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Fetal delivery of calcium, via the placenta, is crucial for appropriate skeletal mineralization.

We have previously demonstrated that maternofetal calcium transport, per gram

placenta, is increased in the placental specific insulin-like growth factor 2 knockout

mouse (P0) model of fetal growth restriction (FGR) compared to wild type littermates

(WTL). This effect was mirrored in wild-type (WT) mice comparing lightest vs. heaviest

(LvH) placentas in a litter. In both models increased placental calcium transport was

associated with normalization of fetal calcium content. Despite this adaptation being

observed in small normal (WT), and small dysfunctional (P0) placentas, mechanisms

underpinning these changes remain unknown. Parathyroid hormone-related protein

(PTHrP), elevated in cord blood in FGR and known to stimulate plasma membrane

calcium ATPase, might be important. We hypothesized that PTHrP expression would be

increased in LvH WT placentas, and in P0 vs. WTL. We used calcium pathway-focused

PCR arrays to assess whether mechanisms underpinning these adaptations in LvH WT

placentas, and in P0 vs. WTL, were similar. PTHrP protein expression was not different

between LvH WT placentas at E18.5 but trended toward increased expression (139%;

P = 0.06) in P0 vs. WTL. PCR arrays demonstrated that four genes were differentially

expressed in LvH WT placentas including increased expression of the calcium-binding

protein calmodulin 1 (1.6-fold; P< 0.05). Twenty-four genes were differentially expressed

in placentas of P0 vs. WTL; significant reductions were observed in expression of S100

calcium binding protein G (2-fold; P < 0.01), parathyroid hormone 1 receptor (1.7-fold;

P < 0.01) and PTHrP (2-fold; P < 0.05), whilst serum/glucocorticoid-regulated kinase 1

(SGK1), a regulator of nutrient transporters, was increased (1.4 fold; P < 0.05). Tartrate

resistant acid phosphatase 5 (TRAP5 encoded by Acp5) was reduced in placentas of

both LvHWT and P0 vs. WTL (1.6- and 1.7-fold, respectively; P< 0.05). Signaling events

underpinning adaptations in calcium transport are distinct between LvH placentas of WT

mice and those in P0 vs. WTL. Calcium binding proteins appear important in functional

adaptations in the former whilst PTHrP and SGK1 are also implicated in the latter. These

data facilitate understanding of mechanisms underpinning placental calcium transport

adaptation in normal and growth restricted fetuses.
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INTRODUCTION

Placental dysfunction, associated with reduced rates of nutrient
uptake (1–3), is a major cause of fetal growth restriction (FGR),
the failure of a fetus to reach its growth potential (4). FGR is
a significant risk factor for stillbirth (5, 6). Additionally, FGR
infants demonstrate increased incidence of childhood diseases
such as cerebral palsy, and adulthood diseases including heart
disease, stroke, diabetes and osteoporosis (7–11). The current
lack of therapies for FGR (12) emphasizes the need for better
understanding of how fetal development is normally achieved
and how it is dysregulated in FGR.

Placental transfer of calcium increases over gestation to
match fetal demand and ensure appropriate fetal skeletal
mineralization (13). Poor fetal provision of calcium in utero has
been linked with an increased risk of developing osteoporosis
later in life (14). Maternofetal transfer of calcium across
the placenta involves calcium moving from maternal blood
into the syncytiotrophoblast (transporting epithelium of the
placenta) down an electrochemical gradient through calcium
permeable cation channels (e.g., TRPV6, transient receptor
potential vanilloid type 6) on the maternal-facing microvillous
membrane (MVM) (15–17). Once in the trophoblast cytosol
calcium is buffered to avoid overly increasing the intracellular
concentration, and shuttled to the fetal-facing basal membrane
(BM) by calcium binding proteins such as calbindin-D9K

(16). Calcium is actively transported across the BM by
plasma membrane calcium ATPases (PMCA) into the fetal
compartment. The actions of PMCA help to maintain calcium
concentrations in the fetus above those found in maternal blood.
Unlike the activity of other nutrient, and especially amino
acid, transport systems that are reduced in placentas of growth
restricted fetuses (1–3), the activity of PMCA is increased in
human FGR (18) as is the maternofetal transfer of calcium in a
rodent model of FGR, the placental-specific insulin-like growth
factor 2 (P0) knockout mouse (19).

