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Neurons and pancreatic endocrine cells have a common physiology and express a similar

toolkit of transcription factors during development. To explain these common features, it

has been hypothesized that pancreatic cells most likely co-opted a pre-existing gene

regulatory program from ancestral neurons. To test this idea, we looked for neurons

with a “pre-pancreatic” program in an early-branched deuterostome, the sea urchin.

Only vertebrates have a proper pancreas, however, our lab previously found that cells

with a pancreatic-like signature are localized within the sea urchin embryonic gut. We

also found that the pancreatic transcription factors Xlox/Pdx1 and Brn1/2/4 co-localize

in a sub-population of ectodermal cells. Here, we find that the ectodermal SpLox+

SpBrn1/2/4 cells are specified as SpSoxC and SpPtf1a neuronal precursors that become

the lateral ganglion and the apical organ neurons. Two of the SpLox+ SpBrn1/2/4 cells

also express another pancreatic transcription factor, the LIM-homeodomain gene islet-1.

Moreover, we find that SpLox neurons produce the neuropeptide SpANP2, and that

SpLox regulates SpANP2 expression. Taken together, our data reveal that there is a

subset of sea urchin larval neurons with a gene program that predated pancreatic cells.

These findings suggest that pancreatic endocrine cells co-opted a regulatory signature

from an ancestral neuron that was already present in an early-branched deuterostome.

Keywords: Brn, islet, neurogenin, NeuroD, neuropeptide, Ptf1a

INTRODUCTION

Complex organisms have more cell types than structurally simple ones. In many cases,
functionally distinct cell types show remarkably similar gene programs. This shared program can be
the result of a common evolutionary ancestor cell or of convergent evolution. Another possibility is
the co-option of parts of gene networks from an ancestral cell to a new cell that leads to a parallel use
of the same gene repertoire. Pancreatic endocrine β-cells and neurons are an example of different
cell types that share a similar gene program but exert different functions. These two cell types
share many remarkable features (1–7). Some features are common to all endocrine cells, like the
ability of producing polypeptide hormones (1, 2), neurotransmitters and their receptors (3, 8),
while other are specific of pancreatic β-cells, like mRNA expression and chromatin methylation
pattern similar to neurons (5). Many genes expressed in neuronal development are also expressed
in the development of pancreatic β-cells (7), like the homeodomain protein Isl1 (9), the bHLH
transcription factors neurogenins (10–12), and the homeobox transcription factor PDX1 (13, 14).
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All of these aspects lead to the idea that gut cells co-opted
a neuronal transcriptional program leading to the evolution of
β-cells (15). While all deuterostomes have a nervous system,
the discrete pancreas with fully-developed β-cells is a vertebrate
specific organ (16). Therefore, gut cells must have adopted
part of a neuronal program before the vertebrate ancestor
appeared. When did gut cells adopt a neuronal program? Was
this program common to all neurons, or rather distinctive of
only some neuronal populations? An approach to answer these
questions is to identify neurons that express pancreatic toolkit
genes in invertebrates that have gut cells with a pancreatic-like
program. Together with vertebrates, chordates include tunicates
and cephalochordates. Both groups have gut cells that express
insulin-like peptides (ILPs). The cephalochordate amphioxus has
an ILP localized in the gut and the mesoderm (17, 18), while
tunicates have cells producing ILPs in the gut and the nervous
system (19–21). Besides the ILP expression pattern, there are no
data on the presence of a pancreatic-like gene regulatory program
in cephalochordates and tunicates.

The sister group of chordates includes the echinoderms, a
clade of early-branching deuterostomes like the sea urchin
Strongylocentrotus purpuratus. The sea urchin’s simple
development and available genetic tools enable comparative
studies on cell specification and gene regulatory networks with
other deuterostomes, such as vertebrates (22, 23).

