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Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ

in the body and secrete over 20 different hormones in response to cues from ingested

foods and changes in nutritional status. Not only do these hormones convey signals

from the gut to the brain via the gut-brain axis, they also act directly on metabolically

important peripheral targets in a highly concerted fashion to maintain energy balance

and glucose homeostasis. Gut-derived hormones released during fasting tend to be

orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted

postprandially generally promote satiety and facilitate glucose clearance. Although some

of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes

in the secretory profiles of various gut hormones, the therapeutic potential of the

enteroendocrine system as a viable target against metabolic diseases remain largely

underexploited, except for incretin-mimetics. This review provides a brief overview of

the physiological importance and highlights the therapeutic potential of the following gut

hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide

1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.

Keywords: GLP-1, PYY, serotonin, GIP-glucose-dependent insulinotropic peptide, oxyntomodulin, ghrelin,

enteroendocine cells, insulin-like peptide 5 (INSL5)

INTRODUCTION

Gut enteroendocrine cells (EECs) are specialized secretory cells that are sparsely scattered
throughout the mucosal epithelium of the gastrointestinal (GI) tract and which constitute the
largest endocrine organ by mass in the body (1). EECs have the capacity to “sample” luminal
contents on the apical membrane, and collectively release more than 20 different hormones
basolaterally in response to a variety of stimuli. With each having their own specialized functions,
EECs have been historically characterized by their hormonal profiles, such as glucagon-like peptide
1 (GLP-1)- and peptide YY (PYY)-secreting L-cells and serotonin (5-hydroxytryptamine, 5-HT)-
secreting enterochromaffin (EC) cells. It is now accepted that there are vast overlaps in the secretory
profiles of EECs (2) and the “one cell type, one hormone” dogma is widely rejected. Studies using
transgenic mice expressing fluorescent reporter proteins driven by promoters of different gut
hormones revealed that multiple hormones can be simultaneously expressed by an individual EEC
(3, 4) while high-resolution microscopy shows that these different hormones are packaged into
separate vesicles within the EEC (5–7). Expression of EEC hormones are also regionally distinct, as
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many gut hormones are confined to specific regions of
the gut, while a subset, such as 5-HT and somatostatin,
are present throughout the GI tract (8, 9). Enteroendocrine
hormones are implicated in a wide range of physiological
functions including gastrointestinal motility, appetite control,
and glucose homeostasis (10). Mounting evidence demonstrates
the importance of gut hormones in regulating peripheral
metabolism in health and disease and as a result, a myriad of
therapeutics against metabolic diseases that are based on the
actions of specific gut hormones are currently under clinical
development (11–13). As such, it is timely to review the
literature regarding the metabolic actions of these gut hormones:
serotonin, glucose-dependent insulinotropic peptide, glucagon-
like peptide-1 (GLP-1), oxyntomodulin, peptide YY (PYY) and
ghrelin. We also discuss the metabolic actions of insulin-like
peptide 5, a recently characterized gut hormone that are co-
secreted with GLP-1 and PYY.

SEROTONIN

Serotonin (5-HT) is produced by enterochromaffin (EC) cells,
which constitute ∼50% of the total EEC population and are
scattered throughout the length of the gut, from the stomach to
the distal colon (2, 8). Although better known for its actions in
the CNS, more than 90% of total body 5-HT is synthesized by
EC cells, the majority of this being stored in platelets (14, 15).
Tryptophan hydroxylase 1 (TPH1) is the rate-limiting enzyme of
5-HT synthesis in specific non-neuronal cells and its expression
in the gut mucosa is limited to EC cells. EC cells have the
capacity to sense a wide range of stimuli present in the gut
lumen such as glucose and fructose (16, 17), the medium chain
fatty acid, lauric acid (18), various tastants and olfactants (19),
and to secrete 5-HT in response. 5-HT secretion from EC cells
is also regulated by mechanical stimuli (20), and neural and
endocrine input such as adrenergic stimulation and GABA and
somatostatin inhibition (21). In addition, microbial metabolite
signals from the gut microbiome also augment colonic EC cell
density, 5-HT secretion and circulating 5-HT levels (22).

