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Background: Obesity is a risk factor for diseases including type 2 diabetes mellitus

(T2DM) and cardiovascular disorders. Diabetes itself contributes to cardiac damage.

Thus, studying cardiovascular events and establishing therapeutic intervention in the

period of type T2DM onset and manifestation are of highest importance. Mitochondrial

dysfunction is one of the pathophysiological mechanisms leading to impaired cardiac

function.

Methods: An adequate animal model for studying pathophysiology of T2DM is the

New Zealand Obese (NZO) mouse. These mice were maintained on a high-fat diet

(HFD) without carbohydrates for 13 weeks followed by 4 week HFD with carbohydrates.

NZO mice developed severe obesity and only male mice developed manifest T2DM. We

determined cardiac phenotypes and mitochondrial function as well as cardiomyocyte

signaling in this model.

Results: The development of an obese phenotype and T2DM in male mice was

accompanied by an impaired systolic function as judged by echocardiography and

MyH6/7 expression. Moreover, the mitochondrial function only in male NZO hearts was

significantly reduced and ERK1/2 and AMPK protein levels were altered.

Conclusions: This is the first report demonstrating that the cardiac phenotype in male

diabetic NZO mice is associated with impaired cardiac energy function and signaling

events.

Keywords: NZO, heart, obesity, mitochondrial function, echocardiography, systolic function

INTRODUCTION

Diabetes as Cardiovascular Risk Factor
Obesity and its related diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular
diseases (CVD), developed through increasing caloric intake and/or reduced energy expenditure,
are a present critical global health problem. The number of T2DM patients is expanding every
year (1). Diabetes is characterized by high blood glucose, either because the body cannot produce
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enough insulin or is unable to use it effectively, consequently
leading to insulin resistance or deficiency (2). It has been
shown that T2DM is more common in men than in women
(3). Moreover, men develop diabetes at a lower body mass
index and are predestined to be more insulin-resistant (4). A
recent review by Harreiter and Kautzky-Willer pointed out the
importance of the investigation of sex differences in prevention
of T2DM (5). The authors addressed that trials investigating
lifestyle or pharmacological intervention in males and females
at risk were promising so far, but that there is more need to
analyze biological and psychosocial differences among women
and men. In addition, T2DM increases the risk of CVD, known
to be a major cause of morbidity and mortality in diabetic men
and women (6–8).

Sex Differences in Heart Metabolism
Interestingly, marked sex differences of healthy individuals
regarding mitochondrial function in the heart have been
reported. In fact, female rat heart mitochondria produce less
reactive oxygen species and had a greater antioxidant capacity
than those from males (9), resulting in a better protection of
heart function in females (10). Cardiac metabolic response is
regulated by several intracellular signaling pathways, including
the mitogen activated protein kinase (MAPK) signaling. One
class of the MAPKs is the extracellular signal regulated
kinases 1/2 (ERK1/2), mediating heart development, metabolism
and function. Cumulative evidence confirms that MAPKs
influence cardiac compensation and decompensation partly
through mitochondria interactions (11). Previous MAPKs
studies demonstrated a direct interaction with the outer
mitochondrial membrane, translocation into mitochondria (12–
14) and indirect effects between these kinases and mitochondria
(15–20). Additionally, a key player in the modulation of
metabolism is AMP-activated protein kinase (AMPK) (21).
Recently, AMPK was shown to be required for the fragmentation
of mitochondria and is sufficient to induce mitochondrial
fission (22). Two other very important functionally distinct
cardiac proteins, responsible for contractility, are the myosin
heavy chain isoforms alpha (Myh6) and beta (Myh7). Relative
expression levels are altered in cardiac disease (23). However,
there is a gap regarding our knowledge on sex dimorphism
in diabetes associated cardiovascular research (24). In addition,
most preclinical research is done using male animals or cells with
undefined/unmentioned sex (25, 26).