Although sea urchin larvae do not have a true pancreas, we
previously found that there are subsets of gut cells that express
a pancreatic program similar to the exocrine pancreas (24).
We next asked whether in the same animal there are neurons
that express the transcription factors co-opted by pancreatic
β-cells (summary of the genes discussed in this paper in
Supplementary Table 1). For simplicity, we name the neuronal
genes that are expressed in the pancreas “pre-pancreatic” genes.
To date, the only cells in sea urchins known to express the
neuronal transcription factors co-opted by the pancreas are a
group of 3–4 ectodermal cells that express SpLox, the sea urchin
homolog of Pdx1 (25). In vertebrate embryos, Pdx1 is expressed
in two domains: within the duodenum and the developing
pancreatic endoderm (26) and in the neural cells during brain
development (27). The SpLox ectodermal cells co-express the
gene SpBrn1/2/4 (25). SpBrn1/2/4 is a member of the POU3
family. The human genes Brn1, Brn2, Brn4, and Oct6 are all
equal co-orthologs of the sea urchin gene SpBRN1/2/4 (28).
In mammals, Brn4 is involved in the specification of glucagon
producing α-cells (10, 29), while for instance Oct6 is expressed
in distinct mouse brain regions (30, 31). However, besides SpLox
and SpBrn1/2/4 cells in the ciliary band, we lack information
on the presence of neurons expressing pre-pancreatic gene. In
addition, although many features of neurogenesis in sea urchins
have been explained (32–36), we still know little about the
diversity of neuronal subtypes. Our hypothesis is that if a pre-
pancreatic neuronal subtype exists, then the gut cells that gave
rise to the endocrine pancreas co-opted a gene program specific
of one neuronal subtype, rather than a generic one. To this aim,
we asked whether there are neurons with a gene program that
resembles the pancreatic one in the sea urchin. Here we describe
new subtypes of neurons that display a pre-pancreatic regulatory
fingerprint and are marked by SpLox. We define these neurons as

“pre-pancreatic neurons,” because these are the cells that express
the gene program co-opted by the pancreas.

RESULTS

SpLox Is Expressed in Lateral Ganglion
and Apical Organ Neurons
In situ hybridization data have previously shown that the
SpLox gene is expressed in the endoderm (37) and also
in three ectodermal cells together with SpBrn1/2/4 (25).
SpLox orthologs (Pdx/xlox) are involved in both nervous
system and pancreas development (26, 27). Hence, SpLox
is an important gene to investigate the regulatory state of
neurons that express pre-pancreatic genes. Using an anti-
SpLox antibody (38), we define the SpLox+Brn1/2/4 cells in
the ciliary band in relation with Synaptotagmin B (SynB), a
marker of differentiated neurons in invertebrates (39). Our data
revealed that the SpLox+SpBrn1/2/4+ cells were lateral ganglion
neurons (Figures 1A–C). At 96 h post-fertilization (hpf), SpLox
was localized in two of the left lateral ganglia and one to
two right lateral ganglion cells (Figures 1A,A’,A” oral view;
Figures 1B,B’,B” left view; Figures 1C,C’,C” right view). SpLox
protein was localized in the nucleus only, consistent with its
function as a transcription factor.

Next, we identified previously undescribed cells that expressed
SpLox transcripts. First, in gastrulae we found cells within the
apical plate were SpLox mRNA was diffused (Figure 1D). At 66
hpf the signal narrowed down to a distinct group of 3–4 cells
of the apical organ (Figure 1E) and by 72 hpf SpLox expression
was faint and diffused again (Figure 1F). Second, we identified
distinct cells of the foregut that expressed SpLox (Figures 1E,F,
white arrows). Thus, we found that the previously identified
SpLox cells below the ciliary band are lateral ganglia neurons, and
that SpLox is also dynamically expressed in the apical organ and
foregut up to early larval stages.

