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Excess adipose tissue is a hallmark of an overweight and/or obese state as

well as a primary risk factor for breast cancer development and progression. In

an overweight/obese state adipose tissue becomes dysfunctional due to rapid

hypertrophy, hyperplasia, and immune cell infiltration which is associated with

sustained low-grade inflammation originating from dysfunctional adipokine synthesis.

Evidence also supports the role of excess adipose tissue (overweight/obesity)

as a casual factor for the development of chemotherapeutic drug resistance.

Obesity-mediated effects/modifications may contribute to chemotherapeutic drug

resistance by altering drug pharmacokinetics, inducing chronic inflammation, as well

as altering tumor-associated adipocyte adipokine secretion. Adipocytes in the breast

tumor microenvironment enhance breast tumor cell survival and decrease the efficacy

of chemotherapeutic agents, resulting in chemotherapeutic resistance. A well-know

chemotherapeutic agent, doxorubicin, has shown to negatively impact adipose tissue

homeostasis, affecting adipose tissue/adipocyte functionality and storage. Here, it is

implied that doxorubicin disrupts adipose tissue homeostasis affecting the functionality of

adipose tissue/adipocytes. Although evidence on the effects of doxorubicin on adipose

tissue/adipocytes under obesogenic conditions are lacking, this narrative review explores

the potential role of obesity in breast cancer progression and treatment resistance

with inflammation as an underlying mechanism.

Keywords: obesity, adipose tissue, breast cancer, inflammation, treatment resistance

INTRODUCTION

Breast cancer continues to be a major health risk for women globally (1, 2). Lifestyle-related risk
factors including overweight and obesity (adiposity) have reached epidemic proportions (3, 4), and
are considered major risk factors for breast cancer development and progression (5).

Adipose tissue plays an important physiological role as a metabolically active storage
compartment and endocrine organ due to its diverse ability to secrete various adipokines (6).
Adipose tissue dysfunction in relation to obesity has been linked to accelerated growth and the
survival of breast cancer cells (7, 8).
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Adipose tissue dysfunction is mainly characterized by
inflammation which is primarilymediated by rapid adipose tissue
remodeling (hypertrophy and hyperplasia) (9). This results in
dysfunctional synthesis of several adipokines in coordination
with immune cell infiltration leading to a state of sustained
low-grade inflammation, which activates downstream signaling
pathways favoring cancer cell survival (increased proliferation
and decreased apoptosis) and hence contributing to cancer
progression and metastasis (10–12).

Furthermore, adipose tissue and/or adipocytes in the tumor
microenvironment serve as an exogenous energy source for the
survival of breast cancer cells (13, 14), especially since adipose
tissue is abundant in the breast (15). It is further proposed
that breast cancer cells modulate lipid metabolism by altering
the secretion of adipokines through adipocytes, resulting in the
release of free fatty acid (FFA) providing energy substrates, that
cancer cells need to sustain its high proliferation demand (13).

Pre-clinical evidence highlights obesity as a key player in
breast cancer chemotherapeutic drug resistance (16–19). This
finding bear’s great clinical significance for overweight/obese
breast cancer patients being treated with chemotherapeutic
agents such as doxorubicin (20), since, obese and normal weight
patients receive the same treatment regimen (21). Studies have
also confirmed this in showing that obesity is associated with
poor clinical outcomes in breast cancer patients treated with
chemotherapeutic agents including doxorubicin (22, 23).

Doxorubicin is a highly sensitive alkylating antineoplastic
agent used as a first line adjuvant regimen for breast cancer
patients (24), despite its high sensitivity as a chemotherapeutic
agent, it is also associated with a diverse range of cellular toxicities
and the development of treatment resistance (25). Additionally,
doxorubicin also negatively impacts on adipose tissue function
(26–29). This is of clinical significance since obesity is associated
with an increased risk for various types of cancers being treated
with doxorubicin (20). However, few studies exist in which the
effects of doxorubicin on adipose tissue in the context of obesity
and dysfunctional adipose tissue is investigated. We proposed
that using doxorubicin treatment on dysfunctional adipose tissue
and/or adipocytes, may exacerbate the negative effects of obesity
per se, and further dysregulate adipokine secretion.

It is imperative to explore and understand the cellular
mechanisms whereby obesity negatively affects chemotherapy
outcomes. Identifying molecular mechanisms in which
doxorubicin affect adipose tissue could contribute in describing
molecular mechanisms and identifying potential novel
pharmacologic targets and development of the appropriate
management protocols of doxorubicin related toxicities in
order to improve over-all survival of these cancer patients.
This narrative review will mainly focus on (i) the pathological
links between adiposity and breast cancer in the context of
inflammation as an underlying mechanism and, (ii) the role of
adiposity in breast cancer treatment (doxorubicin) resistance and
the possible mechanisms that contribute to treatment resistance.

ADIPOSITY AND BREAST CANCER

Globally, the increasing burden of breast cancer is considered the
second most prevalent cancer diagnosed amongst women (1, 30)

in both developed and developing countries (2, 31). Estimations
rank breast cancer as the fifth leading cause of death globally at
626,679 deaths per annum (1, 30).

Despite many efforts to reduce cancer mortality by
implementing lifestyle-related modifications, limited progress
has been made due to the very complicated interplay between
dietary behaviors and other lifestyle modifications (32, 33). This
is especially problematic since recent epidemiological studies
strongly suggested that adiposity (excess adipose tissue) is
considered a significant risk factor in many lifestyle-associated
cancers including breast cancer (34–37).