The New Zealand Obese Mouse as a Model
for Diabetes
The New Zealand Obese (NZO) mouse is an appropriate animal
model to examine sex differences in diabetes and related cardiac
function. The NZOmouse represents a model of morbid obesity,
insulin resistance, hypertension, and hypercholesterolemia which
resembles the human metabolic syndrome (27). Obesity in the
NZO mouse is the consequence of a moderately increased food
intake and reduced energy expenditure. It is accompanied by
a marked hyperglycemia and hyperinsulinemia at earlier age,
followed by associated beta-cell destruction (27). Phenotypically,
overt diabetes in NZO mice is defined by a threshold of

16.6mM plasma glucose (27). Interestingly, NZO mice possess
sex-dependent characteristics. While female and male NZOmice
become obese on a high-fat diet, females are protected from
becoming diabetic. In males instead, the diabetes prevalence is
usually 50–75% at the age of 22 weeks (28, 29). However, it
has been shown that female NZO mice can develop diabetes
on a high-fat-diet (HFD) (30). Surprisingly, cardiovascular
parameters considering heart functions in the NZO mice have
not yet been investigated in relation to metabolic hear function.

In this study, we investigated whether changes in the diabetic
state are associated with sex, and this correlates with changes in
cardiac mitochondrial function or expression of metabolically-
associated proteins and contractile proteins and cardiac function
in the NZO mouse.

MATERIALS AND METHODS

Experimental Design
Mice were kept in agreement with the National Institutes of
Health guidelines for care and use of laboratory animals. All
animal procedures were performed in accordance with the
guidelines of the German Law on the Protection of Animals
and were approved by the local authorities (Landesamt für
Gesundheit und Soziales, Berlin, Germany).

Male and female NZO/HIBomDife (German Institute of
Human Nutrition Potsdam-Rehbruecke [DIfE], Nuthetal,
Germany) and C57BL/6JRj (B6, control group) mice from
Janvier were housed under identical conditions (12 light/dark
cycle, 21◦C room temperature and free access to food and
water). The number of animals is indicated in the legends of
the figures. At 5 weeks of age, mice were placed on a HFD with
a low carbohydrate content (Altromin, custom made by the
manufacturer, Lage, Germany: C 1057-89; fat: 30.5%, protein:
32%, carbohydrates: <0.1%) and at an age of 18 weeks, the
animals obtained a high carbohydrate diet (HCD) (Altromin,
custom made by the manufacturer: C 1090-60; fat: 35%, protein:
21.4%, carbohydrates: 29%) for 4 weeks. Body weight and blood
glucose levels were weekly controlled. Body weight was measured
with an electronic scale and blood glucose was determined with
a Contour XT glucose meter (Bayer Health Care, Leverkusen,
Germany). Blood samples were collected before sacrificing the
mice and were stored after centrifugation at −80◦C. For the
oxygen consumption experiment hearts were cut longitudinally
and fiber bundles were isolated. The remaining heart tissue was
frozen in liquid nitrogen and stored at −80◦C until protein or
mRNA isolation.

Serum Insulin- and Proinsulin-ELISA
The concentration of insulin and proinsulin in murine serum
was determined by using the Mouse High Range Insulin
ELISA (ALPCO, Salem, USA) and carried out according to the
manufacturer’s instructions.

Mitochondrial Respiration Function
The mitochondrial function of heart fibers was measured by
oxygraph chambers and Clarke electrodes from Hansatech. A
heart-fiber bundle was removed and fibrillated to form individual
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fibers that were still connected at the ends. These fibers were
permeabilized under stirring for 30min in saponin buffer
and then washed twice for 10min. From the permeabilized
fibers 2 × 2mm pieces (about 3–5mg wet weight) were
separated and placed in 1ml potassium chloride buffer in the
oxygraph chambers. The chambers were closed airtight and
the basal respiration of the fibers was determined. Thereafter,
the oxygen consumption was recorded and presented as a
graph during adding the following substrates and metabolites
in an interval of about 2 min: 2.5mM adenosine diphosphate
(ADP), 4µM rotenone, 10mM succinate, 8µM cytochrome c,
4µM Antimycin A, 0.5mM tetramethyl-p-phenylenediamine
(TMPD), and 7.5mM sodium azide. At the end, the respiratory
control index (RCI), the ratio of maximum respiration (state 3)
and respiration in the absence of ADP (state 4), was determined
by the software program.