Scattered Ciliary Band Neurons Express
Single Pre-pancreatic Genes
We examined the expression of pre-pancreatic transcription
factors in ectodermal cells that give rise to neurons. For some
of these vertebrate genes there are multiple paralogs, while
the sea urchin genome features only one paralog. Neurogenins
are transcription factors expressed early in endocrine pancreas
precursors (40, 41) and in neuronal differentiation (42, 43). The
only sea urchin neurogenin ortholog is SpNgn. In gastrulae,
SpNgn was expressed at the animal pole and in individual cells
located within the ciliary band (Figure 2A). This expression
increased at early pluteus stage where several SpNgn cells were
found throughout the ciliary band (Figure 2D). Islet is another
vertebrate gene that is expressed in the developing pancreas and
in the nervous system (9, 44). In sea urchin gastrulae, SpIsl was
expressed broadly in the oral ectoderm, particularly on the right
side (Figure 2B). The expression increased during development
and at the larval stage, SpIsl was expressed throughout the ciliary
band and a few cells of the post-oral ectoderm (Figure 2E).
SpIsl was also expressed in the foregut and in a group of
cells in the upper and lower lip (Figure 2E). Last, we analyzed
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FIGURE 1 | SpLox is expressed in lateral ganglion neurons. (A–C”) SpLox (magenta) and SynB (green) protein localization in late larvae. Nuclei are labeled blue with

DAPI. In (A”,B”,C”) nuclei are omitted in order to see the long and interconnected network formed by the neurite projections. Insets on the right show SpLox

expression in the nucleiof left lateral ganglia (A,B) and right lateral ganglia (A,C). (D–F) Are fluorescent in situ hybridization (FISH) showing the localization of SpLox

mRNA in the apical plate in late gastrula (A), prism (B) and early larva (C) stages. White dashed line boxes are magnifications of the apical plate area. White

arrowheads indicate SpLox localization in the foregut. All pictures are full projections of merged confocal stacks. Nuclei are stained with DAPI and depicted in blue. es,

esophagus; in, intestine; mo, mouth; st, stomach; abv, aboral view; lv, lateral view; ov, oral view.
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FIGURE 2 | Co-expression analysis of markers of pancreatic transcription factors and SpBrn1/2/4 define unique neurons. (A–C) FISH of SpNgn, SpIsl, and

SpNeuroD in gastrulae. (D–F”) Double fluorescent in situ hybridization (FISH) of SpNgn, SpIsl, and SpNeuroD with SpBrn1/2/4 combined with nuclear staining (DAPI,

blue) in early larvae. White dashed-line circles highlight the apical organ region. All images are obtained as stacks of merged confocal Z sections. Split and combined

channels of single confocal sections are provided to show that genes are expressed in the same cells. abv, aboral view; av, aboral view; lv, lateral view; ov, oral view.
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the expression profile of SpNeuroD. The SpNeuroD vertebrate
orthologs are key regulators of neuronal terminal differentiation
and pancreas development (45–49). In gastrulae, SpNeuroD was
widely expressed in the oral ectoderm (Figure 2C). In early
larvae, SpNeuroD was detected at low levels in several cells
throughout the ciliary band and the apical organ (Figure 2F).

Given that SpNgn, SpIsl and SpNeuroD were all expressed
in ectodermal cells, we asked if those cells were neurons that
co-express SpBrn1/2/4, recently identified as a key gene of the
sea urchin neural specification process (50). We found that
most of the SpNgn positive ciliary band cells co-expressed
SpBrn1/2/4 (Figure 2D”). Similarly, SpIsl cells of the ciliary band,
apical organ and foregut were SpBrn1/2/4+ (Figure 2E”). Last,
the SpNeuroD apical organ cells co-expressed also SpBrn1/2/4
(Figure 2F”). These data reveal that in early larvae there
are scattered ciliary band neurons that express pre-pancreatic
transcription factors, like SpNgn, SpIsl and SpNeuroD.