Although traditionally regarded as a regulator for gastric
motility (23–25) and more recently, a mediator in the
pathogenesis of inflammatory intestinal disorders (14, 26),
mounting evidence highlights gut-derived 5-HT as a modulator
of peripheral metabolism (27, 28). Under fasting conditions,
gut-derived 5-HT, together with glucagon, markedly increases
hepatic glucose output, a main driver of fasting euglycaemia,
by increasing hepatic gluconeogenesis and glycogenolysis (29),
while inhibiting glucose uptake and glycogen synthesis in the
liver (30). In conjunction, 5-HT promotes lipolysis within
white adipocytes to liberate free fatty acids (FFAs) and glycerol
(30) as key substrates for hepatic gluconeogenesis, and further
enhance hepatic glucose output. Moreover, gut-derived 5-HT
promotes energy conservation and weight gain by reducing
energy expenditure, via actions to attenuate thermogenesis in
brown adipose tissue (31) and inhibit the browning of white
adipose tissue (32).

Gut-derived 5-HT also attenuates the release of several
metabolically important blood glucose-lowering chemokines,

such as adiponectin from adipose tissue (33), and bone-
derived osteocalcin and lipocalin 2 (34–36), through inhibition
of osteoblast proliferation (37). Significantly elevated mucosal
TPH1 expression in obese humans (38, 39) and elevated
levels of circulating 5-HT in individuals with type 2 diabetes
(T2D) (40–42) or obesity (38) has been reported. Inhibition
of intestinal TPH1 in mice, through tissue-specific ablation
or pharmacological inhibition, conveys protection from high-
fat diet (HFD)-induced dyslipidaemia and glucose intolerance
(30–32). This confirms a causative role of elevated gut-derived
5-HT as a driver of metabolic dysfunction. TPH1 inhibition
also protects mice from diet-induced obesity (DIO) (31).
However, despite clear evidence that EC cell-derived 5-HT
negatively impacts energy balance and glucose homeostasis, the
underlying causes of elevated 5-HT levels with obesity and
T2D remain unclear. Likely drivers of increased circulating 5-
HT are increased density or glucose-sensitivity of duodenal
EC cells, as evidenced in obese human duodenal EC cells
(38), however molecular mechanisms underlying this are not
understood. Due to the heterogeneity in 5-HT receptors across
many tissues (43), targeting 5-HT receptor signaling pathways
may not be a viable therapeutic target for treatment of metabolic
disease.

GLUCOSE-DEPENDENT INSULINOTROPIC
PEPTIDE

Glucose-dependent Insulinotropic Peptide (GIP) is a 42-amino
acid peptide hormone produced by K cells located primarily in
the proximal small intestine (44). GIP is secreted in response
to nutrient stimulation and exerts its actions by binding to the
GIP receptor (GIPR) expressed by pancreatic islet cells (45),
adipocytes (46), bone cells (47), and the CNS (48). Circulating
GIP is rapidly degraded by dipeptidyl peptidase IV (DPP4), a
serine protease that is widely expressed throughout the body,
especially in endothelial cells (49). The insulinotropic effect
of GIP, together with GLP-1, accounts for more than 70% of
postprandial insulin secretion (50). GIP also increases insulin
biosynthesis (49), promotes β-cell proliferation and inhibits
β-cell apoptosis (51). The insulinotropic effects of GIP are
dramatically attenuated in T2D patients (52, 53), and this
is believed to be a major contributing factor to impaired
postprandial insulin secretion in these individuals. Moreover,
the insulinotropic potency of GIP is markedly reduced in non-
diabetic, first-degree relatives of T2D patients (54), suggesting
altered GIP signaling could be one of the many predisposing
factors for T2D later in life. While the mechanism underlying the
diminished insulin response to GIP in T2D has not yet been fully
elucidated, receptor downregulation (55) and desensitization
(56) have been suggested as potential causes. Although GIP
only stimulates glucagon secretion under hypo- and euglycaemic
conditions in healthy individuals (57), its glucagonotropic effect
is exaggerated in T2D patients during hyperglycaemia (58). This
further worsens glycaemic control in these patients, and in
combination with the reduced insulinotropic potency renders
GIP an undesirable therapeutic target for T2D treatment.
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The anabolic properties of GIP closely resemble those of
insulin, as it promotes lipid uptake and inhibits lipolysis in
adipocytes (59). Several studies have reported elevated GIP
levels in obese humans (60, 61). Elevated GIP levels and
duodenal K cell hyperplasia (62) have also been reported in
HFD-treated mice, while Gipr deficiency protects mice from
HFD-, leptin deficiency- or ovariectomy-induced weight gain
(63, 64). GIP also induces osteopontin expression in adipocytes
(65), an adipokine associated with obesity-related systemic low
grade inflammation (66, 67). Adipocyte-specific Gipr ablation
protects mice from HFD-induced insulin resistance and hepatic
steatosis, potentially by reducing circulating levels of pro-
inflammatory cytokines (68). However, the obesogenic effects
of GIP are only apparent during nutrient excess, as chow-
fed Gipr and Gip knockout animals are of similar weight as
their wild type counterparts (69). The role of GIP in energy
balance is further complicated by paradoxical findings that mice
overexpressing Gip were leaner than wild type controls, when
fed either a standard-chow or HFD (70). Such observation could
be attributed to the anti-apoptotic effect of GIP on osteoblasts
(71), as osteoblast-derived hormones such as osteocalcin and
lipocalcin 2 are implicated in regulating peripheral metabolism
and modulate food intake (36, 72). Furthermore, powerful
evidence has emerged to show that GIPR signaling can enhance
GLP-1-induced weight loss (11, 73).

