; DGAT2, diacylglycerol O-acyltransferase 2; EFNA1, ephrin-A1; EPCAM, epithelial cell

adhesion molecule; F11R, F11 receptor; FABP2, fatty acid binding protein 2, intestinal; GATA4, GATA binding protein 4; GCG, glucagon; GHRL, ghrelin/obestatin

prepropeptide; GUCY2C, guanylate cyclase 2C (heat stable enterotoxin receptor); KRT8, keratin 8; LDLR, low density lipoprotein receptor; LSS, lanosterol synthase

(2,3-oxidosqualene-lanosterol cyclase); MOGAT2, monoacylglycerol O-acyltransferase 2; MOGAT3, monoacylglycerol O-acyltransferase 3; NFE2L2, nuclear factor

(erythroid-derived 2)-like 2; NR1H4, nuclear receptor subfamily 1, group H, member 4; NR1I2, nuclear receptor subfamily 1, group I, member 2; OCLN, occludin,

PPARA, peroxisome proliferator-activated receptor alpha; PTGS2, prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase),

SCARB1, scavenger receptor class B, member 1; SLC27A4, solute carrier family 27 (fatty acid transporter), member 4; SLC6A4, solute carrier family 6

(neurotransmitter transporter, serotonin), member 4; SLC9A2, solute carrier family 9, subfamily A (NHE2, cation proton antiporter 2), member 2; SOAT1, sterol

O-acyltransferase 1; ST14, suppression of tumorigenicity 14 (colon carcinoma); TACR3, tachykinin receptor 3, TGFA, transforming growth factor, alpha; TNFRSF1A,

tumor necrosis factor receptor superfamily, member 1A, UCP1, uncoupling protein 1 (mitochondrial, proton carrier), ZFPM1, zinc finger protein, multitype 1.

expression in the gastrointestinal tissue (Figure 5A). Expression
of estrogen receptor 2b (esr2b) was found to be highest in the
liver tissues, followed closely by the gut tissue, with much lower
expression in the brain tissues, which was mirrored by the qPCR
data (Figure 5B) and as mentioned above by the work of Filby
and Tyler (50). Expression of lipoprotein lipase (lpl), an enzyme
responsible for lipid digestion, was increased 4 fold in the liver
when compared to other tissues, which was found to be similar
in the qPCR data as well (Figure 5C). Finally, expression of
cyp19a1b (aromatase b), an enzyme responsible for conversion
of testosterone to estradiol, was high in the brain tissues from
the RNAseq datasets, with very little expression in the liver and
gut (53). These data were also confirmed by qPCR with high
levels of expression in the hypothalamus and telencephalon and
no detectable levels of expression of this transcript in the liver or
gut (Figure 5D).

Tissue-Specific Protein Expression
Protein identification and differential expression were
computed using proteomics specific algorithms, such as
Protein Pilot. We obtained 150,150 spectra from the 10
protein salt fractions eluted from the SCX column, and
we were able to identify 26,396 distinct peptides at a 1%
global FDR, which resulted in the identification of 4,045
protein groups at a 1% global FDR. Of note, a tradeoff
exists between database comprehensiveness and redundancy.
Only 40% of identified protein groups had unambiguous
identifications, suggesting a high level of redundancy in the
database. This high level of redundancy is expected because
the database consists of both FHM and zebrafish sequences
(Supplementary Figure 2A), and the peptide dynamic
range was calculated by ProteinPilot to span 2.95 orders of
magnitude.
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FIGURE 9 | Subnetwork enrichment analysis of the transcriptome for the liver. The figure represents the joining of 3 top pathways identified by the analysis. Genes

encircled in green were also found to be enriched in the liver in the proteomics experiment. ABCC2, ATP-binding cassette, sub-family C (CFTR/MRP), member 2;

AMBP, alpha-1-microglobulin/bikunin precursor; AOC1, amiloride binding protein 1 [amine oxidase (copper-containing)]; ARG1,arginase, liver; BAX, BCL2-associated