A Pancreatic Signature Is Turned on in a
Subset of Neuronal Precursors
We aimed to understand whether a pre-pancreatic regulatory
state was active in neuronal precursor cells. We first tested
whether SpLox was active in progenitors that express SpSoxC,
an early marker of neuronal development (50, 51). SpSoxC was
already expressed in mid gastrula before SpLox is expressed
in the ectoderm (Figure 3A). SpLox appeared in late gastrula
stage in SpSoxC neural precursors of the apical plate and
ciliary band (Figure 3B, yellow arrowheads). Additionally, the
SpLox cells in the foregut also expressed SpSoxC (Figure 3B,
white arrowheads). We used SpBrn1/2/4 as a second marker for
neuronal precursors. Besides the known co-expression of SpLox
and SpBrn1/2/4 in the ciliary band (25), we found that from
gastrula stage SpLox and SpBrn1/2/4 co-expressed in at least two
cells of the apical plate (Figure 3C).

Next, we tested which other pancreatic genes were expressed
in the SpLox neurons. In vertebrates, Ptf1a is expressed early in
pancreas development in the same cells that express the Pdx1
gene, the ortholog of SpLox in vertebrates (52). We previously
found that ectodermal cells transiently expressed SpPtf1a until
gastrula stage (53). We therefore tested if the SpLox ectodermal
cells expressed also SpPtf1a. Double in situ hybridization revealed
that cells in the apical plate and in the left and right lateral
ganglion expressed both SpLox and SpPtf1a (Figures 3D,E). In
particular, only in the left lateral ganglion precursors SpPtf1a
expression was high in the adjacent cells and weak in the SpLox
cells (Figure 3E). These same left lateral ganglion precursors
also expressed SpIsl (Figure 3F). As for SpPtf1a, we noticed
that SpIsl expression was higher in adjacent cells rather than in
the SpLox neurons themselves (Figure 3F, insets on the right).
Conversely, we found that SpLox neurons did not express SpNgn
or SpNeuroD (data not shown).

Altogether, we found that apical organ, foregut and ciliary
band neurons express SpLox after SpSoxC is activated.
Apical plate and ciliary band cells express also SpPtf1a
until gastrula stage. In the early larva at least two neurons
are SpLox+SpBrn1/2/4+SpIsl+, likely representing a novel

FIGURE 3 | Cells with a pre-pancreatic regulatory state. (A,B) double FISH of

SpLox and the proneural gene SpSoxC in middle to late gastrula. White

arrowheads show SpLox co-localization with SpSoxC in the foregut, yellow

arrowheads mark neurons in the apical plate and ciliary band that co-express

SpSoxC and SpLox. (C) double FISH of SpLox and SpBrn1/2/4 in mid

gastrula. Insets on the right are magnifications of

(Continued)
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FIGURE 3 | the apical plate (center), left ciliary band (left), and right ciliary

band (right) to show co-expression of the two genes. White arrowhead shows

co-localization of SpLox and SpBrn1/2/4 in the foregut. (D,E) double FISH of

SpLox and SpPtf1a in late gastrula and early larva show ectodermal

co-expression. Insets on the right are magnifications of the apical plate

(center), left ciliary band (left) and right ciliary band (right) to show

co-expression of the two genes. Note that SpPtf1a transcripts are enriched in

cells adjacent to the SpLox+ cells. (F) double FISH of SpLox and SpIsl in early

larva. Insets on the right show that the two genes are co-expressed in the two

left lateral ganglia (top right inset), but not in the right one (bottom right). Every

picture is a full projection of merged confocal stacks. Nuclei are stained with

DAPI and depicted in blue. abv, aboral view; ov, oral view.

specialized neuroendocrine cell. Our results show that the left
and right lateral ganglion neurons do not possess exactly the
same molecular signature, suggesting separate functions.

