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Metformin has been proposed to operate as an agonist of SIRT1, a nicotinamide

adenine dinucleotide (NAD+)-dependent deacetylase that mimics most of the metabolic

responses to calorie restriction. Herein, we present an in silico analysis focusing on

the molecular docking and dynamic simulation of the putative interactions between

metformin and SIRT1. Using eight different crystal structures of human SIRT1 protein,

our computational approach was able to delineate the putative binding modes of

metformin to several pockets inside and outside the central deacetylase catalytic domain.

First, metformin was predicted to interact with the very same allosteric site occupied

by resveratrol and other sirtuin-activating compounds (STATCs) at the amino-terminal

activation domain of SIRT1. Second, metformin was predicted to interact with the NAD+

binding site in a manner slightly different to that of SIRT1 inhibitors containing an indole

ring. Third, metformin was predicted to interact with the C-terminal regulatory segment

of SIRT1 bound to the NAD+ hydrolysis product ADP-ribose, a “C-pocket”-related

mechanism that appears to be essential for mechanism-based activation of SIRT1.

Enzymatic assays confirmed that the net biochemical effect of metformin and other

biguanides such as a phenformin was to improve the catalytic efficiency of SIRT1

operating in conditions of low NAD+ in vitro. Forthcoming studies should confirm the

mechanistic relevance of our computational insights into how the putative binding modes

of metformin to SIRT1 could explain its ability to operate as a direct SIRT1-activating

compound. These findings might have important implications for understanding how

metformin might confer health benefits viamaintenance of SIRT1 activity during the aging

process when NAD+ levels decline.
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INTRODUCTION

A small molecule capable of targeting aging and delaying
the onset of aging-related multimorbidity has the potential
to radically amend the way we understand (and practice)
modern medicine (1). One such molecule is the biguanide
metformin, which, 60 years after its introduction in Europe
as a first-line therapeutic for type 2 diabetes (2), could have
the potential to prevent multiple aging-related disorders (3–
5). Against this background, the TAME (Targeting Aging with
Metformin) clinical trial has been designed to evaluate the
healthspan-promoting effects of metformin by enrolling patients
aged 65–79 years diagnosed with one single age-associated
condition, and then assessing the global impact of metformin
on a composite outcome including cardiovascular events, cancer,
dementia, mortality, and other functional and geriatric endpoints
(6). Although the current consensus is that metformin has the
ability to target multiple pathways of aging, it is still unclear
whether such a capacity reflects downstream consequences of a
primary action on a single mechanism or whether it involves
direct effects on aging regulators (6).

Metformin has been proposed to exert indirect pleiotropy
on core metabolic hallmarks of aging such as the insulin/IGF-
1 and AMPK/mTOR signaling pathways (4) downstream of its
primary inhibitory action on mitochondrial respiratory complex
I. Alternatively, but not mutually exclusive, its capacity to
operate as a poly-therapeutic anti-aging agent might involve
the direct targeting of the biologic machinery of aging per
se. A systematic chemoinformatics approach established to
computationally predict metformin targets recently revealed that
the salutary effects of metformin on human cellular aging might
involve its direct binding to core chromatin modifiers of the
aging epigenome (7, 8), such as the H3K27me3 demethylase
KDM6A/UTX (9–11). The ability of metformin to directly
interact with TGF-β1, thereby blocking its binding to TβRII
and resulting in impaired downstream signaling (12), is another
example of how metformin might exert pleiotropic effects on
numerous (TGF-β1 hyperfunction-associated) aging diseases
such as organ fibrosis and cancer, without necessarily involving
changes in cellular bioenergetics.

SIRT1 is a member of the class III (NAD+-dependent)
histone deacetylases (HDACs) that mimics most of the metabolic
responses to calorie restriction and contributes to enhanced
healthy aging, including a reduced incidence of cardiovascular
and metabolic diseases, cancer, and neurodegeneration (13–
17). The regulation of SIRT1 by metformin is an archetypal
example of its ability to indirectly and directly impact the
aging process. Because of its enzymatic requirement for NAD+,
SIRT1 is commonly viewed as a unique energy sensor that
couples its function to the NAD+/NADH ratio of the cell or
organism (18–20). Accordingly, metformin-induced metabolic
stress has been shown to induce SIRT1 expression and activity
as a downstream consequence of AMPK activation-induced
augmentation of cellular NAD+ levels (21–24). Although the
striking similarity between the pleiotropic effects of metformin
and the physiological consequences of SIRT1 activation might
merely represent the overlapping metabolic effects of SIRT1

and AMPK activators (25, 26), we are beginning to uncover
evidence on the occurrence of energy crisis (i.e., AMPK/mTOR)-
independent agonist effects of metformin on SIRT1 activity (27–
31). Nonetheless, both the putative molecular interactions on the
atomic scale between metformin and SIRT1 and the mechanism
of action of metformin as a direct modulator of SIRT1 activity
remain elusive.

Here, we performed an in silico docking and molecular
dynamics (MD) simulation study of the SIRT1-metformin
complex coupled to laboratory-based experimental validation,
aiming to interrogate the ability of metformin to directly enhance
NAD+-dependent SIRT1 activity. Our findings present a first-in-
class structural basis to understand the behavior of metformin as
a direct SIRT1-activating compound.