Adipose Tissue Is a Complex Functional
Tissue
Fundamentally, adipose tissue is a complex and important
endocrine organ impacting various physiological systems (38).
It functions as both an energy storage compartment and a
metabolic active endocrine organ (6), secreting various bioactive
substances (pro- and anti-inflammatory) known as adipokines
(39), including but not limited to leptin, adiponectin (Apn),
tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β),
interleukin-6 (IL-6), resistin and macrophage chemoattractant
protein-1 (MCP-1) (40, 41). Additionally, adipose tissue also
plays a functional role in steroid sex hormone and growth
factor production, and is integral in the development of
insulin resistance, hyperglycaemia and breast cancer (42, 43).
Epidemiological and experimental models support the role of
a dysregulation in adipokine synthesis and their actions in
relation to adiposity and adipose tissue dysfunction, to the
development of various disease states, including breast cancer
(5, 44–51).

Dysfunctional Adipose Tissue,
Inflammation, and Breast Cancer
Dysfunctional adipose tissue is characterized by low
grade inflammation, primarily mediated by rapid
hypertrophy/hyperplasia (adipose tissue remodeling) as well
as immune cell infiltration (52), resulting in the deregulated
synthesis of several adipokines i.e., IL-1β, IL-6, interleukin-8
(IL-8), resistin, leptin and MCP-1 (7, 8, 15, 53–55) (Figure 1).
These inflammatory mediators attract monocytes (differentiated
into macrophages) and T-lymphocytes, stimulating the synthesis
of both pro-inflammatory and pro-angiogenic factors (56),
collectively contributing to a chronic cycle that sustains an
inflammatory milieu. Increased IL-6 and leptin levels has been
shown to supress 5′ adenosine monophosphate-activated protein
kinase (AMPK), well-known for its’ anti-inflammatory effects
in adipose tissue (57). Additionally, adipose tissue-induced
inflammation also attenuates the suppression of nuclear factor
kappa B (NFκB), p65 phosphorylation and also induces M1 to
M2 macrophage phenotype switching. The latter is due to the
pro-inflammatory state in which saturated fatty acids bind to
the toll-like receptors on macrophages (58) and upregulate the
secretion of various pro-inflammatory mediators (IL-1β and
TNF-α) in adipose tissue (59, 60), creating a state of chronic
systemic low-grade inflammation.

Inflammation is a well-known predisposing risk factor for
tumorigenesis and a hallmark of cancer (61, 62). Pre-existing
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FIGURE 1 | The link between adipose-induced inflammation and cancer. Adipose tissue dysfunction is associated with sustained low-grade inflammation and it may

be linked to breast cancer development and progression. Several inflammatory mediators are implicated in tumor development and progression. Possibly as a result

of the sustained inflammatory signaling having downstream effects on major pathways involved in angiogenesis, cell-proliferation and apoptosis, thus having the ability

to influence carcinogenesis. Hypoxia in adipose tissue also induces the release of inflammatory mediators, thus further exacerbating inflammation. Apn, adiponectin;

IL-6, interleukin-6; HIF-1α, hypoxia inducible factor-1α; MAPK, mitogen activated protein kinase; NFκB, nuclear factor kappa B; PI3K/Akt, phosphoinositide-3-kinase;

STAT-3, Signal transducer and activator of transcription-3; TNF-α, tumor necrosis factor-α.

pro-inflammatory microenvironments are associated with an
increased risk for cancer, as in the case for inflammatory
breast cancer (63). Remarkable similarities exist between
dysfunctional adipose tissue and the tumor microenvironment
where infiltration of immune cells initiate the secretion of pro-
inflammatory molecules, thereby sustaining and promoting the
progression of both obesity and breast cancer (64) (Figure 1).

The complex pathophysiology that exists between adipose
tissue, inflammation and breast cancer involves inflammatory
mediators (i.e., IL-6 and TNF-α) that enhances tumor
progression and survival (65). Persistent inflammatory signaling
(intracellular NFκB) induces downstream effects on major
biochemical pathways affecting carcinogenesis (Figure 1). For
example, the mitogen activated protein kinase (MAPK) family
modulates cellular proliferation via the phosphoinositide-3-
kinase (PI3K/Akt), and the MAPK pathways which regulates
and affects mitogenic, anti-apoptotic as well as pro-angiogenic
effects (60). Moreover, IL-6 secreted by adipose tissue binds to
IL-6 receptor on breast cancer cells and activates the Janus family
of kinases that phosphorylates signal transducer and activator
of transcription-3 (STAT-3) (66). These events induce the
expression of pro-survival genes (i.e., bcl-x) (67), characteristic
of a pro-carcinogenic state promoting breast cancer cell survival
and proliferation (Figure 1).

Obesity-induced cytokine secretions are detected in local
adipose tissue and serum (68). These elevated circulating
cytokines (IL-6, IL-8, TNF-α, and vascular endothelial growth
factor; VEGF), exert effects at distant sites (69), that can
promote breast cancer development through upregulation of
inflammatory mediator synthesis and increased immune cell
infiltration as well as angiogenesis (70, 71). Additionally,
overweight/obese patients display a large number of crown-like-
structures (necrotic adipocytes surrounded by immune cells)
in mammary adipose tissue compared to normal weight breast
cancer patients. These crown-like structures are characteristic of
local inflammation (66, 72), and associated with an upregulation
of pro-inflammatory cytokines and aromatase expression (73).
Although the role of cytokines in obesity and breast cancer
development have been reported, the effects of other adipokines
should be considered as a possible relationship between obesity
and the development of breast cancer.