Optimal fetal growth depends on adequate nutrient delivery
and placental supply can be adapted to meet the metabolic needs
of the developing fetus. In pregnancies with normal outcomes,
adaptation of placental transport in relation to placental size
appears important in both women and mice (20–22). Our
previous studies of wild-type (WT) mouse litters demonstrated
that maternofetal calcium transfer across the lightest placentas
is adaptively up-regulated, compared to the heaviest placentas,
so that all fetuses, whether with relatively lighter or heavier
placentas, accrue an appropriate level of calcium relative to their
size near term (22).We suggested that this increasedmaternofetal
transfer of calcium (per gram placenta), which coincides with
increased placental calbindin-D9K expression at embryonic day
(E)18.5, is an example of a placental adaptation that promotes
fetal calcium acquisition despite a relatively small placental size.
We also found a normalization of fetal calcium accretion by
E18.5, following a reduction at E16.5, which may be indicative of
a fetus signaling to its placenta, by as yet unknown mechanisms,
to increase maternofetal transfer of calcium. The gestational
timing of this adaptation inWTmice was similar to that whichwe
previously observed in the P0 knockout mouse (19), and points

to a role for fetal nutrient demand in driving this adaptation via
altered expression of placental calcium binding proteins. These
data showed that placental adaptations are an important feature
of both normal and compromised fetal growth and help to ensure
appropriate calcium acquisition relative to the size of the fetus.

Nothing is yet known regarding the underlying mechanisms
that affect adaptation of placental calcium transport and
in particular the fetal and/or placental signals that may
be important in this process. Therefore, in this study we
investigated mechanisms underlying the adaptive up-regulation
of maternofetal calcium transfer. Initially, parathyroid hormone-
related protein (PTHrP) was investigated as a candidate fetal
signal. PTHrP is produced in a number of tissues including,
but not limited to, the placenta, fetal membranes and fetal
brain, liver, bone and parathyroid glands (23). In these tissues,
there are multiple secretory mature peptides which have a range
of different biological functions that can be elicited through
endocrine, paracrine, autocrine and intracrine mechanisms
[reviewed by (24)]. In women, the concentration of PTHrP
in maternal serum, and PTHrP expression in amnion and
choriodecidua, are both increased in late gestation in parallel
with the rapid increase in fetal growth and calcium accretion
(25–27). Previous studies in rodents have demonstrated the
importance of PTHrP and its receptor, the PTH/PTHrP receptor,
in fetal development. Deletion of these genes in mice results in
neonatal death, due to skeletal dysplasia (28) or death in utero
mid gestation due to growth restriction (29). In a spontaneously
hypertensive rat model, inappropriate levels of PTHrP in the
placenta, fetal plasma and amniotic fluid were associated with
compromised fetal growth (30, 31). Enhancing endogenous
levels of PTHrP, by the addition of a PTH/PTHrP receptor
antagonist, improves fetal growth in this rat model (31). In
PTHrP knockout mice, maternofetal calcium transfer and fetal
calcium accretion are increased despite fetal hypocalcaemia and
lack of a maternal fetal calcium gradient (32–34). In human
pregnancies complicated by FGR, PTHrP expression in fetal
membranes and placenta is increased in cases of preterm FGR
(35), and concentrations are elevated in cord blood (18). PTHrP
also stimulates PMCA activity in BM vesicles isolated from
human placenta (36). Thus, we hypothesized that PTHrP is a
candidate signal stimulating an increase in calcium transfer and
would be elevated in: (1) placental tissue and tissues from fetuses
of the lightest vs. heaviest (LvH) placentas inWTmice; and (2) in
placentas of P0 fetuses compared to their WT littermates (WTL).
Using calcium pathway-focused PCR arrays we also tested the
hypothesis that placental mechanisms underpinning the adaptive
increase in calcium transfer inWTmice and in P0 mice would be
similar.

MATERIALS AND METHODS

Animals
Experiments were performed in accordance with the UKAnimals
(Scientific Procedures) Act of 1986 under the authority of a UK
Home office project license (PPLs 40/3385 and P9755892D) and
were authorized by the AnimalWelfare and Ethical Review Board
of the University of Manchester. The methods stated in this
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study adhere to the ARRIVE guidelines (37) and comply with the
animal ethical principles under which the journal operates.