MATERIALS AND METHODS

Computational Modeling of the Human
SIRT1 Protein
To provide in silico insights into the binding pattern of
metformin with SIRT1, we employed eight different crystal
structures of the human SIRT1 protein, namely 4KXQ, 4IF6,
4ZZJ, 4ZZI, 4ZZH, 4I5I, 5BTR, and 4IG9. 4KXQ, and
4IF6 represent the heterodimeric (chains A and B), closed
conformation of SIRT1 bound to adenosine-5-diphosphoribose
(APR) (32). 4ZZJ represents the heterodimeric (chains A –
SIRT1 and B –p53), open conformation of SIRT1 bound to
small molecule sirtuin-activating compounds (STATCs) such
as the non-hydrolyzable NAD+ analog carbaNAD (carba
nicotinamide adenine dinucleotide) or to the carboxamide SIRT1
inhibitor 4TQ (33). 4ZZI represents the monomeric (chain
A), open conformation of SIRT1 bound to the carboxamide
SIRT1 inhibitors 4TQ and 1NS, whereas 4ZZH represents the
monomeric (chain A), open conformation of SIRT1 bound to
the carboxamide SIRT1 inhibitor 4TO (33). 4I5I represents the
dimeric (chains A and B) conformation of SIRT1 bound to NAD
or, alternatively, to the carboxamide SIRT1 inhibitor 4I5 (34).
5BTR represents the heterotrimeric (chains A, B, and C –SIRT1
and D, E, and F –p53), closed conformation of SIRT1 bound to
resveratrol (35). Finally, 4IG9 represents a quaternary complex
of SIRT1 with no bound ligand (32).

Docking Calculations
All docking calculations were performed using Itzamna and Kin
(www.mindthebyte.com), classical docking and blind-docking
software tools. The above mentioned protein structures from
RCSB Protein Data Bank (https://www.rcsb.org) were directly
employed for docking calculations using the cavities defined by
crystallographic ligands where available. Two runs were carried
out for each calculation to avoid false positives.

Molecular Dynamics Simulations
Docking post-processing allowing conformational
selections/induced fit events to optimize the interactions
were performed via short (1 ns) MD simulations using NAMD
version 2.10 over the best-docked complexes, which were selected
based on the interaction energy. The Ambers99SB-ILDN and the
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GAFF forcefield set of parameters were employed for SIRT1 and
metformin, respectively. The GAFF parameters were obtained
using Acpype software, whereas the SIRT1 structures were
modeled using the leap module of Amber Tools. Simulations
were carried out in explicit solvent using the TIP3P water
model with the imposition of periodic boundary conditions
via a cubic box. Electrostatic interactions were calculated by
the particle-mesh Ewald method using constant pressure and
temperature conditions. Each complex was solvated with a
minimum distance of 10 Å from the surface of the complex
to the edge of the simulation box; Na+ or Cl− ions were also
added to the simulation to neutralize the overall charge of
the systems. The temperature was maintained at 300K using
a Langevin thermostat, and the pressure was maintained at 1
atm using a Langevin Piston barostat. The time step employed
was 2 fs. Bond lengths to hydrogens were constrained with
the SHAKE algorithm. Before production runs, the structure
was energy minimized followed by a slow heating-up phase
using harmonic position restraints on the heavy atoms of the
protein. Subsequently, the system was energy minimized until
volume equilibration, followed by the production run without
any position restraints.

Binding Free Energy Analysis
Molecular Mechanics/Generalized Borne Surface Area
(MM/GBSA) calculations were performed to calculate the
alchemical binding free energy (1Gbind) of metformin
against SIRT1. MM/GBSA rescoring was performed using
the MMPBSA.py algorithm within AmberTools. The snapshots
generated in the 1 ns MD simulation were imputed into the
post-simulation MM/GBSA calculations of binding free energy.
Graphical representations were prepared using PyMOL program
and PLIP version 1.3.0.

Interaction Analysis
The predicted binding site residues of metformin to SIRT1
were defined using evidence-based interaction analyses of known
SIRT1 activators/ inhibitors with well-defined binding residues.

SIRT1 Enzymatic Assay
The effects of metformin on SIRT1 activity were assessed
using the SIRTaintyTM Class III HDAC Assay (Cat. #17-
10090, Millipore) and the EpigenaseTM Universal SIRT1
Activity/Inhibition Assay Kit (Cat. # P-4027, Epigentek), as
per the manufacturers’ instructions. In the former assay,
purified SIRT1 enzyme, β-NAD, acetylated peptide substrate,
metformin, and nicotinamidase enzyme were combined and
incubated for 30min. During this time the acetylated peptide
substrate is deacetylated by SIRT1 and produces nicotinamide.
In a secondary reaction, the nicotinamidase enzyme converts
nicotinamide into nicotinic acid and free ammonia (NH+

3 ). To
generate a signal for readout, a proprietary developer reagent
is added and the signal is read (420ex/460em nm) using a
fluorescent plate reader. In the latter assay, an acetylated histone
SIRT1 substrate is stably coated onto microplate wells; active
SIRT1 binds to the substrate and removes acetyl groups from the
substrate and the amount of SIRT1-deacetylated products, which
is proportional to the enzyme activity, can be measured using a

specific antibody. The ratio or amount of deacetylated product,
which is proportional to the enzyme activity, is fluorometrically
measured by reading the fluorescence at 530ex/590em nm.
Metformin, phenformin, and buformin (Sigma-Aldrich Ltd.)
were added from aqueous stock solutions, and proguanil
(Sigma-Aldrich Ltd.) from stock solutions in DMSO.