Leptin and adiponectin (Apn) have been antagonistically
implicated for their roles in inflammation and tumorigenesis
(Figure 1) (74). Leptin increases the synthesis of pro-
inflammatory cytokines and plays a role in breast cancer
development by increasing cellular proliferation and
angiogenesis (75). Elevated serum leptin levels and increased
expression of leptin receptors is also reported in breast cancer
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patients that is often associated with higher pathological grade
tumors and cancer treatment resistance (76, 77). Adiponectin
is decreased in obese patients, the metabolic syndrome as well
as in breast cancer patients thus lowering the risk of cancer
development due to an upregulation of apoptosis and its’
anti-inflammatory properties (78–81).

Excess adipose tissue (overweight/obesity) is also associated
with increased secretion of insulin-like growth factor-1 (IGF-1)
in breast, colon, lung and prostate cancer patients (82). The over
expression of insulin-like growth factor-1-receptor (IGF-1R) was
observed in both breast and pancreatic tumor tissue (83), where
inhibition of apoptosis and stimulation of cellular proliferation
via the PI3K-AKT-mTOR and RAS/Raf/MEK pathways are
implicated (83).

Additionally, loss of tumor suppressor function, increased cell
cycling and stimulation of oncogenes also promote inflammation
and exacerbates inflammatory related signaling pathways (69, 84,
85) (Figure 1). For example, the p53 gene mutation promotes
inflammation in the tumor microenvironment by inducing the
synthesis of IL-1, IL-6, TNF-α, and activates NFκB (86, 87),
which maintains inflammation in the tumor microenvironment
and enhances genomic instability (88, 89). In addition, p53 has
also been shown to induce the PI3k/Akt/mTOR pathway, which
can induce the synthesis of pro-inflammatory mediators (90). As
a result of rapid hypertrophy and hyperplasia (91) (Figure 1),
hypoxia inducible factor-1α (HIF-1α) is upregulated (92), which
binds to transcription factors on VEGF and angiopoietin-2 target
genes, stimulating angiogenesis in the microenvironment, which
is also known to exacerbate local inflammation (92).

Others report that obesity-induced inflammation may also
play a role in breast cancer tumor invasion and metastasis. Here,
epithelial mesenchymal transition (EMT) can be induced by
various pro-inflammatory markers, i.e., IL-6, IL-8, TNF-α, and
CCL2 derived from cancer-associated adipocytes (93–95).

It is evident from these findings that obesity is a factor
casual in the development of breast cancer, involving molecular
mechanisms in relation to inflammation, immune cell infiltration
and adipokine dysfunction. Supporting evidence includes obesity
as a negative prognostic factor for breast cancer independent of
menopausal status, tumor stage, and tumor hormone–binding
characteristics (96, 97).

BREAST CANCER TREATMENT

Chemotherapy still remains one of the conventional treatment
options in addition to radiotherapy and surgery, which
significantly improves cancer patients’ overall-survival (98, 99).
Several chemotherapeutic drug classes exist which are associated
with beneficial clinical outcomes for cancer patients (100).

Doxorubicin, also known as Adriamycin or hydroxyl
daunorubicin (101), is classified as an anthracycline antibiotic,
exhibiting broad-spectrum anti-neoplastic activity (24, 101), and
is used to treat a range of malignancies of the breast (used as
first line adjuvant chemotherapeutic agent), bladder, stomach,
lung, ovaries, thyroid as well as multiple myeloma, Hodgkin- and
non-Hodgkin’s lymphoma, due to poor tumor selectivity (102).

Doxorubicin interacts with deoxyribonucleic acid (DNA)
by intercalation, thereby inhibiting macromolecule biosynthesis

(103). This inhibits topoisomerase II (DNA repair function),
which relaxes DNA transcription supercoils (104, 105). Secondly,
doxorubicin generates reactive oxygen species (ROS) damaging
cell membranes, DNA and proteins (103, 104) through
stimulation of p53-DNA binding; subsequently it initiates
caspase signaling and DNA cross-linking (106). Doxorubicin
treatment efficacy is often associated with adverse side effects
such as nephrotoxicity, hepatotoxicity, sarcopenia, cardiotoxicity
(102), and changes in body composition (decreased body weight
and lipoatrophy, discussed in section Doxorubicin Toxicity on
Adipose Tissue/Adipocytes) (107, 108). These effects contribute
toward recurrence as well as metastasis in breast cancer patients,
making doxorubicin treatment protocols ineffective and prone to
develop treatment resistance (109, 110).

Obesity and Treatment Resistance
Experimental animal models showed that diet-induced obesity
increases tumor development, progression and metastasis
with decreased chemotherapeutic efficacy (7, 8, 55, 111–113),
specifically in the case of breast cancer (16–18). Additionally,
obesity is associated with larger tumor sizes and positive lymph
node involvement compared to non-obese breast cancer patients
(114, 115).

Human studies also show that obesity is linked to poor
clinical outcomes in breast cancer patients treated with
chemotherapeutic, hormonal-based chemotherapy agents and
radiotherapy (22, 116). Obesity was also associated with lower
pathological complete response, disease free survival, clinical
benefit rate and worse overall-survival (22). Iwase et al. reported
that a high visceral fat area is associated with poor clinical
outcomes for patients receiving neo-adjuvant chemotherapy
(anthracycline followed by taxane) treatment regimens (19).
In fact, treatment protocols for overweight and obese cancer
patients includes prescribed lower doses of chemotherapeutic
agents to avoid co-morbidities, side effects and adverse
toxicities (117). This could also compromise drug efficacy and
contribute to the development of treatment resistance and added
cytotoxicity (118). However, alterations in dosages cannot clarify
all occurrences of treatment resistance in relation to obesity
(96, 119, 120).