Wild-type C57Bl/6J (Envigo, UK) females (10–16 weeks old)
and males (12–26 weeks old) were mated and discovery of
a copulation plug was used to define embryonic day (E)0.5
(term = E19.5). Mice were provided with nesting material and
communally housed (with the exception of stud males that were
individually housed) in individually ventilated cages under a
constant 12 h light/dark cycle at 21–23◦C with free access to food
(Beekay Rat and Mouse diet, Bantin and Kingman) and water
(Hydropac, Denver, US). Pregnant female mice were euthanized
(cervical dislocation appropriate under ASPA schedule 1) and a
laparotomy and hysterotomy performed. All fetuses were rapidly
killed by cervical dislocation.

On E18.5 (N = 20 litters), pregnant WT females were
euthanized and fetuses and placentas were rapidly harvested,
blotted and wet weights measured. The lightest (n = 20) and
heaviest (n = 20) placentas were identified in each litter. All
placentas and fetuses were snap frozen and stored at −80◦C. In
9/20 litters, brains (n = 18; 9 from the lightest placental group,
9 from the heaviest) and livers (n = 18; 9 from lightest, 9 from
heaviest) from fetuses corresponding to the lightest and heaviest
placentas were immediately dissected, snap frozen and stored at
−80◦C. Fetal weight histograms were constructed and a non-
linear regression performed (Gaussian distribution) from which
individualized fetal weight centiles were calculated as described
previously (38).

Placental specific insulin-like growth factor 2 (Igf2) (P0)
knockout mice (N = 10 litters), which had deletion of the U2
exon of the Igf2 gene, were generated as previously described (39)
and were a kind gift from Dr Miguel Constância and Professor
Wolf Reik. C57BL/6J female mice (8–14 weeks old) and males
heterozygous for the P0 deletion (10–32 weeks old) were mated
and produced mixed litters of WTL fetuses and growth restricted
fetuses [P0; reported birthweight 78% compared to WTL at E19
equivalent to E18.5 in the current study (40)]. Embryonic day was
defined as above. At E18.5, placentas and fetuses (40 WTL; 38 P0
from 10 litters) were weighed, snap frozen and stored at −80◦C.
Fetal tail tips were collected from all fetuses and stored at−20◦C
for genotype determination.

The aim of the study, comparing lightest vs. heaviest placentas
or those from WTL vs. P0 mice within a single litter, meant that
randomization or blinding of the samples was not possible.

Genotyping of P0 Knockout Mice
Genotype (WTL or P0) was determined for all fetuses from
P0 mice according to a previously published genotyping
protocol (19, 41). In brief, genomic DNA was extracted
from fetal tail tips using a DNeasy kit (Qiagen, Manchester,
UK). Igf2 P0+/− mutants were identified with a specific
primer pair to amplify a 740 bp fragment across the 5 kb
deletion (P0 dF 5′-TCCTGTACCTCCTAACTACCAC−3′

and P0 dR 5′-GAGCCAGAAGCAAACT−3′) and a primer
to amplify a 495 bp fragment from the WT allele (5′-
CAATCTGCTCCTGCCTG−3′). PCR conditions were as
follows: 4min denaturation at 94◦C; 35 cycles of 1min at 94◦C,
1min at 56◦C, 1min at 72◦C; and 10min final extension at

72◦C. Samples were loaded with bromophenol blue and run on
a 1.5% agarose gel. Bands were visualized using an InGenius
transilluminator (Sygene Bio, Cambridge, UK).

Protein Expression
The lightest and heaviest placentas from WT mice (N = 7
litters) and placentas of P0 and WTL (N = 8 litters, 1 paired
P0 and WTL placenta per litter selected at random) were
homogenized and processed as described previously (19). Briefly,
whole homogenates were separated, by means of centrifugation,
into cytosolic fractions. Due to the small amount of starting
tissue, whole homogenates of fetal tissues (brains and livers; N
= 9 litters) were used for protein expression studies.