RESULTS

Molecular Docking and Molecular
Dynamics Simulation Analyses of
Metformin With SIRT1
First, rigid docking calculations were performed over the cavities
defined by the crystallographic ligands in the 4KXQ, 4IF6, 4ZZJ,
4ZZI, 4ZZH, 4I5I, and 5BTR structures (Figures 1, 2). In the
case of the ligandless 4IG9 structure, we performed blind docking
calculations involving cavity searching and docking calculations
over the found cavities. After simulations, we selected more than
one model conformation of metformin to cover all the possible
binding models within the crystallographic binding poses of the
ligands.

The binding energies obtained from the rigid docking
calculations, which were run twice to avoid false positives, are
summarized in Table 1. This approach predicted the ability of
silibinin to directly bind all the above crystal structures of human
SIRT1, with binding energy values up to −5.0 kcal/mol for
the crystal structure 4I5I. It should be acknowledged that the
predicted in silico capacity of metformin to poorly interact with
SIRT1, with rather high binding energies, could be explained
by the small size of metformin and by docking calculations
performed against cavities that, in most cases, are biased toward
the ligand to which the target structure is co-crystallized. To
add protein flexibility to the analysis and to test the stability of
the selected metformin-target complexes, we carried out short
MD simulations of 1 ns to filter out poorly interacting poses.
We then performed MM/GBSA calculations (36) to estimate
the free energy of the binding of metformin to biological
macromolecules such as SIRT1. This estimation of ligand-
binding affinities takes into consideration the dynamic nature of
SIRT1 and it is therefore more reliable to provide a realistic view
of metformin binding affinity than rigid docking estimations
(Figures 3, 4). The energies obtained following MM/GBSA
rescoring calculations over MD simulations are summarized in
Table 1, with the best model highlighted in green. From 30
models of metformin-SIRT1 interactions, 11 of them (which are
highlighted in green in Table 1) were found to maintain their
predicted interacting residues in their corresponding docking
poses.

Analysis of the Binding Mode of Metformin
to SIRT1
The best binding energies of metformin to SIRT1 using rigid
docking calculations were predicted to occur when employing
the model 1 in the 4KXQ and 4IF6 crystal structures, which
highly resemble each other. A detailed analysis of the metformin-
binding mode to 4KXQ and 4IF6 predicted the interaction
of metformin with the same group of amino acids in both
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FIGURE 1 | Rigid docking study of the metformin-binding mode to the APR, CNA, NAD+, and 4I5 binding pockets of SIRT1. Figure shows in sticks all the

pharmacophoric interaction residues involved in the in silico binding of metformin to the APR, CNA, NAD+, and 4I5 binding pockets of SIRT1, using PLIP. The main

residues involved in silibinin interaction with the protein backbone are shown in black; the residue numbers shown correspond to the original PDB file numbering.

FIGURE 2 | Rigid docking study of the metformin-binding mode to the resveratrol (RESV) binding pocket of SIRT1. Figure shows in sticks all the pharmacophoric

interaction residues involved in the in silico binding of metformin to the RESV binding pocket of SIRT1, using PLIP. The main residues involved in silibinin interaction

with the protein backbone are shown in black; the residue numbers shown correspond to the original PDB file numbering.
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TABLE 1 | Docking binding energies and MM/GBSA-based energy rescoring

calculations over MD simulations of metformin against SIRT1.

PDB ID Ligand Model Binding Energy MM/GBSA energy

(kcal/mol) (kcal/mol)b

R0/R1a

4KXQ APR 1 −4.0/−4.6 −18.6175

2 −3.9/−3.8 −14.6640

3 −3.3/−2.5 −13.8421

4 −3.1/−2.0 −4.6926

4IF6 APR 1 −4.2/−4.2 −14.3340

2 −4.4/−3.8 −12.7689

3 −3.7/−3.8 −10.4075

4 −3.1/−2.1 −13.2829

4ZZJ 4TQ 1 −2.3/−2.0 −0.8082

CNA 2 −3.6/−3.4 −17.8281

3 −3.5/−4.0 −25.1540

4 −3.4/−3.4 −21.7529

4ZZI 4TQ 1 −2.1/−2.2 −2.2537

1NS 2 −4.6/−3.2 −19.0828

4ZZH 4TO 1 −2.1/−1.7 −4.1866

4I5I NAD 1 −5.0/−5.0 −13.4730

2 −4.9/−4.9 −5.9833

3 −4.4/−4.3 −14.8859

4I5 4 −4.6/−3.7 −16.9806

5BTR STL-A 1 −3.6/−3.6 −20.8897

STL-B 2 −3.2/−3.1 −11.2383

3 −2.9/−2.5 −26.9390

STL-C 4 −3.2/−3.0 −11.0961

5 −3.1/−3.2 −16.5834

STL-D 6 −3.5/−3.7 −10.7575

7 −3.5/−3.5 −23.6198

STL-E 8 −3.4/−3.2 −25.0726

STL-F 9 −3.4/−3.4 −18.9041

4IG9 1 −3.9/−3.9 −2.7150

2 −4.4/−4.4 −8.3935

The more negative the binding energy, the more plausible the interaction.
aEach docking calculation was performed twice (R0 and R1) to avoid false positives.
bEnergy obtained after MM/GBSA calculations.