Resistance Mechanisms

Drug resistance can either be classified as intrinsic (pre-
treatment), or acquired (post treatment) (121). Currently, known
drug resistance mechanisms include, the evasion of therapy-
induced apoptosis, activation of drug transporter proteins and
enhanced DNA repair mechanisms, which describe cellular
mechanisms (109). Drug resistance can additionally ensue as a
result of alterations in pharmacokinetics, drug inactivation and
metabolism (109, 121), which can be induced and/or exacerbated
in obese states.

Cellular mechanisms
Treatment resistance can develop due to the evasion of
apoptotic pathways by increased anti-apoptotic protein (blc-
2) and decreased pro-apoptotic protein (bax) expression (122).
Adipocytes protect cancer cells from chemotherapeutic agents

Frontiers in Endocrinology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 758

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Mentoor et al. Chemoresistance: Breast Cancer and Adipocytes

(i.e., vincristine and daunorubicin) by upregulating anti-
apoptotic bcl-2, and downregulation of pro-apoptotic bad and
pim-2 family members (an oncogene which phosphorylates
bad) (123). Although the mechanisms by which adipocytes
achieved this ‘protection of cancer cells’ was not assessed,
a recent in vitro study identified resistin (mainly secreted
from adipose tissue) (124) as a causal factor for acquiring
resistance to doxorubicin treatment in both the MCF-7 human
breast cancer cell line (estrogen receptor positive) as well
as in the MDA-MB-231 human triple negative cell line.
Here, doxorubicin induced apoptosis (increased cytochrome-c
concentration, cleaved caspase-9, cleaved PARP) in a time and
dose dependant manner. Addition of recombinant resistin to
the treatment protocol downregulated apoptosis by inducing
autophagy (a self-degradation process which cancer cells
can utilize to eliminate toxic materials to avoid cell death)
(25). Although resistin receptor expression was not assessed,
and no supporting evidence for animal or human models
were provided, it would be plausible to motivate for more
experimental research to investigate potential mechanisms and
causal factors involved in acquiring doxorubicin treatment
resistance.

Additionally, treatment resistance can also be the result
of gene mutations coding for apoptotic proteins (125), for
example the mutation in p53 has been associated with acquired
resistance to doxorubicin in breast cancer patients, possibly
due to inhibition of apoptosis by activating Bax/Bak (pro-
apoptotic factors) (125). General-, and central obesity showed a
positive association with mutations in p53 of tumor tissue, which
was further associated with less favorable tumor characteristics
including poorly differentiated and higher nuclear grade tumors
(126).

Moreover, modifications in the activation and expression of
drug transporter proteins alters drug responses by reducing
intracellular drug concentration, which promotes treatment
resistance (127). Examples are (i) P-glycoprotein (P-gp), (ii)
multi-drug resistance protein-1 (MDR-1), (iii) multi-drug
resistance associated protein-1 (MDRP-1), and (iv) breast cancer
resistance protein (BCRP), which are ATP-binding cassette
(ABC) transmembrane pumps responsible for the elimination
of toxic compounds from cells (128, 129). Although normally
expressed in healthy tissue, overexpression of P-gp, MDR-
1, MDRP-1 and BCRP are present in breast cancer cells in
relation to doxorubicin resistance (130–132). P-glycoprotein
expression can also be upregulated by inflammation (NFκB),
resulting in an altered expression of MDRP-1, which increases
the expression of P-gp and consequently modify drug responses.
(110, 133).

Adipose tissue is also a source of mesenchymal stem cells
which share similar characteristics to tumor-initiating stem cells
(134), which can be recruited to the tumor microenvironment
to support breast tumor growth and proliferation (135). Tumor-
initiating stem cells has the ability to self-renew and/or
differentiate, tolerate high levels of DNA damage, increase ABC
transmembrane transporter protein expression and induce the
synthesis of various cytokines and growth factors (increased IL-
6 and C-C motif ligand 5 (CXCL5) levels) (63, 135–137), and

therefore may be an alternative treatment resistance mechanism.
Elevated leptin concentrations and leptin receptor expression
(increased in adiposity) is associated with the promotion
of cancer stem cells survival and self-renewal, by inducing
JAK2/STAT3 signaling pathways, that increase stem cell renewal
transcription factors (NANOG, OCT-4, and SOX-2) expression
in breast cancer cells (77, 138).