RNA and Protein Analysis
The mRNA isolation from 5mg heart tissue was done with

the Dynabeads
TM

mRNA Purification Kit (Thermo Fisher
Scientific # 61006). According to the manufacturer’s instructions
mRNA samples were reverse transcribed with the SensiFAST
cDNA Synthesis Kit (Bioline # BIO-65053) and quantitative
real time-PCR reactions in the presence of Dream-Taq-Hot
Start- DNA Polymerase (Thermo Fisher Scientific # EP1703)
and SYBR Green (Life Sciences) was performed. Following
murine primers were used: myosine heavy chain 6 (Myh6)
(fwd 5′-AGAAGCCCAGCGCTCCCTCA-3′, rev 5′- TGCCTC
GGGTCAGCTGGGAA-3′, myosine heavy chain 7 (Myh7) (fwd
5′-TTCCTTACTTGCTACCCTC-3′, rev 5′-CTTCTCAGACTT
CCGCAG-3′). Relative abundance of mRNA was calculated after
normalization to ribosomal protein L13a (Rpl13a) reference
(primer sequence: fwd 5′-GTTCGGCTGAAGCCTACCAG-3′,
rev 5′-TTCCGTAACCTCAAGATCTGCT-3′.

Protein isolation of approximately 10mg of tissue was
performed in 500 µl of RIPA buffer (including protease
inhibitors) using ceramic spheres in a homogenizer (FastPrep-
24, MP Biomedicals). The concentration of the protein samples
was determined by a BCA Protein Assay Kit (Pierce #
23225). Lysates were analyzed by immunoblotting using primary
antibodies raised against phosphor-p44/42 MAPK (pERK) (Cell
Signaling #4370), p44/42 MAPK (ERK1/2) (Cell Signaling
#4695), phospho-AMPKα (Thr172) (Cell Signaling #2535),
AMPKα (Cell Signaling #2532), Myh6 (K-13) (Santa Cruz
#168676), Myh7 (Santa Cruz #71575), α-tubulin (Sigma #T9026),
and secondary antibodies, such as donkey anti-mouse IgG,
donkey anti-rabbit-IgG or donkey anti-goat-IgG antibodies
(Jackson Immuno Research Laboratories). For the investigation
of mitochondrial respiration chain complexes a total OXPHOS
Rodent WB Antibody Cocktail (abcam #110413) was taken.
For detection, enhanced chemiluminescent reagents (ECL kit;
Thermo Scientific) and a BioRad Chemidoc MP System were
used.

Echocardiography
Echocardiographic analysis regarding cardiac morphology
and function was carried out at the age of 22 weeks.

Echocardiography was performed as previously described, with
the exception that the isofluran dose needed to be adapted to
the higher weight of animals (3–4%) (31, 32). Echocardiography
was performed using a MX400 ultra-high frequency linear
array transducer (18–38 MHz, center transmit: 30 MHz, axial
resolution: 50µm) together with a Vevo R© 3100 high-resolution
Imaging System (both FUJIFILM VisualSonics, Toronto, ON,
Canada). M-Mode images of the maximum dimension of the
LV in parasternal long axis view were used to analyze cardiac
dimensions and calculate LV mass (LVM). B-Mode pictures
were obtained in order to analyze cardiac volumes and LV
function parameters. All data sets were acquired prospectively
and analyzed for this study in a retrospective manner.

Statistics
All analyses were performed using GraphPad Prism 7. Results
represent mean values ± standard deviation (SD). Unpaired t-
test or Mann-Whitney test and for comparison of the multiple
groups, two-way ANOVA followed by Tukey-B-Posthoc-test was
used. Differences with p ≤ 0.05 were considered statistically
significant.