Green, best model per target; Yellow, models better maintaining the binding mode in

docking and MD studies.

SIRT1 crystal structures, namely D272, G440, S442, N465, and
E467.

When evaluating the binding mode of metformin to the
open conformation of the heterodimer 4ZZJ, which has two
crystallographic ligands (carbaNAD and 4TQ), we observed
that metformin was predicted to share one interacting residue
(G263) with those predicted in the 4KXQ crystal structure. It is
noteworthy that the carbaNAD structure exhibits a reasonable
similarity to APR, which is the crystallographic ligand present
in 4KXQ and 4IF6. Even though there were no other matching
residues, the other predicted interactions suggested a common
binding site for 4KXQ and 4IF6, which can be explained in terms
of the large size of the cavity in which the interaction could take

place, the small size of metformin as a ligand, and the dynamic
nature of the protein. When focusing on the crystallographic
ligand 4TQ, which is placed at the N-terminal domain (NTD)
of 4ZZJ, we predicted a very low interaction energy following
MM/GBSA analyses, which can be explained in terms of the
exposure of the NTD region and the lack of predicted interacting
residues nearby. Therefore, metformin is not predicted to bind
the NTD region in the open state of SIRT1.

The monomeric 4ZZI and 4ZZH crystallographic structures
contain the ligands 4TQ and 4TO, respectively, at the NTD
region of SIRT1. As above predicted for 4ZZJ, we failed to
predict any putative interaction of metformin at the NTD region.
However, it should be noted that good binding energies were
predicted for the crystallographic ligand 1NS, which is placed
in a position that is opposed to the cavity occupied by 4TQ
and 4TO and, accordingly, we predicted some residues with
which metformin could interact with at the 1NS cavity. To better
understand this difference, we performed an alignment using 4I5I
as a template, finding that 1NS was placed near the terminal
benzene ring of the SIRT1 cofactor NAD and the 4I5 cavity. This a
region where metformin is predicted to correctly bind according
to the results obtained when employing the 4I5I crystallographic
structure (see below).

The monomeric conformation of 4I5I contains NAD and 4I5
as crystallographic ligands. When focusing on the NAD binding
site, the model 1 predicted a binding mode equivalent to that
predicted by the model 1 in 4KXQ and 4IF6, with a good
binding energy. Indeed, the predicted interacting residues were
shared with those predicted in the model 1 of 4KXQ and 4IF6,
namely D272, G440, N465, and E467. When focusing on the 4I5-
binding site, it should be noted that the mechanism of action
of 4I5 involves a displacement of NAD from its natural site, as
it places near the terminal benzene ring of NAD. Interestingly,
the predicted interacting residues of metformin were different
to those predicted when employing 4KXQ and 4IF6, but similar
to those predicted when evaluating metformin binding to the
1NS cavity at 4ZZI. Moreover, the MM/GBSA-based energy
binding of metformin at the 4I5 site was reasonably good
(−16.9806 kcal/mol), similar to that for 1NS (−19.0828 kcal/mol;
Table 1).

The closed conformation of SIRT1 represented by 5BTR with
resveratrol as a crystallographic ligand also contains p53 peptides,
as in the case of 4ZZJ. Following a detailed analysis of the
putative binding modes and predicted residues interactions, we
concluded that metformin models 1 for chain A, model 3 for
chain B, and model 5 for chain C were placed over the same
binding pocket of resveratrol and, importantly, exhibited good
binding energies (−20.9987, −26.9390, and −16.5834 kcal/mol,
respectively; Table 1). It should be noted that in the case of
the model 1 for chain A, an extra resveratrol ligand appears
and interacts with metformin, as resveratrol was another residue
within the cavity. Good interaction energies were also predicted
for chains D (model 7, −23.6198 kcal/mol) and E (model
8, −25.0726 kcal/mol), which represent the same resveratrol
ligand. A detailed evaluation of the binding mode of metformin
predicted a shared interaction in both models involving N226,
E230, and K3 (a residue from p53), thereby suggesting that
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FIGURE 3 | Self-docking poses under molecular dynamics simulations modeling the metformin binding mode to the APR, CNA, NAD+, and 4I5 binding pockets of

SIRT1. Overall structure and views of the interaction between metformin and the APR, CNA, NAD+, and 4I5 binding pockets of SIRT1. The coordinating residues are

numbered.
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FIGURE 4 | Self-docking poses under molecular dynamics simulations modeling the metformin binding mode to the resveratrol (RESV) binding pocket of SIRT1.