GLUCAGON-LIKE PEPTIDE 1

Glucagon-like Peptide 1 (GLP-1) is an incretin hormone
secreted by enteroendocrine L cells upon ingestion of nutrients,
including glucose (74), and typically within 10–15min into the
postprandial period (75). GLP-1 is subjected to rapid degradation
by DPP4 (76) and acts via the GLP-1 receptor (GLP-1R)
expressed on a myriad of target tissues (75). GLP-1 plays a
key role in maintaining glucose homeostasis, as it markedly
increases glucose-stimulated insulin secretion (GSIS) (77) and
attenuates hepatic glucose production, independent of its effect
on pancreatic islets (78, 79). There is growing appreciation that
a considerable portion of the glucose-lowering effect of GLP-1
is underscored by its inhibitory effect on gastric motility (80–
83) and its glucagonostatic action (84, 85), which are preserved
in obese and T2D patients (86, 87). Unlike GIP, the potent
insulinotropic effect of GLP-1 is predominantly preserved in T2D
patients and, thus, has led to the development of GLP-1-based
therapies for preserving blood glucose control in individuals with
T2D.

In addition to its multifaceted glucose-lowering effect, GLP-
1 regulates energy balance and adiposity through its effects
on satiety and appetite. The acute anorectic effect of GLP-
1 is mediated by GLP-1R located on vagal afferents (88),
which relays the signal to appetite control centers, namely
the NTS in the brainstem, to reduce food intake (89)
(Figure 1). GLP-1R are also widely expressed in brainstem
and hypothalamic regions implicated in appetite control
(90). In humans, acute administration of pharmacological
doses of GLP-1 significantly induce satiety and reduce food intake

(91–93). Furthermore, exaggerated postprandial GLP-1 response
is believed to contribute to the increased satiety reported by
many gastric-bypass surgery patients (94–96). However, a recent
clinical study reported that the infusion of exendin 9-39, a GLP-
1R antagonist, did not affect ad libitum food intake in post-
RYGB patients, although the authors also reported a concomitant
increase in plasma levels of the anorexigenic hormone PYY
(discussed below), which might offset the orexigenic effect of
GLP-1R antagonism (94). The DPP4-resistant GLP-1R agonist,
liraglutide, is now in clinical use as a weight-loss therapeutic in
obese/overweight individuals (97). GLP-1 is also implicated in
regulating hedonic eating through GLP-1Rs located elsewhere
in the brainstem (98–100). Peripherally administered GLP-
1R agonists may also act directly on GLP-1R at other sites
in the brain, notably circumventricular organs and some
hypothalamic regions with fenestrated capillaries (101–103).
Indeed, Liraglutide can directly activate anorectic POMC/CART
neurons in rodents and thus, indirectly inhibit orexigenic
AgRP/NPY neurons in the arcuate nucleus (ARC) to reduce
food intake (101). As endogenous GLP-1 has a very short half-
life, these central actions are likely to be more relevant during
therapeutic use of DPP4-resistant GLP-1R analogs, or in post-
gastric bypass surgeries, in which GLP-1 “equivalent” levels, or
postprandial GLP-1, respectively, are augmented and sufficient to
elicit anorectic responses at these CNS targets.