SDS-PAGE was performed followed by electrotransfer
to Immobilon-FL PVDF membranes (Millipore UK Ltd.,
Watford, UK). Primary antibodies included: rabbit polyclonal
antibodies for serum/glucocorticoid-regulated kinase 1 (SGK1;
1µg/ml; ab43606; Abcam, Cambridge, UK) and calmodulin
(CaM; 2µg/ml; sc-5537; Santa Cruz Biotechnology c/o Insight
Biotechnology Ltd, Wembley, UK); rabbit monoclonal antibody
for tartrate-resistant acid phosphatase (TRAP; 0.9µg/ml;
ab191406; Abcam); and goat polyclonal antibody for PTHrP
(1µg/ml; N-19, sc-9680; Santa Cruz Biotechnology). β-
actin (0.5µg/ml; ab8227; Abcam) or β-tubulin (0.9µg/ml;
ab6046; Abcam) was used as a loading control; when used
no difference was observed in β-actin or β-tubulin expression
between groups. Negative controls were by omission of
primary antibody. Immunoreactive species were detected
with fluorescent-conjugated secondary antibodies (Li-COR
Biosciences, Cambridge, UK) and membranes imaged using an
Odyssey Sa Infrared Imaging System (Li-COR). Signal density
was measured using Image Studio Lite (Li-COR). All signals
were in the linear range of detection. Protein expression was
compared separately between the lightest and heaviest placentas,
fetal tissues from lightest and heaviest placentas, and WT and P0
samples.

RT2 Profiler PCR Arrays
RNA was extracted from whole placentas (N = 7 litters: n = 7
lightest, n= 7 heaviest;N = 6–7 litters: n= 6–7WTL, n= 6–7 P0,
1 paired P0 andWTL placenta per litter selected at random) using
an RNeasy Mini Kit (74104; Qiagen, Manchester, UK), RNase-
Free DNase set (79254; Qiagen) and measured by a Thermo
Scientific NanoDrop 2000C spectrophotometer (A260/A280 range
2.06–2.12). Any contaminating genomic DNA was removed and
cDNA was synthesized from 0.5 µg RNA per sample using the
RT2 first strand kit (330401; Qiagen; genomic DNA elimination
mix for 5min at 42◦C, on ice for 1min; reverse transcription
mix for 42◦C for 15min followed by 5min at 95◦C). Expression
of 168 related genes, 5 reference genes and quality controls
was measured in each placenta using RT2 Profiler PCR arrays
(PAMM-066Z mouse cAMP/calcium signaling pathway finder
and PAMM-170Z mouse osteoporosis array; 96-well format;
Qiagen) with RT² SYBR R© Green ROXTM qPCR mastermix
(330523; Qiagen) on a Stratagene MX3005P R© , according to the
manufacturer’s instructions (10min at 95◦C, 40 cycles of 15 s
at 95◦C followed by 1min at 60◦C; dissociation curve 1min
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at 95◦C, 30 s at 55◦C, 30 s at 95◦C). Data were analyzed using
SA Bioscience PCR Array Data Analysis 3.5 Web Portal (http://
dataanalysis.sabiosciences.com/pcr/arrayanalysis.php).

Data and Statistical Analysis
Data are presented as the lightest placenta as a percentage of
the heaviest in a litter (dotted line = 100%), placentas of P0
fetuses as a percentage of WTL (dotted line = 100%), or median
and [range] where the experimental N = number of litters, n
= number of placentas or fetuses. The solid line on graphs
represents the median value. For P0 andWTL fetal and placental
weights, average fetal weights for each genotype per litter were
calculated and data are shown as a mean of these average weights.
Data were analyzed by Wilcoxon matched-pairs signed-rank test
or Mann Whitney test. P < 0.05 was considered statistically
significant.

PCR array data were analyzed using SA Bioscience PCR
Array Data Analysis 3.5 Web Portal (http://pcrdataanalysis.
sabiosciences.com/pcr/arrayanalysis.php). Fold change [2∧(-
Delta Delta Ct)] is the normalized gene expression [2∧(- Delta
Ct)] in the test sample (lightest placenta or placenta of P0
fetus) divided by the normalized gene expression [2∧(- Delta
Ct)] in the control sample (heaviest placenta or placenta of
WTL fetus). Fold-change values >1 indicate an up-regulation
in expression, and fold-change values <1 demonstrate a down-
regulation (Supplementary Tables 1, 2). Fold regulation values
are shown in Tables 2, 3.