X protein; CAT, catalase; CYP2A, cytochrome P450, family 2, subfamily A; CYP7A1, cytochrome P450, family 7, subfamily A, polypeptide 1; EDNRA, endothelin

receptor type A; ENPP2, ectonucleotide pyrophosphatase/phosphodiesterase 2; EPCAM, epithelial cell adhesion molecule; ERRFI1, ERBB receptor feedback

inhibitor 1; F10, coagulation factor X; F2, coagulation factor II (thrombin); F5, coagulation factor V (proaccelerin, labile factor); FGF19, fibroblast growth factor 19; FN1,

fibronectin 1; FOXA1, forkhead box A1; FPGS, olylpolyglutamate synthase; G0S2, G0/G1switch 2; GALK1, galactokinase 1; GATA4, GATA binding protein 4; GATA5,

GATA binding protein 5; GCG, glucagon; GCK, glucokinase (hexokinase 4); GHR, growth hormone receptor; GNMT, glycine N-methyltransferase; GYS2, glycogen

synthase 2 (liver); HAMP, hepcidin antimicrobial peptide; HHEX, hematopoietically expressed homeobox; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase;

HMOX1, heme oxygenase (decycling) 1; HNF1B, HNF1 homeobox B; HPD, 4-hydroxyphenylpyruvate dioxygenase; HSD3B1, hydroxy-delta-5-steroid

dehydrogenase, 3 beta- and steroid delta-isomerase 1; IGF2, insulin-like growth factor 2 (somatomedin A); IGFBP1, insulin-like growth factor binding protein 1; IL6R,

interleukin 6 receptor; IRS2, insulin receptor substrate 2; ITGA2B, integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen CD41); LDLR, low density

lipoprotein receptor; LPL, lipoprotein lipase; LRP5, low density lipoprotein receptor-related protein 5; MET, met proto-oncogene (hepatocyte growth factor receptor);

MST1, macrophage stimulating 1 (hepatocyte growth factor-like); MYC, v-myc myelocytomatosis viral oncogene homolog (avian); NPR1, natriuretic peptide receptor

A/guanylate cyclase A (atrionatriuretic peptide receptor A); NR0B1, nuclear receptor subfamily 0, group B, member 1; NR0B2, nuclear receptor subfamily 0, group B,

member 2; NR1H4, nuclear receptor subfamily 1, group H, member 4; NR1I2, nuclear receptor subfamily 1, group I, member 2; OCLN, occludin; PCK2,

phosphoenolpyruvate carboxykinase 2 (mitochondrial); PCYT2, phosphate cytidylyltransferase 2, ethanolamine; PLIN2, perilipin 2; RBPJ, recombination signal binding

protein for immunoglobulin kappa J region; SERPINA1, serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1; SERPINF2, serpin

peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 2; SLC13A5, solute carrier family 13 (sodium-dependent citrate

transporter), member 5; SLC2A2, solute carrier family 2 (facilitated glucose transporter), member 2; SNX7, sorting nexin 7; SOD1, superoxide dismutase 1, soluble;

TAT, tyrosine aminotransferase; TM4SF4, transmembrane 4 L six family member 4; TNFSF10, tumor necrosis factor (ligand) superfamily, member 10; TOB1,

transducer of ERBB2, 1; TXNIP, thioredoxin interacting protein; VTN, vitronectin.

Overall, an average of 3,840 (range of 3,838–3,841) proteins
were quantified in each tissue (Supplementary Figure 2B). Of
those, 69.76% (69.05–69.92%) were supported with enough
evidence to calculate a p-value testing the hypothesis that
differences observed in iTRAQ label ratios were random. The
median log ratio for gut tissue was consistent across both
replicates; however, there was a bit of variability between
the telencephalon (−0.02 and 0.16) and liver (0.09 and 0.33)
replicates. Consistency amongst replicates was the highest
for the liver and gut, and lowest for the telencephalon
(Supplementary Figure 2C).

Correlations between expressed proteins among the tissues
is shown in Figure 6. The most similar were the hypothalamus
and telencephalon, with an R2 value of 0.967 (Figure 6A). This
was expected as there are small differences in structural proteins

among different parts of the brain. Comparing proteins of the gut
with the liver shows an R2 value of 0.467 (Figure 6B). These were
the second most similar comparison. There was little similarity
between telencephalon and liver (R2 = 0.089) (Figure 6C)
or between telencephalon and gut (R2 = 0.175) (Figure 6D),
underscoring the different functions of these disparate tissues.