The “Pre-pancreatic” Neurons Produce the
Neuropeptide SpANP2
In order to identify terminal differentiation genes of the
SpLox neurons, we looked at the expression of the sea
urchin neuropeptides described by Woods et al. and Rowe
et al. (54). In particular, SpAN expression pattern resembled
that of SpLox+SpBrn1/2/4+ neurons. To better understand
the nature of the SpAN expressing cells, we developed
an antibody to SpANP2 protein and performed double
immunostaining with anti-SynB antibody (gene name SpAN,
protein name SpANP2). In larvae, SpANP2 localized in
three to four apical organ neurons, lateral ganglia and
postoral neurons (Figures 4A,B). The SpANP2+ apical organ
neurons were serotoninergic and expressed also SpBrn1/2/4
(Supplementary Figure 1). Besides the ectodermal expression,
SpANP2 was localized in the coelomic pouches (Figures 4A”,B”).
To test whether SpANP2 immunofluorescence marked cells that
produced the neuropeptide, and not target cells, we double
stained larvae for SpAN mRNA and SpANP2 protein. We found
that in early larvae the neuropeptide expression recapitulated
the expression of the RNA transcripts (Figure 4C). In particular,
while the mRNA was localized throughout the cells, the protein
accumulated at the cell apical side (Figure 4C, white dashed
line box), suggesting SpANP2 is secreted in vesicles. The same
mRNA and protein expression was present also in late larvae
(Figure 4D). We also found that SpAN neurons in the apical
organ and ciliary band were secretory because they expressed
SpMist, known marker of exocrine cells (55) (Figure 4E).

We next tested whether SpLox neurons expressed SpAN. We
found that the SpLox apical organ and lateral ganglion neurons
expressed SpAN (Figures 4F,G). To further test that those were
the SpLox+SpBrn1/2/4 neurons we performed a triple FISH
experiment and confirmed that SpAN was expressed in all the
SpLox+SpBrn1/2/4 neurons (Figure 4G and insets on the right).

Taken together, our results revealed that SpLox marks
secretory pre-pancreatic apical organ and lateral ganglion
neurons that produce and secrete the neuropeptide SpANP2.
Only the SpLox neurons in the foregut did not produce the
SpANP2 neuropeptide.

FIGURE 4 | Transcript expression and protein localization of the neuropeptide

SpANP2. (A,B)” SpANP2 (magenta) and SynB (green) immunolocalization in

late larvae. (A–A)” is a frontal view, (B–B)” is a dorsal view. (C,D) SpANP2

transcripts (FISH, in magenta) and protein (immunofluorescence, in green)

localization in early larva (C) and in 1-week old larva (D). White dashed line

boxes in (C) mark the apical organ region, the left and the right lateral ganglia

that are magnified on the right. Note that the protein accumulates close to the

neuritis extension. (E) Double FISH of SpAN (magenta) with SpMist (green)

showing that cells producing SpAN mRNA are secretory endocrine cells.

White arrows indicate co-expression. (F) Double FISH of SpAN (magenta) and

SpLox (green) at prism stage (66 h). White dashed line box marks the apical

organ region. Insets on the right show three distinct cells where SpLox and

SpAN are co-expessed. (G) Triple FISH shows the expression pattern of

SpBrn1/2/4 (cyan), SpLox (green), and Sppnp5 (magenta). Insets on the right

show single channels for each gene. The 72 h pluteus is oriented abanal along

the A/V axis. Pictures are all full projection of merged confocal stacks; nuclei

are labeled blue with DAPI. AO, apical organ; cp, coelomic pouches; es,

esophagus; LLG, left lateral ganglion; PON, post-oral neurons; st, stomach;