RESULTS

Fetal and Placental Weights
As expected, lightest placentas from WT mice demonstrated
significantly reduced placental weight vs. heaviest placentas at
E18.5 (P < 0.0001, Table 1). Fetal weight was significantly
reduced (P < 0.01) and fetal weight: placental weight (F:P) ratio
increased (P < 0.0001), in fetuses from lightest vs. heaviest WT
placentas (Table 1). Mean fetal weight centiles were lower in the
lightest compared to the heaviest placenta group (39th vs. 56th
centile; P < 0.05) but were not considered growth restricted
(normal range 10th−90th centile). Consistent with previous
studies (19, 40, 41), placentas from P0 fetuses compared to WTL
fetuses were lighter, fetal weight was lower and F:P ratio higher at
E18.5 (all P < 0.0001, Table 1).

PTHrP Protein Expression
There were no significant differences in PTHrP protein
expression between the lightest and heaviest placentas of WT
mice, or within brains and livers of those fetuses from the
lightest and heaviest placentas (Figures 1A–C,E). There was a
trend toward increased PTHrP protein expression in placental
tissue of P0 vs. WTL fetuses (139%; P = 0.06; Figures 1D–E).
The PTHrP antibody used for these studies was discontinued
during the timecourse of the project and so we were unable to
assess PTHrP expression in fetal brains and livers of fetuses in P0
vs. WTL mice. Attempts to use different antibodies targeted to
PTHrP failed to show reproducible amplification of signal.

TABLE 1 | Placental weight, fetal weight and fetal weight:placental weight (F:P)

ratio in the lightest and heaviest placental groups of wild-type (WT) mice and in P0

and wild-type littermates (WTL) at embryonic day (E) 18.5.

Lightest Heaviest Lightest/

Heaviest (%)

P-value

Placental weight (g) 0.068

(0.052–0.080)

0.087

(0.076–0.100)

78.0

(64.0–89.0)

<0.0001

Fetal weight (g) 1.151

(0.924–1.289)

1.191

(1.018–1.441)

94.5

(79.0–108.0)

0.01

F:P ratio 16.8

(12.8–24.0)

14.2

(11.4–16.8)

119.5

(92.0–166.0)

<0.0001

P0 WTL P0/WTL (%) P-value

Placental weight (g) 0.065

(0.048–0.100)

0.096

(0.050–0.113)

64.0

(58.3–83.1)

<0.0001

Fetal weight (g) 0.977

(0.735–1.218)

1.179

(0.854–1.386)

80.9

(68.1–85.6)

<0.0001

F:P ratio 14.5

(10.91–18.4)

12.6

(10.0–17.1)

110.6

(100.5–146.4)

<0.0001

Data are median (range) or presented as the lightest placenta as a percentage of the

heaviest in a litter (lightest/heaviest (%) column) in WT mice or as the litter average of P0

fetuses as a percentage of the litter average of their WT littermates (P0/WTL (%) column).

Data are analyzed by Wilcoxon matched-pairs signed rank test (lightest vs. heaviest; P0

vs. WTL). P < 0.05 was considered statistically significant.

TABLE 2 | Results of the cAMP/Ca2+ signaling pathway finder and osteoporosis

RT2 profiler PCR arrays in the lightest compared to the heaviest placentas from

WT mice.

Gene Product Fold regulation P-value

Calm1 Calmodulin 1 +1.6 0.04*

Alpl Alkaline Phosphatase +1.2 0.04*

Acp5 Acid Phosphatase 5 Tartrate Resistant −1.6 0.04*

Hspa5 Heat Shock 70 kDa Protein 5 −1.8 0.01*

Fold regulation is the normalized gene expression in the lightest placentas divided by

the normalized gene expression in the heaviest placentas. Fold regulation values +1

indicate an up-regulation in expression, whilst fold regulation values −1 demonstrate a

down-regulation. *P < 0.05.

RT2 Profiler PCR Arrays
PCR arrays demonstrated significant changes in the expression
of four genes (Table 2); an increase in calmodulin 1 (Calm1; P <

0.05) and alkaline phosphatase (Alpl; P < 0.05) expression, and
a decreased expression of tartrate resistant acid phosphatase 5
(Acp5; P < 0.05) and heat shock protein 5 (Hspa5; P < 0.05) in
the lightest vs. heaviest WT placentas (N = 6). Placental protein
expression of calmodulin (CaM; 107%; Figure 2A) and tartrate
resistant acid phosphatase 5 (TRAP; 89%; Figure 2B) measured
by Western blot was not different between lightest and heaviest
placenta groups.