OXYNTOMODULIN

Oxyntomodulin (OXM) is a 37-amino acid peptide that contains
the entire amino acid sequence of glucagon (104) and is co-
secreted with GLP-1 by enteroendocrine L cells at an equimolar
ratio (105). Although an endogenous OXM receptor has not
been identified, OXM exerts weak agonist activity on GLP-1R
(106) and the glucagon receptor (GCGR) (107). Nevertheless,
pharmacological levels of OXM (sufficient to activate GLP-
1R and GCGR) have shown anti-obesity effects in humans,
by significantly reducing appetite (108, 109) and increasing
energy expenditure (110). In addition, OXM treatment improved
glucose tolerance in high-fat fed mice by potentiating GSIS
(111), in a glucose-dependent manner (112), and has an anti-
apoptotic effect on β cells (112). OXM infusion significantly
reduced glycaemic excursion by augmenting GSIS in obese
subjects with or without T2D (113). Such observations prompted
the investigation into the potential metabolic benefits of GLP-
1R and GCGR co-activation (114, 115), which led to the
subsequent development of GLP-1R/GCGR co-agonists (73,
116) and, later, GIPR/GLP-1R/GCGR tri-agonists (117). These
agonists have shown impressive anti-obesity effects in preclinical
models and are currently being evaluated in phase 2 clinical
trials (118).

PEPTIDE YY

Peptide YY (PYY) is co-localized with GLP-1 in enteroendocrine
L cells (7, 119) and is co-released with GLP-1 postprandially,
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FIGURE 1 | The opposing effects of anorectic and orexigenic gut hormones on food intake. Depending on the luminal stimulation, EE cells release different hormones

basolaterally, which then diffuse across the lamina propria to act on their corresponding receptors expressed on nerves endings of vagal and enteric afferents. These

hormonal cues are subsequently relayed to the CNS to modulate food intake. EE, enteroendocrine; ENS, enteric nervous system; EPI, epithelial cells; INSL5,

insulin-like peptide 5; GLP-1, glucagon-like peptide 1; OXM, oxyntomodulin; PYY, peptide YY.

in proportion to caloric intake (119, 120). In contrast to GLP-
1, which is present in sufficient amount in the duodenum to
account for the immediate postprandial surge, PYY abundance
is very low in the upper gut and increases distally from the
ileum toward to colon (121, 122). Thus, postprandial PYY release
under normal physiological conditions is likely to be mediated
through paracrine and neural mechanisms (123). An exaggerated
postprandial PYY response is observed in gastric bypass patients,
and is likely attributed to the increased flow of nutrients into
the PYY-rich distal gut, which can directly stimulate L cells
(124, 125). Human PYY circulates in two active forms: PYY1−36

and PYY3−36, the latter being an active cleavage product of the
former by DPP4 (126). Both are keymediators of the “ileal brake,”
a local feedback mechanism triggered by the arrival of nutrients
in the ileum that inhibits gastric and pancreatic secretions and
proximal intestinal motility (127). The physiological effects of
PYY are mediated through a family of NPY receptors (termed
Y1, Y2, Y3, Y4, and Y5), which are differentially expressed
in a wide range of tissue including enterocytes, myenteric
and submucosal neurons and extrinsic primary afferent nerve
fibers (123).

Exogenous PYY administration significantly reduces food
intake in both obese and lean subjects (128, 129). Pyy-
deficient mice are hyperphagic and obese (130) while Pyy
overexpression protects mice against obesity induced by HFDs
or leptin deficiency (131). Although the “ileal brake” mechanism
contributes to its satiating effect (132), PYY3−36 induces satiety
primarily by targeting the hypothalamus. The role of PYY as
a satiety hormone has been debated, as several independent
research groups did not reproduce the anorectic effect in humans
reported in the original study by Batterham et al. (133).Moreover,
due to its nauseating effect at higher doses (134–136), PYY has
not been pursued as an anti-obesity target.