RLG, right lateral ganglion; abv, aboral view); ov (oral view).
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SpLox Controls SpAN Expression
Since SpLox neurons expressed also SpAN, we asked whether
SpLox regulates SpAN gene expression. We used a morpholino
approach to knock-down SpLox and quantified the number of
neurons that expressed SpAN in larval stages. As previously
published (37, 38), SpLox morphants are distinguished by a
straight gut that lacks the pyloric sphincter. We found that in
SpLox MO injected embryos there was an overall significant
reduction of SpAN expression. For instance, control larvae had
3–4 SpAN+ apical organ neurons, while SpLox morphants had
zero or only 1 SpAN+ apical organ neurons (Figures 5A,B).
Similarly, SpLox morphants had fewer SpAN+ cells than control
larvae on both the left and right sides (Figures 5A,C,D).
We also observed a consistent number of larvae where there
was no SpAN expression in at least one of the ectodermal
domains (Figures 5B,C,D graphs). These results suggest that
SpLox regulates SpAN expression in the cells where they are co-
expressed: the apical organ neurons, the left and right lateral
ganglia.

DISCUSSION

SpLox Marks a New Population of Neurons
With a “Pre-pancreatic” Signature
In this study we discovered a new heterogeneous population
of sea urchin neurons that is marked by the ParaHox gene
SpLox. It has been recently found that neuronal precursors
sequentially express the transcription factors SoxB2, SoxC, and
Brn1/2/4 before differentiating into neurons (34, 50, 56). Our data
indicate that a pre-pancreatic regulatory state marked by SpLox
is active in selected neuronal precursors (summary in Figure 6A

cartoon). SpLox neurons specifically express neuronal genes
that the vertebrate pancreas co-opted. These “pre-pancreatic”
genes are SpSoxC, SpPtf1a, and SpBrn1/2/4. First, SpLox is
turned on in neural precursors that are SpSoxC positive. The
vertebrate ortholog of SpSoxC is also expressed in the pancreatic
endocrine cells during development (57). Second, SpLox neural
precursors in the apical plate and the ciliary band transiently
express SpPtf1a. In vertebrates, the SpPtf1a ortholog gives rise
to all pancreatic progenitors (58, 59). Third, SpLox neurons
also express SpBrn1/2/4, another marker of neuronal precursors
(50) that is also expressed in the developing pancreas (29). The
regulatory state of the SpLox neurons is dynamic. For instance,
SpPtf1a might activate a pre-pancreatic program, but it is not
necessary for maintaining it, while SpBrn1/2/4 remains on until
larval stages.

It is intriguing that the SpLox neurons have a similar
molecular signature but a distinct spatial distribution. One
hypothesis is that perhaps the apical organ neurons represent
the brain component of a pancreatic circuit, while the lateral
ganglia are the peripheral component. It is known that the brain
is an important target of the insulin that is produced by the
pancreatic endocrine β-cells (60). The sea urchin has a tyrosine
kinase receptor (SpInsr) that is ortholog of the vertebrate insulin
receptor (INSR) and the insulin-like growth factor 1 receptor
(IGF1R). An interesting comparison is that just as INSR and

IGF1R are expressed in the vertebrate brain (61), SpInsr is also
expressed in the apical organ of sea urchin larvae (24). This
expression pattern suggests that apical organ neurons could
respond to endocrine signals from the gut as the vertebrate
brain does. The most significant difference between the two
SpLox neuronal populations is that the apical organ neurons are
serotoninergic (62), while lateral ganglia are dopaminergic (63).
The relationship between these two types of neurons that have
a similar signature but express also different neurotransmitters
merits further investigation.