Twenty-four genes were differentially expressed in placentas
from P0 vs. WTL fetuses in the same litter as shown in Table 3.
Of note, significantly reduced expression was observed in the
genes encoding calbindin-D9K, S100 calcium binding protein
G (S100g; −1.9-fold, P < 0.01), PTHrP (Pthlh; −2-fold, P <
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TABLE 3 | Results of the cAMP/Ca2+ signaling pathway finder and osteoporosis RT2 profiler PCR arrays between placentas from P0 compared to wild-type littermate

(WTL) fetuses.

Gene Product Fold regulation P-value

Ar Androgen Receptor +1.7 0.04*

Esr1 Estrogen Receptor +1.5 0.02*

Sgk1 Serum/Glucocorticoid-Regulated Kinase 1 +1.4 0.03*

Eno2 Enolase 2, γ Neuronal +1.4 0.03*

Tnfrsf11b Tumor Necrosis Factor Receptor Superfamily, 11b +1.4 0.001**

Tgfb3 Transforming Growth Factor, β3 −1.2 0.04*

Rb1 Retinoblastoma 1 −1.3 0.02*

Pck2 Phosphoenolpyruvate Carboxykinase 2 (Mitochondrial) −1.3 0.04*

Junb Jun-B Oncogene −1.3 0.04*

Fosb FBJ Osteosarcoma Oncogene B −1.4 0.02*

Crem cAMP Responsive Element Modulator −1.4 0.03*

Per1 Period Homolog 1 (Drosophila) −1.4 0.04*

Nos2 Nitric Oxide Synthase 2, Inducible −1.4 0.006**

Brca1 Breast Cancer 1 −1.5 0.01*

Acp5 Acid Phosphatase 5, Tartrate Resistant −1.7 0.02*

Cyp17a1 Cytochrome P450 Family 17, a1 −1.7 0.03*

Ltbp2 Latent Transforming Growth Factor β Binding Protein 2 −1.8 0.03*

Gem GTP Binding Protein (over-expressed in skeletal muscle) −1.8 0.04*

S100g S100 Calcium Binding Protein G −1.9 0.004**

Dkk1 Dickkopf Homolog 1 −1.9 0.005**

Wnt10b Wingless Related MMTV Integration Site 10b −1.9 0.04*

Car2 Carbonic Anhydrase 2 −2.0 0.009**

Pthrp Parathyroid Hormone-Related Protein −2.0 0.02*

Ncam1 Neural Cell Adhesion Molecule 1 −2.0 0.002**

Fold regulation is the normalized gene expression in placentas of P0 fetuses divided by the normalized gene expression in placentas of WTL fetuses. Fold regulation values +1 indicate

an up-regulation in expression, whilst fold regulation values −1 demonstrate a down-regulation. *P < 0.05; **P < 0.01.

0.05) and parathyroid hormone 1 receptor (Pth1r; −1.7-fold, P
< 0.01). Expression of serum/glucocorticoid-regulated kinase 1
(Sgk1; 1.4-fold, P < 0.05), a kinase involved in the regulation of a
range of membrane transporters, ion channels and transcription
factors as well as cell survival (42–46) was increased. There was
no difference in serum/glucocorticoid-regulated kinase 1 (SGK1;
88%; Figure 3) protein expression between placentas of P0 and
WT mice.

There was only one similar change in gene expression between
the two study groups; tartrate resistant acid phosphatase 5 (Acp5,
−1.6-and−1.7-fold, respectively) was reduced to the same extent
in the lightest placentas of WT mice and placentas of P0 fetuses
(Tables 2, 3). Whilst TRAP protein expression was no different
between lightest and heaviest WT placentas, gene expression
of TRAP was increased in placentas of P0 compared to WT
littermates (TRAP; 144%; Figure 2C).