Leptin, well-known for its role in inflammation and
tumorigenesis (74, 139), increases cellular proliferation and
angiogenesis (75), and is also associated with higher pathological
grade breast cancer tumors (76) and breast cancer treatment
resistance (136, 140). However, in contrast leptin also shows anti-
cancer effects, by enhancing the anti-proliferative effects of 3′-
5′-cyclic adenosine monophosphate (cAMP) elevating agents in
breast cancer cells (141). 3′-5′-cyclic adenosine monophosphate
is an intracellular second messenger, generated from ATP
by adenylate cyclase’s (142, 143) and plays a regulatory role
in cellular proliferation, apoptosis as well as differentiation,
proposed to be induced via protein kinase A (144, 145). The
utilization of cAMP elevating agents has been explored in
pre-clinical models and shows anti-cancer effects i.e., inducing
apoptosis (downregulation of Bcl-2 which leads to caspase-3
mediated apoptosis) (146) and cell cycle arrest (146, 147) in breast
cancer cells. Additionally, cAMP elevating agents inhibit both
cellular proliferation (148), and angiogenesis (decreased VEGF)
(149) as well as sensitize breast cancer cells to chemotherapeutic
drug treatments (150). Naviglio et al. showed that co-treatment
of triple negative breast cancer cells (MDA-MB-231 cells) with
leptin and a cAMP elevating agent (forskolin) decreased breast
cancer cell proliferation by inhibiting the activation of the
ERK signaling pathway (141), which is well-known to be over
active in breast cancer cells (151, 152). Interestingly, the authors
also showed that leptin enhanced the anti-proliferative effects
of cAMP elevating agents, by inducing both apoptosis and
cell cycle arrest (141). Additionally, Spina et al. showed that
an increase in cAMP levels inhibits leptin-induced migration
of breast cancer cells (MDA-MB-231) (153). Recently, Illiano
et al. demonstrated that forskolin treatment (cAMP elevating
agent) inhibited ERK1/2 activity via protein kinase A-mediated
inhibition, which induced apoptosis and increased the sensitivity
of breast cancer cells (MDA-MB-231 and MDA-MB-468) to
doxorubicin treatment (154). This finding is significant since,
doxorubicin treatment resistance in breast cancer cells involves
the activation of the RAS/RAF/ERK signaling pathway (152,
155). The anti-proliferative interaction between leptin and
cAMP elevating drugs might provide potentially new strategies
for therapeutic intervention in overweight/obese breast cancer
patients (since leptin levels are elevated in overweight/obese
patients), who are at risk/prone to develop treatment resistance.
However, treatment of breast cancer cells with cAMP elevating
agents under obesogenic conditions, is yet to be explored,
especially considering cAMP can stimulate lipolysis in adipose
tissue (156).

Additional growth factors secreted by adipocytes also
implicated in treatment resistance include IGF-1 and IGF-1R
(increased systemic bioavailability in adiposity and adipocytes
also secrete IGF-1). These growth factors are linked to
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decreased apoptosis, increased cancer cell proliferation and pro-
inflammatory mediator secretion which are directly associated
with breast cancer risk and progression (157–160). Upregulation
of IGF-1R was associated with poor disease prognosis and
chemotherapy resistance through increased expression ofMDR-1
andMDRP-1 affecting drug transportation and delivery in cancer
cells (161).

Acquired resistance to doxorubicin and docetaxel in breast
cancer cells was also attributed to the transfer of microRNA
present in exosomes (nanovesicles which mediates cell-cell
transfer of DNA, mRNA, microRNA, proteins and lipids) (162).
Adipocyte derived exosomes has been associated with increased
migration in breast cancer cells (163), immune cell recruitment
of macrophages and chronic inflammation (164, 165). Resistance
to paclitaxel in ovarian cancer cells was attributed to the
transfer of microRNA (miR21) present in adipocyte derived
exosomes (166, 167), which downregulated the expression of
apoptotic protease activating factor-1, a key protein involved
in apoptosome formation (166). In addition, adipocyte derived
exosomes increased the invasion of melanoma cancer cells
and induced metabolic reprogramming by transferring proteins
(ECHA (subunit of mitochondrial trifunctional protein) and
hydroxyacyl-coenzyme A dehydrogenase), involved in fatty acid
oxidation to these cancer cells. In addition, these effects were

found to be worsened by obese adipocytes (168). However,
evidence on the role of adipocyte and/or obese adipocytes
derived exosomes in treatment resistance on breast cancer cells
are lacking and therefore motivates experimental models to
investigate potential mechanisms and causal factors involved in
acquiring doxorubicin treatment resistance.

Drug metabolism mechanisms
Adiposity alters chemotherapeutic pharmacokinetics by; (i)
increasing drug distribution, (ii) altering drug clearance, and
(iii) modifying the drug-protein binding process (169). For
example, obesity increases the distribution volume of lipolytic
drugs by increasing its’ accumulation in excess adipose tissue
(169), thereby decreasing exposure of cancer cells to treatment
agents. Behan et al. showed that excess adipose tissue could act
as a “shelter” for protection against treatment toxicity, as cancer
cells migrate into adipose tissue (123).

Obesity affects drug clearance via the liver, which primarily
metabolizes, detoxifies and clears drugs from circulation (170).
Hepatosteatosis decreases hepatic microcirculation, whereas the
glomerular filtration and tubular secretion, and reabsorption
in the kidneys, leads to increased drug clearance (117). Ghose
et al. reported that mice fed a high fat diet, showed a decreased
expression of key hepatic drug metabolizing enzymes (i.e.,

FIGURE 2 | Proposed effects of breast cancer cells on adipocytes and its role in treatment resistance. Breast cancer cells dysregulate metabolic pathways, by altering

the secretion of adipokines from adipocytes which results in inflammation. This, could result in morphological and phenotypical changes (delipidation) and thereby

increase the release of FFA. These FFA provide energy substrates for cancer cells to sustain its high proliferation demand, contributing to cancer treatment resistance.

FABP-4, fatty acid binding protein-4; FFA, free fatty acids; TAGs, triglycerides; CD36, fatty acid translocase.
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CYP3A11, CYP2B10 and CYP2A4), which could be the result
of the high levels of pro-inflammatory mediators (IL-1β, IL-6
and TNF-α), increased phosphorylation of JNK and increased
activation of NFκB (171). CYP34 activity, has also been found
to be increased in a leptin knockout obesity model (172). In
addition, the elimination, or the half-life of a drug may also be
altered in obese individuals (173). Lastly, obesity is also associated
with an increase in alpha-1 acid glycoprotein concentration,
which could increase the binding of drugs in the plasma, thereby
decreasing its bioavailability (174).