Sea Urchin Neurons Are a Heterogeneous
Population
SpBrn1/2/4 has been shown to be a neuronal marker (50). In
this study, we found that subsets of SpBrn1/2/4 neurons express
distinct genes. For instance, SpBrn1/2/4 ciliary band neurons
express SpNgn, while the apical neurons do not always express
SpNgn. In the sea urchin L. variegatus, LvNgn has been shown
to have a similar expression pattern to SpNgn (64), but no co-
expression with other transcription factors is known. SpBrn1/2/4
neurons also express SpNeuroD and SpIsl in scattered cells. As
it has been previously shown, waves of transcription factors are
transiently expressed in neurogenesis (34, 50, 64). Therefore, one
possibility is that cells lacking SpBrn1/2/4 expression at a given
stage might express it a few hours later. Lateral ganglia appear
like symmetrical neurons localized on the left and right side of
the sea urchin larva. Despite this anatomical symmetry, these
neurons do not express exactly the same genes. For instance,
only the SpLox left lateral ganglion neurons express also SpIsl.
The facts that not all the lateral ganglion neurons share the
same molecular signature, and that right and left lateral ganglion
neurons are not symmetrical, emphasizes the complexity and
diversity of neuronal types in sea urchins (summarized in
Figure 6A). Altogether, our findings demonstrate that in the sea
urchin larva there is a huge diversity of neuronal subtypes that
has not been completely characterized.

SpLox Regulates the Expression of
SpANP2
We found that the novel echinoderm neuropeptide SpANP2
(Wood et al. 2018) (54) is expressed in several neurons, including
the SpLox “pre-pancreatic” neurons. SpANP2 is expressed in the
adult S. purpuratus nerve cords (65), but so far no sequence
similarities with neuropeptides from other phyla have been
identified (54). Its cellular localization suggests that SpANP2 is
released in vesicles, in line with its role as a neurohormone.
The fact that SpANP2 is expressed not only in SpLox neurons,
but also in other cells, leads to two possible hypotheses. First,
neurons with different molecular signatures could use the
same mechanisms to regulate SpANP2 expression. Alternatively,
different regulatory networks could control SpANP2 expression
in distinct cells. In SpLox knocked down larvae, SpANP2
transcripts and protein were significantly reduced from the
apical organ and in the peripheral neurons, but not all neurons
were equally affected (a summary of these data is reported in
Figure 6B). Therefore, our perturbation data suggest that SpLox
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FIGURE 5 | SpLox controls SpANP2 expression. (A) SpAN mRNA detected by single-color in situ hybridization or SpANP2 protein detected by immunofluorescence

localization in controls and in larvae injected with SpLox MOs directed against the translation of SpLox RNA. Note that injected embryos/larvae show the typical

SpLox MO phenotype of a straight gut that does not have the pyloric sphincter (38). All images are obtained as stacks of merged confocal Z sections. Nuclei are

labeled blue with DAPI. (B–D) Quantification of the number of SpANP2 cells in the SpLox morphants shows a ****p < 0.0001 by Chi squared test. Cartoons of early

larvae on top of the graphs summarize the most frequent phenotypes. In the graph we put together data form SpANP2+ cells at prism stage (66 h), early larvae (70 h),

and 1-week old larvae. For (C,D) we show percentages of lateral ganglia and post-oral neurons together. abv, aboral view; lv, lateral view; ov, oral view.

is a general regulator of SpANP expression, but different gene
regulatory networks could control SpANP expression in specific
domains.

Conclusions
Neurons and pancreatic β-cells share many remarkable features,
including similar gene expression, function and physiology (1–7).
It has been shown that human neural progenitors can be

induced to differentiate into pancreatic cells (66), suggesting
that these two cell types use a very similar gene regulatory
network. Previous authors (15, 67) have discussed the idea that
a multipotent pancreatic progenitor co-opted a neural genetic
program. Insulin-like peptides are expressed in the nervous
system and the gut of non-vertebrate chordate, like echinoderms,
tunicates and cephalochordates (17, 24, 68). These findings
support the idea that pancreatic cells co-opted a neural genetic
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FIGURE 6 | Summary of the regulatory state of the SpLox+ neurons. (A) Schematic representation of a sea urchin gastrula (left) and early larva (right) showing the

neurons identified in this study. Neurons with the same pancreatic signature have the same color. (B) Cartoon showing decrease in SpANP2+ neurons in SpLox

morphants. The three most frequent phenotypes are shown.

program. Our results expand this idea and suggest that pancreatic
cells co-opted a neuronal program from a distinct neuronal
subtype, rather than a generic one. Hence, we provide additional
evidence that neurons with a pancreatic signature pre-dated
the appearance of the vertebrate pancreatic regulatory state.
Therefore, we propose that gut cells co-opted a pre-existing pre-
pancreatic program from ancestral neurons already present in a
deuterostome ancestor.