As previously mentioned, the hypothalamus and
telencephalon had a high degree of similarity; however,
there were some important differences noted. Specifically, glial
fibrillary acidic protein (GFAP) was higher in the telencephalon
than in the hypothalamus, while neurofilament medium
polypeptide (NEFM) was higher in the hypothalamus. GFAP
is an intermediate filament protein that is synthesized only in
astrogliocytes in the brain. It provides cytoskeletal structure
for these cells and has a critical role in their activation
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FIGURE 10 | Subnetwork enrichment analysis of the transcriptome for the brain. The figure represents the joining of 5 top pathways identified by the analysis. Genes

encircled in green were also found to be enriched in the brain in the proteomics experiment. ADRA2A, adrenoceptor alpha 2A; ARHGEF25, Rho guanine nucleotide

exchange factor (GEF) 25; ARL4D, ADP-ribosylation factor-like 4D; BSX, brain-specific homeobox; CALB2, calbindin 2; DGKZ, diacylglycerol kinase, zeta 104kDa;

ESM1, endothelial cell-specific molecule 1; GATA2, GATA binding protein 2; GFRA1, GDNF family receptor alpha 1; HDC, histidine decarboxylase; HTRA1, HtrA serine

peptidase 1; LGI3, leucine-rich repeat LGI family, member 3; LHX1, LIM homeobox 1; MCAM, melanoma cell adhesion molecule; NEFL, neurofilament, light

polypeptide; NEFM, neurofilament, medium polypeptide; NR5A1, nuclear receptor subfamily 5, group A, member 1; PCP4, Purkinje cell protein 4; PLP1, proteolipid

protein 1; POMC, proopiomelanocortin; PRRX1, paired related homeobox 1; S100B, S100 calcium binding protein B; SATB2, SATB homeobox 2; SIX6, SIX

homeobox 6; SLC18A2, solute carrier family 18 (vesicular monoamine), member 2; TAC1, tachykinin, precursor 1; TFAP2B, transcription factor AP-2 beta (activating

enhancer binding protein 2 beta); TH, tyrosine hydroxylase; TWIST1,Twist homolog 1.

when the brain becomes injured through disease or from
traumatic brain injury (54). Our data suggests that there
may be more astroglial cells in the telencephalon than in the
hypothalamus. NEFM is a member of the neurofilament family
consisting of light, medium and heavy neurofilaments. These
are the major structural components of axons (55) and are
responsible for the radial growth of the axon. It is clear now
that NEFM respond to a myelin signal, probably through a
phosphorylation cascade (55). Our results suggest that in fathead
minnows, the hypothalamus contains more long axons than
the telencephalon. This may facilitate longer-range interactions
between neurons.

SNEA analysis was clearly able to differentiate tissue-specific
biological functions enriched with the proteins identified
in the iTRAQ experiment. In the gut, 37 subnetworks were
found to be enriched including intestinal barrier, intestine
function and lipid adsorption (Supplementary Table 7). In the
liver, 37 subnetworks were identified including detoxification,
xenobiotic clearance, liver metabolism, and liver function
(Supplementary Table 8). The genes that were higher in the
telencephalon and hypothalamus were combined into a single
list for the brain, which was used for SNEA. The analysis
identified over 100 subnetworks including neurotransmitter
secretion, synaptic transmission, regeneration, and brain
function (Supplementary Table 9).

Comparison of RNA-seq With Proteomics
Pairwise comparisons were made to investigate the level of
agreement between transcript log ratios obtained from RNA-
seq and protein log ratios obtained from iTRAQ. The pairwise
comparisons made at human homolog level are shown in
Figure 7. We had expected to see a positive correlation for each
entity between RNA-seq and proteomics for each tissue, but, as
can be observed, this is not the case for all genes. A positive log
ratio for RNA expression, with a negative log ratio for proteins
was not observed in any tissue. In the telencephalon, most log
ratios are close to zero as there were few differences from the
hypothalamus detected by either RNA-seq or iTRAQ. In the liver,
about half (59%) of the genes were in agreement, while the other
half had positive protein log ratios and negative RNA log ratios.
In the gut, 69% of the genes were in agreement and only 31%
had positive protein log ratios and negative RNA log ratios. The
slopes of the regression lines are 0.662 (R2 = 0.2912), 1.831 (R2

= 0.141), and 2.133 (R2 = 0.324) for the telencephalon, liver,
and gut, respectively. Some of the variation could be due to ratio
compression, a well-known artifact of iTRAQproteomics (56, 57)
given that these slopes are similar to those observed in these other
studies.