DISCUSSION

We have previously observed similar adaptive increases in
maternofetal calcium transport in small placentas fromWTmice,
and in small pathological placentas of the P0 knockout mouse
model of FGR, with accompanying changes in calbindin-D9K

expression (19, 22). Here we demonstrate that the underlying

mechanisms of these adaptations in the two models appear to
be distinct. Contrary to our hypothesis, expression of PTHrP
was not different between lightest compared with heaviest
(LvH) WT placentas, but there was a trend toward increased
expression in P0 vs. WTL placentas; PTHrP has been shown to
influence placental calcium transport in most (32, 33, 36), but
not all studies (47). As such, any change in PTHrP expression
in placentas near term may be important in the increased
maternofetal calcium transfer observed in P0 vs. WTL.

As shown by our previous studies, calbindin-D9K is implicated
as a mediator of placental adaptation in calcium transfer both
in WT mice (22) and in the P0 mouse (19). However, the
lack of change in placental calcium transfer in the calbindin-
D9K knockout mouse indicates that other candidates, including
calbindin-D28K, TRPV5/6 and the sodium-calcium exchanger,
might also be involved (48, 49). Thus, we adopted a holistic
approach to compare the expression of genes related to calcium
transfer and signaling in WT mice and P0 mice. We speculated
that these experiments would identify similar calcium-specific
pathways altered in the lightest and/or P0 placentas and provide
insight into potential regulators of the observed placental
adaptation. The number of genes showing altered expression
was limited in lightest vs. heaviest WT placentas but mRNA
expression of calmodulin-1 was increased in the lightest placentas
at E18.5. Whilst this may act as a further indicator of the
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FIGURE 1 | Placental and fetal protein expression of parathyroid hormone-related protein (PTHrP). PTHrP protein expression was not significantly different in paired

lightest (L) and heaviest (H) placentas from the same litter (A) or in the brains (B) and livers (C) of the fetuses from these placentas. (D) There was a trend for higher

PTHrP protein expression in placentas of paired placental-specific insulin-like growth factor 2 knockout (P0) and wild-type (WTL) fetuses (P = 0.06) from the same

litter. (E) Representative Western blots of PTHrP (26 kDa) with the corresponding loading control (β-actin; 42 kDa). Black line = median; dotted line 100% = H or WTL

placenta.

importance of calcium binding proteins in the previously
observed adaptation, this altered expression was not mirrored at
the protein level; the importance of the change in gene expression
therefore requires further elucidation.

In contrast to the lightest and heaviest placentas in WT
mice, multiple genes were differentially expressed in placentas
of P0 vs. WT littermates. This is perhaps unsurprising given
that P0 mice represent a model of fetal growth restriction
whereas lightest vs. heaviest placentas represent extremes of
placental weight in a “normal” WT population. Despite the
increased maternofetal calcium transport at E18.5, expression of
placental calcium-related genes was generally reduced in P0 vs.

WTL. Significant reductions were observed in the expression of
S100g (encoding calbindin-D9K), Pth1r and Pthrp, whilst Sgk1,
a regulator of epithelial ion transport and cell survival, was
up-regulated. SGK1 is a downstream effector of the PI3K/AKT
signaling pathway, and in support of the observations here, this
pathway is dysregulated in the placentas of P0 knockout mice
in late gestation (50). The trend for reduced gene expression
near to term could be the result of timing in gestation, i.e.,
gene expression increased earlier in gestation to promote changes
in placental nutrient transport might be downregulated nearer
to term having already resulted in increased transcription of
the target protein, as previously observed for calbindin-D9K in
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FIGURE 2 | Placental protein expression of calmodulin (CaM) and tartrate resistant acid phosphatase 5 (TRAP). (A) CaM and (B) TRAP protein expression was not

significantly different in paired lightest (L) and heaviest (H) WT placentas from the same litter. (C) TRAP protein expression was increased in placentas of

placental-specific insulin-like growth factor 2 knockout (P0) compared to wild-type littermates (WTL) from the same litter (*P < 0.05; Wilcoxon signed rank test). Black

line = median; dotted line 100% = heaviest WT placenta (A,B) or WTL placenta (C). Detected band sizes from representative western blots were as follows; CaM (17

KDa), TRAP (42 kDa) and ß-tubulin loading control (50 kDa).