PYY infusion in humans had limited effects on plasma
glucose, insulin or glucagon levels on its own (128, 137), nor did
it affect glucose excursion and insulin levels during intravenous
(138) or oral glucose challenge (136). PYY has trophic effects
on pancreatic β cells (139), but such effects are believed to be
mediated by islet-derived, rather than gut-derived PYY (140).
However, as postprandial PYY levels after gastric bypass surgeries
are elevated several folds, it may be possible for gut-derived PYY
to exert protective effect on β cells in these settings.
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GHRELIN

Ghrelin is an orexigenic hormone secreted by X/A cells present
in the mucosa throughout the length of the GI tract, with the
highest abundance in the gastric fundus. Circulating ghrelin is
significantly elevated during fasting and attenuated upon meal
initiation. Post-translational acylation of the ghrelin peptide by
ghrelin O-acyl-transferase (GOAT) is crucial for its activity at
its endogenous receptor, growth hormone (GH) secretagogue
receptor (GHSR1a) (13). GHSR1a is highly expressed in the
CNS and is capable of stimulating GH release from the anterior
pituitary (13), and lower levels of expression are found in the
periphery including the small intestine and pancreatic islets
(141). Exogenous ghrelin reliably increases food intake in various
species, including humans (142). The orexigenic action of
ghrelin is mediated through direct stimulation of the orexigenic
AgRP/NPY neurons and concomitant inhibition of the anorectic
POMC/CART neurons in the ARC (143, 144). Weight loss
achieved through caloric restriction is accompanied by marked
elevation in circulating ghrelin (145), which increases feeding
drive and has therefore been ascribed as a natural defense
against weight loss. Ghrelin is also an anabolic hormone that
drives lipogenesis, independent of its effect on appetite (146).
Altogether, the orexigenic and anabolic properties of ghrelin
renders the ghrelin-GOAT-GHSR1a axis an attractive anti-
obesity target. Pharmacological blockade of GOAT or GHSR1a
have yielded promising results in preclinical models of obesity
(147–150). However, genetic disruption of different components
of the ghrelin-GOAT-GHSR1a axis in mice did not have the
anticipated anorectic or anti-obesity effects (151–154). Neither

Ghrelin nor GOAT deficiency rescue the obese and hyperphagic
phenotype of ob/ob mice (152, 155). As such, these data indicate
a dispensable role for ghrelin in the regulation of feeding and
bodyweight, and that the role of ghrelin in increasing feeding
drive may be limited to fasting conditions.

Contrary to its limited role in feeding behavior, ghrelin
is a key regulator of glucose homeostasis. Exogenous ghrelin
markedly increases blood glucose levels in humans, while genetic
ablation of ghrelin or its receptor improve glucose tolerance in
HFD-fed and ob/ob mice (152, 156). Ghrelin receptor signaling,
specifically in hypothalamic AgRP/NPY neurons, is a critical
countermeasure to prevent hypoglycaemia (143). Mice with
attenuated ghrelin signaling, due to GOAT-deficiency or ghrelin
cell ablation, have a blunted counter-regulatory GH response,
and display profound fasting-induced hypoglycaemia (157, 158).
Ghrelin protects against hypoglycaemia by triggering the direct
release of GH from the anterior pituitary (159), increasing
glucagon secretion (160) and inhibiting insulin secretion (161,
162). Ghrelin can protect mice from hypoglycaemia in the
absence of intact GCGR signaling (163). Thus, ghrelin may be
a potential treatment for acute insulin-induced hypoglycaemia in
type 1 diabetes patients.