Additionally, differences between protein and RNA levels for
specific genes could be due to differential regulation in translation
or turnover rates of protein and/or its transcript. For example,
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in the liver and the gut, fatty acid binding protein 7 (fabp7) had
positive protein log ratios but negative RNA log ratios. These
data suggest that the liver and gut have more fabp7 protein
than the hypothalamus while there is more message in the
hypothalamus (Figure 7). The common qPCR reference gene,
glyceraldehyde 3-phosphate dehydrogenase (gapdh) also had
higher protein levels in the liver compared to the hypothalamus,
but less message. Alternatively, there were many cases in which
the protein ratios in the liver or gut were positive, but much less
than the ratio for RNA. Some examples are fatty acid binding
protein 2 (fabp2), dipeptidase 1 (dpep1), and annexin 2 (anxa2)
in the gut, carboxypeptidase A1 (cpa1) in the liver and gut,
and the fibrinogen subunits (fga, fgg, fgb), 3-oxoacid CoA-
transferase 1 (oxct1), urate oxidase (uox), and tetratricopeptide
repeat domain 36 (ttc36) in the liver. Conversely, some genes
exhibited high protein expression, but low RNA expression.
A similar phenomenon has been seen in plants where iron
deficiency results in increased protein expression of members of
the conserved eukaryotic elongation factor 5A (eIF5A) family
without a concordant increase in mRNA abundance (58).
This can also be explained by differential half-lives, i.e. the
half-life of a protein can be much longer than that of the
RNA, as is the case for ribosomal proteins. There are roughly
ten million ribosomes per eukaryotic cell and they are fairly
stable compared to the half-lives of mRNAs for the ribosomal
proteins, which are fairly short by comparison (59). Proteomics
and transcriptomics measurements are made on increases or
decreases from the steady state level of these molecules in tissues,
which is quite different for mRNA and protein for ribosomes.
Further investigations will be needed to determine if variations
are an artifact of iTRAQ ratio compression or a true difference in
the magnitude of expression.

To examine higher order similarities and differences
between the tissue RNA-seq and proteomics datasets, we
utilized PathwayStudioTM’s SNEA on genes and proteins, which
measured at least 2-fold higher than in the hypothalamus
tissue. A comprehensive list of subnetworks enriched in the
RNA-seq and proteomic datasets in each tissue is provided in
Supplementary Tables 2–5, 7–9. Of note, there was overlap in
enriched cell processes between transcriptomic and proteomic
datasets from each respective tissue. Specifically, there were
8 cell processes common across both datasets in the gut. A
subset of these shared cell processes is shown in Figure 8 all
of which are processes that would be expected in the gut,
including lipid absorption, lipoprotein metabolism, intestinal
barrier function, and general intestinal function. For the
liver datasets, 3 common cell processes were found to be
enriched and all were related to liver function including
hepatic regeneration, liver metabolism, and liver development
(Figure 9). Finally, when comparing enriched cell processes in
the brain between the RNA and protein datasets, 21 cell processes
are common between the two datasets. A subset of these process
is given in Figure 10, which demonstrates enrichment of
brain development, neurotransmission, regeneration, neurite
outgrowth, and nerve cell differentiation. If we examine
genes/proteins associated with these overlapping enriched cell
processes, we find that only a few are conserved among the two

datasets for each tissue, which are circled in green (Gut: 3, Liver:
5, Brain: 2).

Taken as a whole, the RNA and protein datasets identified
numerous cell processes that are unique to each dataset.
Overlapping cell processes were typically those specific to each
tissue, indicating that both measurements are likely to converge
on cell processes and functions that are strongly associated with
those specific tissues despite very few individual genes/proteins
coinciding between the two datasets.

Relationship of Findings to Endocrinology
It is important for researchers to understand the tissue-
specific expression of receptors for peptide and steroid-based
hormones. The database we have created by combining the
PacBio data set with multiple Illumina RNA-seq data sets
will enable researchers to find sequences for genes of interest
that may propel their research to a new level. As mentioned
above, our data for esr2a and esr2b matched perfectly to
data obtained by Northern blots (50), thus indicating that the
RNA-seq data, despite going through an amplification scheme,
closely matches the actual relative concentrations of important
genes.