RESULTS

Manifestation of Obesity and Diabetes
All mice received HFD without carbohydrates for 13 weeks
followed by 4 weeks HCD.Male and female NZOmice developed
severe obesity until the end of the study compared to the B6-
control group (Figure 1A). Blood glucose levels of NZO males
and females were also increased in comparison to B6 mice, but
only if mice were treated for 4 weeks with HCD (Figure 1B).
Comparing the final body weight of male and female NZO with
the corresponding B6 at 22 weeks, body weight of both sexes
was significantly increased (Figure 1C). However, exclusively the
male NZO mice showed significantly higher blood glucose levels
compared to their B6 counterparts (Figure 1D). Development of
T2DM in male NZOmice was accompanied by significant higher
serum proinsulin (Figure 1E) and serum insulin levels compared
to B6 controls, while values of female NZO mice did not reach
statistical significance (Figure 1F).

Characterization of Cardiac Phenotype by
Echocardiography
Echocardiography was used to phenotype the cardiac
performance of HCD-fed NZO mice and B6 controls. First,
we determined the cardiac phenotype, i.e., heart rate, LV
wall thicknesses, and LVM, and measures of systolic cardiac
performance (Table 1, first part). NZO males had a dramatically
lowered heart rate when compared to B6 control males. The
LV anterior and posterior walls were significantly thicker in
NZO males than in B6 males. In female NZO mice exclusively
the LV posterior wall demonstrated moderately increased
wall thickening compared to female B6 mice. The LVM was
significantly increased in both NZO sexes in comparison to
corresponding B6 mice, and was also significantly increased in
NZO males when compared to NZO females, which was not
the case when looking at B6 males compared to B6 females.

Frontiers in Endocrinology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 732

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


John et al. Hear and NZO Mice

FIGURE 1 | Body weight, glucose and insulin in male and female NZO and B6 mice. Body weight (A) and blood glucose (B) course during the whole study. Body

weight (C), blood glucose (D), serum proinsulin (E) and serum insulin (F) at the end of the study (week 22). Mean ± SD. Two-way ANOVA with Tukey’s posthoc test,

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; B6 male, n = 10–12; NZO male, n = 10–18; B6 female, n = 10–12; NZO female, n = 10–19.

The inner diameters of the LV were significantly increased in
both NZO sexes in comparison to corresponding B6 mice. No
differences were observed, when comparing ESV and EDV
of NZO mice with their sex-matched B6-controls. NZO mice
of both sexes tended to have greater ESVs but smaller EDVs
compared to sex-matched B6 controls, however reaching no
statistical significance (Table 1, second part). In both genotypes,
female mice showed lower absolute ESV and EDV compared
to corresponding male controls. SV and EF were significantly
decreased in both sexes of NZO mice when compared to
sex-matched B6 controls.

Changes of Cardiac Contractile Proteins
Next, we investigated expression levels of contractile proteins
Myh6 and Myh7. Male NZO mice showed a tendency to a
lower Myh6 mRNA and protein expression level compared to
B6 males. Female NZO mice had no changes in the Myh6
mRNA expression, while theMyh6 protein levels also have a
tendency to be lower compared to B6 females (Figures 2A,B).
In contrast, in male NZO mice, the Myh7 mRNA expression
was significantly increased compared to female NZO and male
B6 mice (Figures 2C,D). However, Myh7 mRNA and protein
levels were not elevated in female NZO mice, compared to the
B6 controls (Figures 2C,D).