Overall structure and views of the interaction between metformin and the RESV binding pockets of SIRT1. The coordinating residues are numbered.
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FIGURE 5 | Effects of metformin on the enzymatic activity of SIRT1. (A) Dose-response analyses of the effects of graded concentrations of metformin on the activity

of SIRT1 using the SIRTainty assay. Columns and error bars represent mean values and S.D., respectively. Comparisons of means were performed by ANOVA;

P < 0.01 were considered to be statistically significant (denoted as *). Data points are presented as mean ± SD; three technical replicates per n; n = 2 biochemical

replicates (B) Left. Human recombinant SIRT1 enzyme was incubated with graded concentrations of NAD+ and indicated metformin concentrations in a cell-free

system using the EpigenaseTM Universal SIRT1 Activity/Inhibition Assay Kit (Fluorometric). Data points are presented as mean ± SD; three technical replicates per n; n

= 2 biochemical replicates. Points are connected by best-fit lines using the Michaelis-Menten model (GrahPad Prism software). Right. NAD+ concentrations needed

to achieve 75% of the maximal SIRT1 activity in the absence or presence of graded concentrations of metformin. (C) Left. Structural formulas of the compounds with

the biguanide moiety highlighted in red. Right. Human recombinant SIRT1 enzyme was incubated with 10 µmol/L NAD+ in the absence or presence of graded

concentrations of biguanides as in (B). Data points are presented as mean ± SD; three technical replicates per n; n = 2 biochemical replicates.

metformin might bind the closed conformation of SIRT1 at the
resveratrol-binding cavity.

The binding mode of metformin to the 4IG9 crystal
structure of SIRT1 required a careful and detailed analysis.
Following the blind docking calculations, we selected the two
models that seemed to better place in the NAD-binding site,
which was identified upon structural overlapping. Despite the
low interaction energies predicted by MM/GBSA (Table 1), a
comprehensive analysis of the interacting residues confirmed
the accuracy of the selected cavities and models. Metformin
was predicted to move from the docking binding area to a
better position near the NAD+-binding site. Interestingly, at
the end of each MD simulation, metformin was predicted
to interact with those residues that seemed to be relevant
for defining the binding mode of metformin to SIRT1. The
model 1 predicted that the interacting residues after blind
docking were R274, F297, and V412. However, following the
MD simulation, the residues predicted to be involved in the
metformin-binding mode were D292, Q294, and F414. It should
be noted that the interacting residues D292 and Q294 were
shared also with the binding mode of metformin on the chain
C of 5BTR, with D292 emerging as a key residue involved
in the metformin-binding mode to the 5BTR crystal. In the
model 2 of 4IG9, the sole interacting residue predicted after
blind docking was D348. Following MD simulation, however,
the residues predicted to be involved in the metformin-binding
mode were A262, P271, D272, and F273, with D272 as a key
residue involved in the metformin-binding mode to 4KXQ, 4IF6,
and 4I5I. Once again, this suggests metformin’s capacity to bind

not only the inhibitor pocket but also the cofactor cavity of
SIRT1.

The displacement of metformin observed when using the
ligandless 4IG9 crystal structure of SIRT1 was found to take
place also in the model 3 of the 4KXQ crystal, in which the
predicted interacting residues in the metformin-binding mode
after blind docking were A262, R274, Q345, H363, G440, and
S441. By contrast, after MD simulation, the predicted residues
were D272, G440, N465, and E467 (i.e., the same group of
residues predicted to be involved in themodel 1 of 4KXQ crystal).
The fact that three of the models that fail to maintain the pose
(i.e., model 3 in the 4KXQ crystal, andmodels 1 and 2 in the 4IG9
crystal) finally move to a better binding site seems to validate
the binding modes of metformin observed in other SIRT1 crystal
structures.

Metformin Directly Enhances SIRT1
Enzymatic Activity
To confirm the ability of metformin to directly enhance
SIRT1 activity, we first used the SIRTaintyTM Class III
HDAC Assay, which employs nicotinamidase to measure
nicotinamide generated upon cleavage of NAD+ during
SIRT1-mediated substrate deacetylation, and provides a
direct assessment of SIRT1 activity. The production of
nicotinamide during the 30min that the acetylated peptide
substrate is acted on by SIRT1 was dose-dependently
increased by the concomitant presence of graded
concentrations of metformin until a saturating plateau
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TABLE 2 | Docking binding energies of metformin-related biguanides against

SIRT1.

PDB ID Ligand Biguanide Binding Energy (kcal/mol) R0/R1a

4KXQ APR Proguanil −6.8/−6.7

Cycloguanil –

Buformin −5.5/−5.6

Phenformin −7.2/−7.2

NorMitoMet −5.6/−5.0

4IF6 APR Proguanil −6.2/−6.2

Cycloguanil −5.3/−5.3

Buformin −5.7/−5.7

Phenformin −7.1/−6.9

NorMitoMet −5.6/−4.6

4ZZI 4TQ Proguanil −3.7/−3.7

Cycloguanil −4.7/−4.7

Buformin −2.5/−2.6

Phenformin −4.5/−4.4

NorMitoMet −5.2/−3.8

4ZZI 1NS Proguanil −6.9/−6.9

Cycloguanil −7.7/−7.7

Buformin −5.7/−5.5

Phenformin −7.4/−7.2

NorMitoMet −9.0/−8.4

4I5I 4I51 Proguanil −7.3/−6.5

Cycloguanil −7.8/−7.3

Buformin −6.2/−6.2

Phenformin −6.9/−6.8

NorMitoMet 1.2/1.1

4I51 NAD Proguanil −7.3/−6.2

Cycloguanil −7.8/−7.4

Buformin −6.2/−5.7

Phenformin −6.4/−6.4

NorMitoMet −3.8/−3.6

4ZZJ 4TQ Proguanil −3.9/−3.1

Cycloguanil −4.2/−4.0

Buformin −2.8/−2.2

Phenformin −2.7/−1.9

NorMitoMet −5.1/−4.9

4ZZJ CNA Proguanil −7.4/−7.4

Cycloguanil −7.3/−7.3

Buformin −5.5/−5.6

Phenformin −6.9/−6.0

NorMitoMet −8.5/−7.5

4ZZH 4TO Proguanil −4.1/−4.0

Cycloguanil −4.0/−4.1

Buformin −3.4/−3.4

Phenformin −3.7/−3.7

NorMitoMet −3.7/−3.5

4IG9 – Proguanil −5.0/−4.9

Cycloguanil −5.7/−5.7

Buformin −4.3/−4.3

Phenformin −5.5/−5.5

NorMitoMet −1.4/−1.2

(Continued)