INSULIN-LIKE PEPTIDE 5

Insulin-like peptide 5 (INSL-5) is predominantly expressed in the
brain and colonic L cells (164, 165), with immunohistochemical
staining and FACS analysis revealing that INSL-5 is
overwhelmingly co-expressed with GLP-1 (164). Belonging

FIGURE 2 | The peripheral metabolic effects of different gut hormones (5-HT, serotonin; EE, enteroendocrine; GIP, glucose-dependent insulinotropic hormone;

GLP-1, glucagon-like peptide 1; INSL5, insulin-like peptide 5; OXM, oxyntomodulin; PYY, peptide YY; GSIS, glucose-stimulated insulin secretion).
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to the Relaxin-peptide superfamily, INSL-5 has recently been
identified as anorexigenic hormone. Secreted INSL-5 acts on the
Relaxin/Insulin-like family peptide receptor 4 (RXFP4) (166),
which is expressed along the GI tract, the nodose ganglion and
the enteric nervous system (164), and inhibits adenylyl cyclase
activity (167). Intraperitoneal, but not intracerebroventricular,
administration of INSL-5 dose-dependently increases food
intake in mice, indicating the peptide may exert its orexigenic
effect by acting on peripheral targets, rather than via the CNS
(164).

Strong evidence supports the role of INSL-5 as an energy
sensor within the colon. Colonic Insl5 and plasma INSL-5
levels are elevated during fasting in calorie-restricted mice and
normalize upon refeeding (164). Increased colonic expression of
Isnl5 is also observed in germ-free (GF) mice, which lack a gut
microbiome (168) and microbial-produced colonic short-chain
fatty acids (SCFAs). As a consequence, GF mice have energy-
depleted colonocytes due to the absence of their SCFA energy
source, butyrate (169). Indeed, the introduction of a functional
gut microbiome, which increases luminal SCFA availability, leads
to reduced Insl5 expression, in a manner similar to refeeding
calorie-restricted mice (169). The role of INSL-5 as an energy
sensor within the colon is not restricted to the availability of
SCFAs, as Insl5 expression in GF mice can also be reduced
followingHFD consumption, in which unabsorbed lipids provide
an alternative energy source to colonocytes (168). As such, INSL-
5 may serve as an important link between the gut microbiota and
host in the context of metabolism.

The effect of INSL-5 on glucose homeostasis is less clear.
While it was initially reported that mice deficient in Insl5
were mildly glucose-intolerant (170), this appears to be age
(170) and strain-dependent (164, 168). Insl5−/− mice have
impaired intraperitoneal glucose tolerance but superior insulin
sensitivity and moderately reduced hepatic glucose production
(168). The impact of INSL-5 on glucose control in mice also
appears dependent on the mode of glucose delivery, as blood
glucose or insulin levels were similar in Insl5−/− mice compared
to WT following an oral glucose test (164, 168). As oral
but not intraperitoneal glucose administration stimulates the
parasympathetic aspects of the gut-brain axis to centrally mediate
hepatic glucose production (168), these findings suggest that
INSL-5 may influence glucose homeostasis via direct actions on

hepatocytes to influence hepatic gluconeogenesis. Studies on the

insulinotropic action of INSL-5 have produced conflicting results
(167, 171). As Insl5 is not expressed in pancreatic islets (164, 168),
any direct effects of endogenous INSL-5 on islets would appear
to occur in an endocrine fashion. Circulating INSL-5 levels are
estimated to be in the picomolar range (164, 172), which is several
orders of magnitude lower than the EC50 of INSL-5 on RXRP4
(166) and the supraphysiological concentrations used in the
majority of insulin secretion experiments may have contributed
to the conflicting results.

CONCLUDING REMARKS

Although enteroendocrine cells make up only 1% of the epithelial
cell population along the GI tract (9), the hormones they
secrete in response to one’s nutritional status have profound
impacts on peripheral metabolism (Figure 2). We have provided
an overview of the metabolic actions of some of these
gut hormones, including their role in maintaining glucose
homeostasis and energy balance. Under fasting conditions,
ghrelin and INSL5 levels are elevated to induce hunger and
to prevent hypoglycaemia. Conversely, during the postprandial
period, elevated GIP and GLP-1 levels augment postprandial
insulin secretion to prevent hyperglycaemia. In addition to
its insulinotropic effect, GLP-1 also act in concert with PYY
and OXM to induce satiety (Figure 1). Moreover, some of the
impressive metabolic gains from bariatric surgeries have been
ascribed to alterations in the secretory profile of gut hormones.
Altogether, the enteroendocrine system represents an attractive
therapeutic target for treatingmetabolic disease as the pleiotropic
effects of different gut hormones can be exploited individually.
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