Furthermore, cytarabine, a treatment agent used in
acute myeloid leukemia, is only toxic to cancer cells in its
phosphorylated form (cytarabine triphosphate) (129). Cancer
cells disrupt the phosphorylation reactions by altering the
expression of enzymes involved in the metabolic activation
of cytarabine i.e., aldo-keto reductase (AKR) and carbonyl
reductase (CBR) (122). Sheng et al. showed that adipocytes
metabolized daunorubicin (by increasing the expression of
daunorubicin-metabolizing enzymes i.e., AKR-1C1, AKR-
1C2, AKR-1C3 and CBR-1), which lead to the inactivation of
daunorubicin and acquired resistance (175). This could implicate
adipocytes/adipose tissue as a co-factor to decrease certain drug
concentration in lipid-enriched tumor microenvironments
(175). Evidence now also suggest that cancer cells “manipulate”
adipocytes in the tumor microenvironment, in order to survive,
but also alter drug pharmacokinetics and induce drug resistance
by disrupting lipid storage and metabolism (13, 176).

Several mechanisms exist which can result in the modification
of drug metabolism, drug transport and the failure of tumor cells
to respond to chemotherapeutic drugs, due to overexpression
of drug export proteins in cancer cells (169). It should be
emphasized that limited evidence, investigating the role of
overweight/obesity on pharmacokinetics of the majority of anti-
cancer drugs in clinical trials, exists (170, 177). This is mainly
attributed to participant inclusion criteria into phase I clinical
trials and pharmacokinetic analyses, that exclude patients with
co-morbidities, which is highly prevalent in overweight and obese
cases (177).

Adipocytes in the Tumor Microenvironment:

Lipid-Related Mechanisms

Breast cancer cells co-exist in a sophisticated microenvironment
with various adjacent cell types including adipocytes,
macrophages, fibroblast and endothelial cells (178). Evidence
exist on the beneficial roles of fibroblasts, endothelial cells and
macrophages in the tumor microenvironment (179–181). The
exact role of adipocytes in the breast tumor microenvironment
in treatment resistance remains unclear.

The presence of adipocytes in the tumor microenvironment
revealed that breast tumor cells utilize adipocytes to their
advantage to promote its survival, growth as well as proliferation
and metastasis (13, 176). In addition, the presence of adipocytes
in the tumor microenvironment also reduces the toxic
effects of breast cancer treatment agents (18). For example,
Trastuzumab R© treatment (a monoclonal antibody targeting
human epidermal growth factor-2) inhibited breast cancer cell
growth in the absence of a lipoma. However, this inhibition was

hindered in the presence of a lipoma suggesting that adipose
tissue/adipocytes may have an impact on resistance to cancer
therapy (176).

Adipocytes in the breast tumor microenvironment is
characterized by both morphological and phenotypical
changes. Histological analysis of human mammary tumor
biopsies shows no, or very few adipocytes present (174), with
characteristic smaller cell size (14). Adipocytes in the breast
tumor microenvironment also display a more fibroblast like
morphology known as cancer-associated adipocytes (127, 182).
These phenotypical and morphological alterations induce
functional changes in adipocytes to yield free fatty acids (FFA)
from triglycerides (TG) stored in lipid droplets (Figure 2) (73).
This is proposed to be as a result of tumor growth inducing
lipolysis in adipocytes, which can result in adipose tissue mass
reduction (183).

Previously it was shown that breast cancer cells induce
lipolysis by increasing the expression of hormone sensitive lipase
(HSL) and adipose triglyceride lipase enzymes in adipocytes (13).
It is proposed that adipocyte-derived fatty acids are either used as
metabolic substrates for energy (β-oxidation) (184), or stored in
lipid droplets and/or membranes within tumors (185), to sustain
survival. Fatty acids and its derivatives serve as building blocks
for variousmembrane lipids (i.e., phospholipids and sterol esters)
and signaling molecules, both implicated in carcinogenesis and
treatment resistance (186–188).

Additional supporting evidence include breast cancer cells
increasing exogenous fatty acid uptake and utilization (FFA
derived from adipocytes), by altering the expression of various
enzymes in fatty acid uptake (i.e., increased fatty acid
binding protein-4 (FABP-4) and fatty acid translocase (CD36)
expression) (189–191) and β-oxidation (i.e., increased carnitine
palmitoyltransferase I expression) (13, 192, 193). In addition,
“obese” adipocytes provided higher concentrations of FFA to
breast cancer cells to sustain survival and migration (13),
however treatment resistance was not assessed in this obese
breast cancer model.

Furthermore, adipocytes also provide FFA to breast cancer
cells by dedifferentiation and/or inhibition of adipogenesis (13)
(Figure 2), evident by adipocytes showing decreased expression
of adipogenic markers including peroxisome proliferator-
activated receptor-γ (PPAR-γ), FABP-4 and cytosine-cytosine-
adenosine-adenosine-thymidine (CCAAT) enhancer binding
protein-α (CEBP-α) (14). Breast cancer cells can also alter fatty
acid metabolism by increasing de novo synthesis of fatty acids,
by altering the expression of fatty acid synthase (FAS), acetyl-
CoA carboxylase (ACC), and stearoyl CoA-desaturase-1 (SCD-1)
enzymes (194–198). The result of this alteration is lipid saturation
of cancer cell membranes, which protects against the cytotoxic
effects of chemotherapeutic anti-cancer drugs (199). Increased
FFA are also stored in tumors in the form of lipid droplets in
order to avert lipotoxicity and/or to serve as an energy reserve
(200). This is also supported by lipid depositions found in
tumors (185), including breast tumors which is considered a
characteristic of cancer aggressiveness (201).