Mitochondrial Function
Since the major goal of our study was to investigate the
influence of a sex-related diabetic phenotype on the energy
function of the heart, we next investigated whether changes in
mitochondrial function or expression of metabolism-associated
proteins in the heart explain the observed sex differences in
cardiac phenotype. After sacrificing the mice, single heart fibers
were isolated and mitochondrial function was measured. The
RCI was significantly reduced in NZO males vs. B6 controls.
State 3 was significantly decreased, whereas state 4 showed
no changes in male NZO mice compared to B6 males. In
contrast to male NZOs, the mitochondrial respiration of female
NZO mice was not significantly changed in comparison to B6
mice (Figure 3A). Furthermore, the relative protein expression
of all mitochondrial respiration chain complexes, excluding
complex IV, seemed to be reduced in NZO males vs. B6 males,
although no significant differences were found. In female NZO
mice no protein expression change of the complexes was seen
(Figure 3B). In general, the protein expression levels of most
mitochondrial complexes had a tendency to be higher in females
compared to the corresponding males.

In addition, the amount of the phosphorylated ERK1/2 was
significantly elevated in male NZO mice compared to male
B6 animals (Figure 3C). Inversely, the phosphorylated AMPK
protein expression was significantly lower in male NZO mice
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TABLE 1 | Echocardiographic-assessed characterization of cardiac phenotypes after 22 weeks.

B6 male NZO male B6 female NZO female

PHENOTYPE

n-number 12 18 12 19

Heart rate, bmp 528.1 ± 45.3 450.9 ± 83.1** 494.4 ± 37.7 495.4 ± 56.9

LVAW, d, mm 0.67 ± 0.09 0.75 ± 0.07* 0.66 ± 0.09 0.70 ± 0.07

LVPW, d, mm 0.60 ± 0.03 0.79 ± 0.07**** 0.55 ± 0.08 0.73 ± 0.08****

LVID, d, mm 2.77 ± 0.26 4.20 ± 0.27**** 2.52 ± 0.21 3.95 ± 0.32****

LVM, mg 68.98 ± 11.18 96.88 ± 14.87**** 55.93 ± 11.67 78.81 ± 11.04****,###

FUNCTION

ESV, µl 28.96 ± 7.40 32.78 ± 7.73 22.6 ± 3.44 25.88 ± 9.06#

EDV, µl 75.10 ± 17.63 67.35 ± 10.62 59.77 ± 8.55 53.72 ± 8.15##

SV, µl 46.13 ± 11.00 34.57 ± 7.63*** 37.18 ± 6.10 27.84 ± 5.15**,#

EF, % 61.46 ± 3.42 51.29 ± 8.60** 62.07 ± 3.52 52.82 ± 11.36*

Mean ± SD, Two-way ANOVA with Tukey’s posthoc test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. *, B6 vs. NZO; #, NZO male vs. NZO female; LVAW, d, left ventricular

anterior wall (diastole); LVPW, d, left ventricular posterior wall (diastole); LVID, d, left ventricular inner diameter (diastole); LVM, left ventricular mass; BW, body weight; FS, fractional

shortening; EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke volume; EF, ejection fraction.

than in B6 male controls and as well in comparison to female
NZO mice (Figure 3D). No significant changes were seen in
female NZO mice regarding the protein expression levels of
phosphorylated ERK1/2 or AMPK (Figures 3C,D).

DISCUSSION

Here we were able to show that the development of an diabetic
phenotype in male NZO mice was accompanied by changes
in the heart function, as judged by the echocardiography, by
changes in the Myh6/7 expression and moreover by impairment
of mitochondrial function. A reduced state 3 respiration and RCI
was accompanied by significantly reduced ERK1/2 and AMPK
protein levels.

Male and female NZO mice developed a severe obesity when
they were maintained on a HFD until the age of 22 weeks
which is in agreement with the study of Kluge et al. (33).
After the feeding of carbohydrates from the 18th week of age
only male NZO mice revealed a manifest T2DM status whereas
female NZO mice seem to be protected from T2DM. Male NZO
mice generated a marked hyperglycemia and hyperinsulinemia
reflecting pronounced insulin resistance which is consistent with
data from Joost and Schürmann (27). In females, the final blood
glucose and the associated serum proinsulin as well as serum
insulin levels were significantly lower than inmale NZOmice and
there were no changes to the B6-control group which indicates no
overt diabetes development (Figure 1). Interestingly, a previous
study showed that an ovariectomy of NZO females modulates
diabetic insulin resistance and produced a phenotype which was
comparable with that of NZO males (34).