CONCLUSIONS

This study is the first to apply single DNA molecule sequencing
to generate a transcriptome for FHM. This transcriptome was
made up of transcripts from whole brain, gut, liver, gonad,
heart, gill, head kidney, and trunk kidney and is robust. It
will serve as a good scaffold for future transcriptomics and
proteomics projects and may have some utility to help with the
FHM genome annotation. In addition, we mapped tissue-specific
genes for gut, liver, hypothalamus and telencephalon proteomes
and transcriptomes in order to identify and characterize their
specific components in each tissue to highlight the utility of
our transcriptomic and proteomic sequence databases and to
identify cellular pathways enriched during homeostasis that may
inform relevant endpoints in future ecotoxicogenomic studies
in the ecologically relevant FHM. Our results showed that
both the transcriptomes and the proteomes differed by tissue,
with the hypothalamus and the telencephalon presenting the
highest degree of similarity. The transcriptomic and proteomic
sequence information generated in this study will be invaluable
in future functional genomic studies investigating the effects
of endocrine disrupting chemicals present in the environment
on endocrine active tissues of the ecologically-relevent FHM,
particularly the neuro-endocrine ssytem. The data is publicly
available.

DATA AVAILABILITY

RNAseq data can be found at GEO with accession # GSE119871.
Proteomics data sets have been submitted to the
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identifier PXD010216.
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Proteomics information for the identification of
proteins/peptides from mass spectra will be supplied as an
excel spreadsheet upon request by ND.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the University of Florida IACUC
committee. The protocol was approved by the University
of Florida IACUC committee.

AUTHOR CONTRIBUTIONS

JB, NG-R, TS-A, and ND conceived of the project, helped with
analysis and writing of the manuscript. CL, LS, and JB performed
the experiments, analyzed data, and contributed to the writing
of the manuscritpt. FY performed bioinformatics analysis
and annotation for long reads from the PacBio instrument.
He also performed the RNA-seq analysis. CS-S performed
the iTRAQ experiments by LC MS/MS. CL performed
bioinformatics and statistical analysis of the proteomics
data and the RNA-seq data. AB and JB performed the
qPCR analysis. DM-A discussed experimental strategy and
performed the PACBio sequencing. CL, LS, JB, DM-A, FY,
CS-S, AB, TS-A and ND wrote sections of the manuscript
and all authors have read and approved the submitted
version.

ACKNOWLEDGMENTS

We wish to acknowledge support from the NSF CBET grant
#1605119 to JB and TS-A and NSF EAGER grant #1602318 to
TS-A for this project. This work was also partly supported by
the US Army Environmental Quality and Installations Research
Program (NG-R).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fendo.
2018.00611/full#supplementary-material

Supplementary Figure 1 | Pairwise comparisons for differential transcript

expression were made for each tissue; hypothalamus to telencephalon (A),

hypothalamus to liver (B), liver to telencephalon (C), gut to telencephalon (D), gut

to hypothalamus (E), and gut to liver (F). Black dots represent transcripts that

were compared and red dots represent transcripts that were found to be

statistically different at the 5% FDR cutoff. The data points forming a column on

the left most portion of the graph represent transcripts that were measured in only

one of the tissues being compared.

Supplementary Figure 2 | Quality metrics for iTRAQ data and protein

identification. (A) Ambiguity was assessed at both the level of protein. (B) The

number of proteins that we quantified, quantified confidently, and the median log

ratio for each iTRAQ label were assessed. (C) Correlations coefficients (r) between

individual iTRAQ labeled samples are displayed.

Supplementary Table 1 | Primer sequences, sources, and efficiencies for qPCR

analysis.

Supplementary Table 2 | Transcriptomics SNEA illustrating regulation of cell

processes in the gut.

Supplementary Table 3 | Transcriptomics SNEA illustrating regulation of cell

processes in the liver.

Supplementary Table 4 | Transcriptomics SNEA illustrating regulation of cell

processes in the telencephalon.

Supplementary Table 5 | Transcriptomics SNEA illustrating regulation of cell

processes in the hypothalamus.

Supplementary Table 6 | Expression targets derived from Pathway Studio for

gut, liver and brain. These are the genes highlighted in Figure 4.

Supplementary Table 7 | Proteomics SNEA results for regulation of cell

processes in the gut.

Supplementary Table 8 | Proteomics SNEA results for regulation of cell

processes in the liver.

Supplementary Table 9 | Proteomics SNEA results for regulation of cell

processes in the brain.
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