It is proposed that the dysregulation of cytokines (increased
IL-6, TNF- α and IL−1β), adipokines (increased leptin and
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decreased Apn and resistin), chemokines, as well as extracellular
matrix proteins (collagen IV) from adipocytes (12, 64, 202, 203)
(Figure 2), affect the expression of transcription factors involved
in lipid metabolism. Examples include, HSL, FABP-4 and CEBP-
α (14, 72). The outcome is altered adipocyte-signaling pathways
and gene expression in tumor cells which induce stromal cells to
produce adipokines (204).

Evidence points toward adipocytes being stimulated
by breast tumor cells to increase expression of matrix
metalloproteinase-11, a negative regulator of adipogenesis
by decreasing pre-adipocyte differentiation and reversing mature
adipocyte differentiation (11). Macrophage chemoattractant
protein-1 and CCLC-5 may also be active in the host
microenvironment promoting survival, invasion metastasis,
and unfavorable drug responses. Here, it is proposed that the
recruitment of immune cells to the tumor microenvironment,
promotes inflammation, stimulating the secretion of matrix
metalloproteinase-9 (role in matrix degradation) and evading
the host’s immune responses (202). Additionally, MCP-1
benefits vascular endothelial cell survival and activate the
JAK2/STAT5 and p38 MAPK pathways, inducing angiogenesis
(205).

Several groups support the role of cytokines in drug resistance.
Estrogen receptor positive sensitive breast cancer cell line, MCF-
7, did not express IL-6, however in a drug resistant breast cancer
cell line (MCF-7/R) IL-6 was expressed (206, 207). Elevated
IL-6 is linked to doxorubicin resistance in breast cancer cells,
by increasing cytosine-cytosine-adenosine-adenosine-thymidine
(CCAAT) enhancer binding protein (CEBP) activity, which leads
to an increased expression of MDRP-1 (206, 208). Additionally,
ex vivomature adipocytes significantly increased the proliferation
of both mammary cancer cells (MCF-7) and normal mammary
cells (184B5) (209). Adipocytes derived from obese patient’s
diminished Tamoxifen treatment efficacy compared to adipocytes
derived from normal weight patients. The authors identified IL-
6, TNF-α and leptin as potential mediators (209). In agreement,
Incio et al. demonstrated that obesity decreased the efficacy of
anti-VEGF treatment in both breast cancer patients and in diet-
induced obese mice. The authors proposed that inflammation
(increased IL-6) and angiogenesis (increased fibroblast-growth
factor-2) in adipocyte dense hypoxic microenvironments within
tumors, which can sustain tumor survival (18). However,
additional studies are needed to target IL-6 i.e., anti-IL-6R
(tocilizumab), in order to identify the exact role of these
biomarkers.

To summarize, morphological and phenotypic changes
(delipidation), as a result of increased pro-inflammatory
cytokines and a deregulated adipokine profile in adipose
tissue/adipocytes, may be responsible for breast tumor enhancing
effects of adipocytes, providing a potential mechanism for
cancer treatment resistance. The role and contribution of
adipose tissue/adipocytes in the tumor microenvironment and
pathogenesis of breast cancer remains unclear. The exact
molecular mechanisms in which breast cancer cells in an
obesogenic environment use adipocyte to their physiological
advantage to induce treatment resistance, needs to be explored
extensively.

DOXORUBICIN TOXICITY ON ADIPOSE
TISSUE/ADIPOCYTES

Doxorubicin treatment has been shown to negatively impact
adipose tissue/adipocytes (26, 29), ranging from metabolic
dysfunction to phenotypical changes (27, 106, 210–212), which
contribute toward the disruption of adipose tissue homeostasis
and lipid storage (Table 1).

Themolecular mechanisms underlying doxorubicin’s negative
effects on adipose tissue/adipocytes is proposed to involve
adipokine dysregulation, which in turn affects factors regulating
lipid metabolism pathways. For example, decreasing and/or
inhibition of adipogenesis (decreased PPAR-γ and FABP
expression) and lipogenesis (decreased FAS expression) as
well as the induction of lipolysis (increased HSL expression)
(27, 29) (Figure 3). This in turn induces an increase in FFA
release as the result of the phenotypical changes (27, 29),
thereby disrupting lipid storage. Doxorubicin induced metabolic
dysfunction (increased FFA levels), could potentially increase the
availability of energy substrates (FFA) for cancer cells to utilize to
sustain both its’ survival and proliferation demands (26, 27, 29,
106), and thereby indirectly contribute to breast cancer treatment
resistance itself. However, it should be stressed that evidence on
the effects of doxorubicin on adipose tissue/adipocytes (Table 1)
is based on normal functioning adipose tissue/adipocytes, and
not on an obesity model, where adipose tissue is dysfunctional.

Evidence on the effects of doxorubicin on adipose
tissue/adipocytes in the context of obesity, where adipose
tissue is dysfunctional is lacking. In light of this, we proposed
that doxorubicin treatment on dysfunctional adipose tissue
and/or adipocytes, may further exacerbate the negative
effects of obesity itself, toward cancer treatment by further
dysregulating adipokines secretion, which in turn affects the
factors regulates lipogenesis, adipogenesis and lipolysis, thereby
further implicating obesity in the context of breast cancer
treatment (Figure 3).