Nevertheless, until now it is not known how this effect
influences the onset and progression of cardiovascular events.
To our knowledge, we describe here for the first time the
cardiovascular damage events in relation to metabolic functions
in the NZO mouse model in a sex-sensitive manner. In general
a decrease in insulin sensitivity leads to less glucose uptake
which perhaps can exert feedback on a molecular regulation

leading to an increase in mitochondrial dysfunction in the
heart (35). Today, no extensive knowledge exists about the
energy metabolism in the diabetic human heart, but it is
known that the energy supply through glucose in diabetic
hearts is disturbed (36). The influence of sex regarding
glucose utilization in obese and diabetic patients seems to be
pronounced (37). The exact underlying mechanisms, impairing
cardiac function and promoting cardiomyocyte injury, have not
yet been demonstrated. Besides lipotoxicity, oxidative stress,
intramyocardial inflammation and altered insulin and calcium
signaling, mitochondrial dysfunction plays an important role
(38). Moreover, hyperlipidemia has been shown to increase
stress on mitochondria as they attempt to generate sufficient
ATP, leading to increased ROS production (39). In fact, all
this leads to further complications in the diabetic heart (40,
41). In our study, the mitochondrial respiration, represented
by RCI, was significantly lower in male NZOs than in females
where no significant changes were documented compared
to the control group. One explanation for the decreased
mitochondrial respiration could be that the mitochondrial
respiration chain complexes are less expressed in the male
NZO hearts (Figure 3, part one). Decreased expression level
of mitochondrial chain complexes could either be due to a
reduced number of mitochondria per cardiomyocyte or a low
expression level of the proteins per mitochondrial unit. We could
not study mitochondrial numbers but found a trend toward
a lower expression of respiratory proteins in the male NZOs.
Interestingly, investigations in other obesity mouse models
related to T2DM, such as the ob/ob and the db/db mice, showed
likewise decreased cardiac mitochondrial respiration capacity
and lower expression of respiration chain complexes (42, 43).

Mitochondrial dysfunction activates various signaling
pathways so we tested the phosphorylation level of ERK1/2 and
AMPK two markers of mitochondrial metabolism. In our study,
the level of pERK was significantly upregulated only in male
NZO mice, but there were no differences in female NZO mice
vs. the control group (Figure 3C). The activation of ERK1/2 was
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FIGURE 2 | Protein and mRNA expression differences of cardiac myosine heavy chain isoforms 6 and 7. Myh6 mRNA expression level (A), Myh6 protein expression

(B), Myh7 mRNA expression (C) and Myh7 protein expression (D). mRNA was normalized to Rpl13a and as protein expression reference α-tubulin was used. Mean ±

SD. Two-way ANOVA with Tukey’s posthoc test, *p < 0.05, **p < 0.01; B6 male: n = 5–10, NZO male: n = 7–10, B6 female: n = 5–10, NZO female: n = 7–10.

FIGURE 3 | Changes in mitochondrial function and signaling pathways. Mitochondrial respiration (A) and protein levels of mitochondrial respiration chain complexes

(B), phosphorylated ERK1/2 (C) and phosphorylated AMPK (D). α-tubulin was used as reference protein. Mean ± SD. Two-way ANOVA with Tukey’s posthoc test,

*p < 0.05, **p < 0.01; B6 male: n = 5, NZO male: n = 7, B6 female: n = 5, NZO female: n = 7.
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also shown in other studies with diabetic hearts (44) and it is
also known that activated ERK1/2 contributes to apoptosis in
cardiomyocytes under diabetic conditions (45, 46). In addition,
it was reported that mitochondrial dysfunction was associated
with increased activation and protein expression of ERK1/2
and an attenuated mitochondrial respiration and, therefore,
ATP production, wherein a decreased complex I activity and
substrate oxidation was observed as well (47, 48). A recent study
with diabetic db/db mice showed that levels of phosphorylated
ERK1/2 were increased and an inhibition of ERK1/2 can prevent
cell death under diabetic conditions. The authors concluded a
pathological cardiac change in diabetes through ERK1/2 (49).
Therefore, these findings are a clear indication of a metabolic
failure and stress in diabetic male hearts.