TABLE 2 | Continued

PDB ID Ligand Biguanide Binding Energy (kcal/mol) R0/R1a

5BTR STL-A Proguanil −6.9/−6.9

Cycloguanil −6.9/−6.9

Buformin −5.4/−5.5

Phenformin −7.2/−7.1

NorMitoMet −7.3/−7.3

5BTR STL-B Proguanil −7.3/−6.8

Cycloguanil −7.3/−7.3

Buformin −5.3/−5.3

Phenformin −7.3/−7.3

NorMitoMet −6.8/−6.9

5BTR STL-C Proguanil −6.9/−6.9

Cycloguanil −7.6/−7.6

Buformin −4.8/−4.8

Phenformin −7.0/−6.5

NorMitoMet −7.3/−7.6

5BTR STL-D Proguanil −7.5/−7.5

Cycloguanil −7.5/−7.5

Buformin −5.5/−4.9

Phenformin −6.9/−6.4

NorMitoMet −7.1/−6.9

5BTR STL-E Proguanil −8.5/−8.6

Cycloguanil −6.3/−6.3

Buformin −5.6/−5.6

Phenformin −8.0/−8.0

NorMitoMet 6.5/4.2

The more negative the binding energy, the more plausible the interaction.
aEach docking calculation was performed twice (R0 and R1) to avoid false positives.

level of SIRT1 activity was reached at 1 mmol/L metformin
(Figure 5A).

To characterize further how metformin might directly
regulate SIRT1 functioning under different NAD+

concentrations in a cell-free system, we used the EpigenaseTM

Universal SIRT Activity/Inhibition Assay Kit. The activation
curves of recombinant SIRT1 functioning under different NAD+

concentrations in the absence or presence of metformin are
shown in Figure 5B. Treatment with graded concentrations
of metformin significantly reduced the KM for NAD+ while
the Vmax of SIRT1 was slightly increased (up to 30%) in the
presence of the highest concentration of metformin tested
(10 mmol/L). The metformin-induced leftward-shift of the
SIRT1 activation curve, was more evident when evaluating the
concentration of NAD+ (in terms of relative KM) required
to achieve ¾ of the maximal SIRT1 activity in the presence
of metformin, which was increased by 70-fold—from 8.5
µmol/L NAD+ in the presence of 10 mmol/L metformin
to >500 µmol/L in the absence of metformin (Figure 5B).
Perhaps more importantly, the ability of metformin to
enhance the capacity of SIRT1 to operate at lower NAD+

concentrations similarly occurred at physiological/therapeutic
concentrations of metformin; thus, metformin concentrations
as low as 1 µmol/L were sufficient to reduce by 7-fold the
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FIGURE 6 | Binding modes of metformin to SIRT1. Global view of the human SIRT1 structure showing the location of the metformin binding sites: (1) metformin poses

(4KXQ, 4IF6, 4I5I, and 4ZZJ) at the NAD+ binding site, specifically the indole nucleus; (2) metformin poses (4ZZI) at a cavity between the NAD+ binding site and the

one occupied by the indole derivative (SIRT1 inhibitor) 4I5; and (3) metformin pose at the resveratrol binding pocket at the amino-terminal activation domain of SIRT1.

amount of NAD+ required to allow a near-maximal activity of
SIRT1.

To evaluate whether pharmacologically relevant biguanides
might be viewed as a new family of pharmacologically active
SIRT1 activators, we re-evaluated the docking binding energies
of several metformin-related biguanides including the anti-
malarial biguanides proguanil and cycloguanil, the anti-diabetic
biguanides phenformin and buformin, as well as norMitoMet,
a novel metformin derivative tagged with the mitochondrial
vector triphenylphosphonium (TPP+) (37) (Table 2). The open
conformations of SIRT1 bound to SIRT1 inhibitors (i.e., 4ZZI-
4TQ, 4ZZJ-4TQ, and 4ZZH-4TO) yielded the worst energy
binding predictions for all the biguanides. The predicted binding
behavior of buformin and proguanil was relatively similar
across all the cavities, with the exception of 5BTR (STL-
E), which appeared as the preferred one for proguanil. Our
molecular docking approach was incapable of predicting the
binding energy of cycloguanil to cofactor cavity 4KXQ-APR;
very poor energy binding energies were also predicted for
norMitoMet and the 4I5I-4I5, 4IG9, 5BTR (STL-E), and 5BTR
(STL-F), most likely because of its large size. Phenformin
emerged as a good SIRT1-interacting candidate among all the
biguanides, exhibiting relatively high binding energies across all
the SIRT1 cavities tested, especially against those representing

the closed conformation of SIRT1 binding. We then selected
proguanil, buformin, and phenformin to experimentally validate
the computational predictions. Figure 5C shows that SIRT1
activity was augmented in a dose-dependent manner in the
presence of different biguanides, with 1 mmol/L phenformin
being capable of enhancing the catalytic activity of SIRT1 by
90% when forced to operate at a NAD+ concentration as low as
10 µmol/L.