MATERIALS AND METHODS

Animals
Adult Strongylocentrotus purpuratus were obtained from Patrick
Leahy (Kerchoff Marine Laboratory, California Institute of
Technology, Pasadena, CA, USA) and housed in circulating
seawater aquaria at the Stazione Zoologica Anton Dohrn of

Naples. Gametes were obtained by vigorous shaking of animals or
by intracoelomic injection of 0.5M KCl. Embryos were cultured
at 15◦C in filtered Mediterranean sea water diluted 9:1 with
de-ionized water.

RNA Whole Mount in situ Hybridization
For fluorescent whole mount in situ hybridization (FISH),
we followed the protocol outlined in (69). Triple FISH
was performed as described in (70). Signal was developed
with fluorophore-conjugated tyramide (1:400 reagent diluents,
Perkin Elmer). Labeled probes were transcribed from linearized
DNA using digoxigenin-11-UTP, fluorescein-12-UTP (Roche,
Indianapolis, IN, USA), or labeled with DNP (Mirus, Madison,
WI, USA) following kit instructions. SpLox, SpBrn1/2/4, SpSoxC,
SpPtf1a, and SpMist probes were made as previously published
[SpLox (71), SpBrn1/2/4 (25), SpSoxC (69) SpPtf1a, and SpMist
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(53)]. SpIsl, SpNgn and SpNeuroD probes were synthetized using
the following primers: SpIsl-F: 5′-CGTGGACCAGACAGACTT
GA-3′; SpIsl-R: 5′-AGTCGCTGAGTGCTTTCCAT-3′; SpNgn-F:
5′-TACGACAATGATGCCCAAGA-3′; SpNgn-R: 5′-CCGTTTC
ACAAAGCCATTTT-3′; SpNeuroD-F: 5′-CTCGCCACCTGATC
TCTAC-3′; SpNeuroD-R: 5′-TTCCCGCCTTTCAAAATATG-3′.
SpANP2 probe was made as published in Woods et al. 2018.
Templates of all the probes were sequenced prior to probe
generation and cloned in the pGEM R©-T Easy Vector (Promega,
Madison, WI, USA). Samples were imaged with a Zeiss 510 Meta
confocal microscope.

Immunochemistry
Larvae were fixed in 4% PFA in FSW for 15min at room

temperature, washed multiple times in phosphate-buffered saline
with 0.1% Tween-20 (PBST), and incubated overnight at 4◦C
with either the SpLox antibody (1:500) or the SpANP2 antibody

(1:250) in 1 mg/ml BSA and 4% sheep serum in PBST.
To mark the nervous system, the anti-Syn antibody (1:100)
was added (39). Larvae were then washed three times with
PBST and incubated for 1 h at room temperature with the
secondary antibodies anti-rabbit-AlexaFluor 555 (Invitrogen) or
anti-mouse 488 (Invitrogen) diluted 1/100 in 1 mg/ml BSA in
PBST. After being washed in PBST, larvae were mounted for
imaging with a confocal microscope (Zeiss 510Meta).

Perturbation Experiments With MO
Injection
Translation-blocking antisense MO against SpLox was used
at a concentration of 2mM as published in (37) and (38).
For each experiment 300 eggs were injected with ∼2–4 pl of
oligonucleotide injection solution. Each experiment was repeated
at least three times. Note that the SpLox morpholino exhibits
an unique phenotype that lacks the pyloric sphincter, as it has
been previously shown (38). As a negative control, fertilized eggs
were injected with the standard control morpholino (GeneTools,
Pilomath, OR) and compared side-by-side with knockdown
embryos.
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