In contrast, pAMPK was significantly decreased in male
NZO mice compared to the B6 controls and NZO females.
AMPK has been identified in the past as a central actor of
mitochondrial homeostasis. The cardiac AMPK downregulation
has been reported in some T2DM animal models as an
important intervention target (50, 51). Our data are supported
by a study in db/db mice in which a significant decrease of
AMPK phosphorylation in murine cardiac tissue was observed
(52), but oppositely in ob/ob mice an increased cardiac
AMPK phosphorylation was observed (53). If this cardiac
benefit is secondary to systemic improvement or to intrinsic
cardiomyocyte mechanisms remains to be clarified. Impaired
cardiac glucose uptake and utilization are evident in T2DM
male patients but not in females (54). Moreover, Boudina et al.
conclude that the reduced mitochondrial oxidative capacity may
contribute to cardiac dysfunction in their obese mouse model
(42, 43).

In the present study, we observed as well differences of
contractile proteins on sex-specific cardiac phenotypes. Two
important heart contractile proteins, Myh6 and Myh7 were
altered in the NZO mouse model (Figure 2). While the RNA-
and protein expression of Myh6 was decreased in the NZO
males, the Myh7 increased, demonstrating clear shift of these
two contraction actors. In the non-diabetic female NZO mice
there was no change or shift seen. Interestingly, in impaired
adult mouse hearts, a shift from the predominant Myh6 toward
Myh7 is often present (55). A study from Krenz et al., using
transgenic mice, which predominantly expressed Myh7 instead
of Myh6 in the heart, showed a significantly reduced cardiac
contractility (56). Further, in cardiac hypertrophy an elevation
of Myh7 can serve as an early and sensitive marker and
recently downregulation of Myh6 expression in human hearts
was observed, too (57–59). Transcriptional reprogramming of
MHC gene expression has been described to be characteristic
for the development of hypertrophy-induced heart failure. Hang
et al. have well described that resulting cardiac stress triggers
adult or stressed hearts to undergo a shift from α-MHC (Myh6)
to β-MHC expression (Myh7) by reactivation of chromatin
remodeling protein Brg1. Complexation of Brg1 with its partners
PARP and HDAC induce the pathological Myh6 to Myh7 switch
(60), that we could also show for the NZO males.

This suggests a cardiac dysfunction in male NZO mice (61–
63), which was further verified by echocardiography. Indeed, we

observed a lower heart rate in NZO male mice in comparison to
the control group, but no changes in female ones. In addition,
male NZO mice had significant decreased EF and dramatically
increased LVM, indicating more severe cardiac dysfunction
than in females. Surprisingly, although in female NZO mice,
only developing obesity, not manifest diabetes, we observed
a significantly reduced EF and enhanced LVM in comparison
with B6 controls, corresponding to a non-significant trend for
a decrease in mitochondrial function (Table 1). Nevertheless,
it seems that the diabetic status of the male NZO mice
aggravated the cardiac dysfunction in males. Males had a lower
mitochondrial respiration, increased ERK1/2 and decreased
AMPK activity as well as an increased Myh7 expression level in
the heart, which was not seen in female NZO mice.

In our NZO diabetic animal model, the cardiac function
was severely decreased, particularly in the male NZO mice.
It is possible that sex differences in mitochondrial function
potentially contribute to a better cardiac performance in
females. Thus, from T2DM protected female NZO mice show
a better mitochondrial respiration rate than diabetic male NZO
mice. Sex-specific changes in the related mitochondrial
function and cellular stress signaling let us propose a
functional impairment of the heart, which was confirmed
by echocardiography.
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