DISCUSSION

We performed a first-in-class computational study aimed to
disentangle the putative binding modes of metformin to the
SIRT1 enzyme. Our approach reveals that, whereas metformin
is predicted to interact with several pockets of SIRT1 inside
and outside the central deacetylase catalytic domain (Figure 6),
the net biochemical effect is to improve the catalytic efficiency
of SIRT1 when it operates at low NAD+ conditions in vitro
(Figure 7). These findings altogether appear to confirm the ability
of metformin to operate as a direct SIRT1-activating compound.

When used at low-millimolar concentrations that are
incapable of activating the energy-sensing AMPK/mTOR
pathway, metformin was previously shown to operate as a
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bona fide SIRT1 agonist to block Th17 cell differentiation,
similar to well-known SIRT1 activators such as resveratrol and
SRT1720 (27). The capacity of metformin to operate as a direct
pharmacological SIRT1 activator, which was defined by the
selective targeting of SIRT1 and not the AMPK/mTOR pathway
in vitro and in vivo by therapeutic doses in mice and humans
(27, 38), has been further bolstered by the finding that the
combination metformin and leucine allows SIRT1 to operate at
lower NAD+ concentrations in cell-free systems (28–31). Thus,
some of the effects of metformin on SIRT1 activation have been
proposed to occur via its actions as a direct activator of SIRT1,
capable of reducing the KM for NAD+. We here confirm that
physiological/therapeutic concentrations of metformin mimic
the effects of calorie restriction by directly promoting an optimal
use of NAD+ and improving the reaction speed of SIRT1.
Importantly, our computational characterization of the putative
binding modes of metformin to the regulatory and catalytic
pockets of SIRT1 provides new insights into how metformin
might directly enhance NAD+-dependent SIRT1 deacetylation
activity.

Resveratrol and other STACs have been found to facilitate
SIRT1 activation by establishing key molecular interactions
within a specific STAC-binding allosteric site located at
the NTD of SIRT1 (33, 39, 40). Mutagenesis screenings
and crystallographic structure studies have provided some
information of the interface governing the allosteric binding
of STACs. This includes glutamic acid 230 (E230), which
appears to be critical for allosteric stimulation of SIRT1 activity
by chemically diverse STACs including resveratrol (40) via
formation or stabilization of the activated conformation of SIRT1
(33). In addition, asparagine 226 (N226) and aspartate 292
(D292) appear to directly interact with resveratrol and are crucial
for the resveratrol-stimulated SIRT1 activity on the substrate
(33, 35). It is noteworthy that some of the best SIRT1-metformin
complex conformations and SIRT1-metformin binding sites, in
terms of binding energies, took place outside of the active
site of SIRT1 but involved those residues ostensibly controlling
the common mechanism of SIRT1 regulation by allosteric
activators, such as E230, N226, andD292. Our biochemical assays
showed that metformin sensitizes SIRT1 activity by left-shifting
the response of SIRT1 to NAD+, which is characteristic of
positive allosteric modulators. Besides sensitization, metformin
also produces a small but consistent increase in the maximum
response of SIRT1 at saturating doses of NAD+, which resembles
the estimated intracellular content of NAD+ in mammals [200–
500 µmol/L, (41–44)]. It is therefore tempting to suggest that a
concerted allosteric change might occur between the activation
domain and the catalytic domain in SIRT1 bound to metformin,
thereby allowing SIRT1 to operate at low NAD+ concentrations,
which mirrors the NAD+ deficits occurring during aging [(45–
47); Figure 7]. The unforeseen capacity of metformin to interact
with the STAC-binding allosteric site of SIRT1, which was
predicted to solely occur at the substrate-bound closed state,
together with the sensitized NAD+-SIRT1 activity curve shifting
leftwards in the presence of metformin, strongly suggests an
allosteric behavior of metformin toward SIRT1. Nevertheless,
we acknowledge that our study did not directly evaluate how

FIGURE 7 | Metformin as a direct SIRT1-activating compound: A new

anti-aging role of metformin by modulating NAD+-sensing enzymes. SIRT1

activity often declines during aging for reasons other than substrate depletion,

namely NAD+ decrements. NAD+ levels have been described to decrease

during aging, mostly due to changes in metabolic pathways leading to NAD+

synthesis. Such NAD+ deficit is beginning to be viewed as a central

mechanism connecting aging and aging-related diseases, including cancer.