FIGURE 3 | Placental protein expression of serum/glucocorticoid-regulated kinase 1 (SGK1). (A) SGK1 protein expression was not significantly different in paired

placentas of placental-specific insulin-like growth factor 2 knockout (P0) and wild-type (WTL) fetuses from the same litter. (B) Representative Western blots of SGK1

(49 kDa) with the corresponding loading control (β-tubulin; 50 kDa). Black line = median; dotted line 100% = WTL placenta.

lightest vs. heaviest WT placentas (22). The choice of E18.5 for
these studies reflected the timepoint at which the adaptation
(increased placental calcium transport) was previously observed
(19, 22) but analyses earlier in gestation would offer further
insight into the timing of these changes.With regards to the trend
for reduced gene expression near term in P0 vs. WTL, altered
gene expression may not be the driving force in these placentas;
instead post-translational processing of binding proteins and/or
receptors (e.g., TRPV6) may underlie the adaptive changes in
calcium transfer. Mechanisms will need to be explored further

in future experiments. Whilst the discrepancy in S100g gene and
calbindin-D9K protein expression at E18.5 will need elucidating,
calbindin-D9K does appear to be important in the previously
reported changes in placental calcium transport in mouse models
of FGR (19, 22).

Increased Sgk1 expression in P0 vs. WT warrants further
investigation to assess whether SGK1, and its activated
phosphorylated isoform, play an important role in these
adaptive responses by the placenta. SGK1 influences intracellular
calcium by up-regulating store operated calcium entry (SOCE),
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increasing calcium release-activated calcium channel (CRAC)
current, and increasing the activity of TRPV5 and 6 (46).
Expression and activation of SGK1 is enhanced by higher
levels of cytosolic calcium thus SGK1 has been suggested as an
amplifier of calcium entry; influx of extracellular calcium through
SOCE combined with activation of calcium/calmodulin protein
kinase signaling up-regulates levels and activity of SGK1 (42–
44). Activation of SGK1 also occurs through other mechanisms,
including through the phosphatidylinositol-3-kinase pathway
that when stimulated by growth factors activates the mechanistic
target of rapamycin complex 2 triggering the phosphorylation
of 3-phosphoinositide-dependent kinase PDK1 and subsequent
phosphorylation of SGK1 (45, 51). Identifying extracellular
regulators stimulating SGK1 intracellular activity may provide
potential candidate signals initiating placental adaptations.

Placental Acp5 gene expression was lower in the lightest
compared to the heaviest placentas and in P0 fetuses compared
to their WTLs. In contrast, TRAP5 protein expression (encoded
by Acp5) was not different between the lightest and heaviest
placentas, and significantly higher in placentas of P0 compared
to WTLs. Previous studies in animal models indicate Acp5 has
an essential role in modeling, remodeling and mineralization
of developing bone and cartilage (52), as well as participating
in iron transfer from mother to fetus (53). Hansson et al. (54)
demonstrated increased placental Acp5 gene expression in pre-
eclampsia compared to normal pregnancy and suggested that
this increase might be a compensatory mechanism for poor
placentation to prevent fetal malnutrition (54). The elevated
expression of TRAP5 protein in placentas of P0 vs. WTL fetuses,
which may be as a result of increased gene expression earlier
in gestation leading to increased protein translation, supports
a regulatory role for TRAP5 in this mouse model of FGR; the
added complexity of the opposing direction of change in gene
and protein expression, suggest post-translational modification
is very important.

For all of the studies described herein, there was an unequal
distribution of fetal sex when considering the placental samples
analyzed. For the studies comparing lightest vs. heaviest placentas
in WT mice, there was a bias toward females having the lightest
placentas and males having the heaviest placentas. Whilst we
have previously reported that adaptive changes in maternofetal

calcium transport do not appear to be influenced by fetal sex
(22), future studies investigating the mechanisms underpinning
these adaptations should also consider sex-dependent effects.
Likewise, fetal sex should be taken into account when assessing
mechanisms underpinning placental adaptations in P0 vs. WTL
mice.

In summary this study has shown differences in the
mechanisms underlying adaptations in placental calcium
transport in normal pregnancy vs. that affected by growth
restriction. Our data suggest that calcium binding proteins in
normal mouse pregnancy, and PTHrP and Acp5/TRAP in FGR
(P0) pregnancy, are candidate adaptation regulatory proteins
worthy of further investigation.
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