However, nearly all known STACs target SIRT1 and operate with a limited

number of substrates by binding outside of the activate/catalytic site to an

allosteric domain of SIRT1 that is not shared with the other sirtuin family

members (SIRT2–7) (48). This substrate-dependent, allosteric activation of

SIRT1 exerted by the vast majority of STACs cannot compensate for the

reduction in NAD+ levels. Accordingly, a variety of physiological and

pharmacological strategies aimed to boost NAD+ levels or inhibit NAD+

consumption is being rapidly pursued for nutraceutical and pharmaceutical

development to control SIRT1 activity and thereby achieve healthy benefits

(44–46, 49). Given the valuable physiological effects of improving the catalytic

efficiency of SIRT1 under NAD+ depletion in a substrate-independent manner,

a preferred general strategy for activation of sirtuins including SIRT1 would be

to lower the Km for NAD+. Km, which would have a similar activating effect to

that of NAD+ supplementation, could provide specific activation of sirtuin

isoforms, and might be achievable without the need to alter the binding affinity

of NAD+ (50). Our molecular study of the SIRT1-metformin complex coupled

to laboratory-based experimental validation strongly suggests that metformin

would functionally mimic NAD+ boosters by operating as a direct

SIRT1-activating compound that ensures health quality during aging via

sensitization of SIRT1 to NAD+.

the binding of metformin to the very same binding pocket
of resveratrol at the amino-terminal activation domain might
increase NAD+-dependent deacetylation of specific substrates.
A model of assisted allosteric activation of SIRT1 activation
has been proposed, in which STATCs increased the binding
affinity for the substrate and vice versa (48, 51). Accordingly, it
will be interesting to test whether the activation mechanism by
metformin is analogous to that of STATCs, lowering the Km for
the substrate and requiring the region around E230. The use of
primary cells reconstituted with activation-defective SIRT1might
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clarify whether metformin directly activates SIRT1 through an
allosteric mechanism capable of decreasing the dissociation
constant for specific substrates, which is a common mode of
action of other chemically diverse STACs.

Our in vitro discovery that metformin allows SIRT1 to operate
efficiently at low concentrations of NAD+ might alternatively
suggest that metformin operates as a mechanism-based enzyme
activating compound (MB-STAC) by targeting (and accelerating)
the unique NAD+-dependent deacetylation turnover mechanism
of SIRT1. Although some information is available regarding
mechanism-based sirtuin inhibitors (MB-SI) such as Ex-527 and
Sir-Real2 (52–54), very little is known about the mechanistic
functioning of putative MB-STACs. It has been postulated that
a prerequisite for a given modulator to operate as a MB-STAC
is the requirement for co-binding with the SIRT1 substrates
NAD+ and acetylated peptide. Accordingly, crystal structures
of SIRT1:MB-SI complexes have shown that MB-SI occupy
the nicotinamide site and a neighboring pocket to contact
the ribose of NAD+ or of the coproduct 2

′

-O-acetyl-ADP
ribose. Interestingly, whereas metformin was predicted to bind
the SIRT1 cofactor/inhibitor catalytic regions regardless of
the conformational status of SIRT1, it remains to be clarified
whether the predicted interacting residues might alter the
binding and orientation of the NAD+ cofactor, catalytically
required to extract a proton from the activated NAD+, or are
involved in the capture of the released nicotinamide from NAD+

(32). Indeed, it should be acknowledged that metformin was
predicted to establish interactions with F414, a residue that has
been suggested to interact with NAD+ (34) and mediate the
interaction of the SIRT1 active site with the substrate peptide
(32, 33); with N465, a residue that seems to participate in the
establishment of an inhibitor-extended conformation of NAD+

that sterically prevents productive binding of substrate (34); and
also with F273, a key residue involved in the steric blockade
of the binding of NAD+ in the active conformation of SIRT1
(34). Perhaps more importantly, metformin was predicted to
interact with the C-terminal regulatory segment of SIRT1 bound
to the NAD+ hydrolysis product APR, a “C-pocket”-related
mechanism that appears to be essential for MB activation
(55, 56). All these elements could be taken to suggest that at low,
therapeutic concentrations, metformin might partially mimic
the behavior of MB-SI (e.g., by satisfying the requirement of
co-binding with substrates) but possessing additional critical
attributes necessary to operate as an MB-STAC, including the
ability to modulate the local degrees of freedom of the NAD+

cofactor and various intermediates and products in the active
site. Correspondingly, it could positively alter the balance
of productive vs. non-productive SIRT1:NAD+ complexes.
Conversely, supraphysiological concentrations of metformin
might be predicted to force the NAD+ cofactor to adopt
an inactive binding mode and/or sterically block substrate
binding, thereby behaving as a MB-SI. In this vein, metformin
concentrations >50 mmol/L were found to significantly reduce
SIRT1 enzymatic activity (data not shown). Moreover, our

discovery that other metformin-related compounds containing
the biguanide functional group (i.e., two guanidiniums joined
by common nitrogen) could enhance also SIRT1 activity
highlight the importance of considering the biguanides as a
new molecular family of weak to moderate direct activators
of SIRT1. An enhanced understanding of the molecular
pharmacology and mechanisms of biguanide-SIRT1 interactions
might enable the design and investigation of novel, more
potent metformin-related compounds as direct SIRT1
activators. Nonetheless, our findings provide mechanistic
support for recent clinical initiatives conducted to evaluate
advantage of the direct activation of SIRT1 by metformin
(28–31, 57).

Future studies should confirm the mechanistic relevance of
our in silico insights into how the putative binding modes
of metformin to SIRT1 could explain its ability to operate
as a direct SIRT1-activating compound (Figure 7). These
findings might have important implications in understanding
how metformin could confer health benefits via maintenance
of SIRT1 when NAD+ levels decline during the aging
process.
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