FUTURE RESEARCH AND CONCLUSION

Adipose tissue plays an important physiological role as a
metabolically active storage compartment and endocrine organ.
A disruption in adipose tissue homeostasis results in potentially
serious health and clinical-related outcomes. Obesity induced
adipose-dysfunction is associated with an increased risk for
breast tumor development and progression.

Obesity is associated with chronic low grade inflammation
as a result of adipokine secretion (immune cell infiltration),
which results in a sustained inflammatory milieu. These
inflammatorymediators activate downstream signaling pathways
(MAPK and PI3K) in breast cancer cells that favors cancer
cell survival (increased proliferation and decreased apoptosis),
and contribute to breast cancer development and progression
(Figure 3).

Recent evidence also implicate obesity as a causal factor for
reduced chemotherapy efficacy, resulting in treatment resistance.
Obesity-driven changes may contribute to chemotherapy
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TABLE 1 | Effect of doxorubicin on adipose tissue and/or adipocytes.

Model Findings Proposed Mechanism References

In vivo

Rat retroperitoneal adipose

tissue Doxorubicin: 15

mg/kg/body weight, 72

hours before sacrifice.

In vitro

3T3-L1 cells (differentiated

into mature adipocytes)

In vivo: Doxorubicin (10 and100 nM) was toxic to adipocytes,

thereby inducing over 90% cellular apoptosis.

In vitro: Doxorubicin disrupted adipocyte homeostasis: ↓

lipogenesis, ↑ glucose uptake and ↑ lipolysis thereby increasing

free fatty acids (FFA) availability.

Disrupt lipid-related pathways: The

molecular mechanism by which doxorubicin

exerts its toxic effects on adipose tissue was

still unknown at this point and warranted further

investigation

(210)

In vivo

Male dawley Sprague rats

epididymal fat

Doxorubicin: 2.5

mg/kg/body weight, once a

week for 11 weeks.

Doxorubicin was found to be a negative regulator of body weight

as it resulted in a significant decrease in the body weight of

animals on doxorubicin vs. untreated controls.

The decrease in body weight was specifically due to a loss in

adipose tissue.

Necrosis: Adipose tissue undergoes necrosis

as a result of chemotherapy. However, there is

very limited proposed molecular mechanisms

by which doxorubicin exerts its effects on a

molecular level and to what extent the damage

is and is unclear if it is only due to necrosis or

not.

(29)

In vivo

Male wistar rats

retroperitoneal adipose

tissue

Doxorubicin: 15

mg/kg/body weight, 72

hours before sacrifice.

In vitro

Primary adipocytes isolated

from retroperitoneal fat and

3T3-L1 cells (differentiated

into mature adipocytes)

Both in vivo and in vitro models: doxorubicin treatment ↓

adipocyte size compared to controls.

In vivo: doxorubicin treatment disrupted lipogenesis, i.e., ↓ fatty

acid synthase (FAS) and Acetyl-CoA carboxylase (ACC)

expression.

In addition, primary adipocytes treated with doxorubicin showed a

decrease in insulin-stimulated glucose uptake.

Phenotypical and metabolic dysfunction:

This may have been the result of decreased

expression of proteins regulating lipogenesis

and therefore decreased lipid storage.

(27)

In vitro

Mice

Doxorubicin: 8 mg/kg body

weight, for 4 weeks.

Doxorubicin treatment resulted in a significant ↓ in bodyweight

and serum tricylglyceride (TG) concentration compared to saline

treated mice.

Changes in body composition: Proposed by

authors to be the underlying reason for

cardio-dysfunction in this animal model.

(28)

In vivo

Male wistar albino rats

Doxorubicin: 2 mg/kg/body

weight for 7 weeks.

A significant increase in fatty acid binding protein (FABP)

concentration was observed in rats treated with doxorubicin

compared to control animals,

Disrupt lipid-related pathways: Doxorubicin

treatment affects markers regulating

adipogenesis.

(211)

In vivo

3T3-L1 cells (differentiated

into mature adipocytes)

Doxorubicin treatment resulted in the inhibition of adipogenesis

i.e., ↑ expression of PPAR-α, and ↓ PPAR-γ and FABP-4

expression in a dose-dependent manner. Adipocytes which over

expressed PPAR-γ and were treated with doxorubicin counter

acted all the above effects of doxorubicin.

Disrupt lipid-related pathways: Doxorubicin

acts as an inhibitor of adipogenesis, by being

an antagonist to PPAR-γ expression, which

may ultimately lead to a lack of fat

accumulation.

(26, 105)

In vitro

Male wistar rats treated with

doxorubicin (15 mg/kg/body

weight, 72 h before

sacrifice).

Doxorubicin treatment caused a significant ↓ epididymal adipose

tissue weight and adiponectin an increase in serum insulin,

glucose, FFA concentration levels compared to saline controls.

Doxorubicin treatment caused a decreased HOMA-IR

(measurement of insulin resistance) and glucose uptake vs. control

animals, which is indicative of impaired insulin sensitivity, and

these animals displayed insulin resistance, hyperglycaemia, and

hyperinsulinemia.

Metabolic Dysfunction: These findings were

the result of decreased expression of both

AMKP and GLUT-4 in skeletal muscle, which

was confirmed by the in vitro experiments. The

authors concluded that doxorubicin treatment

caused hyperglycaemia and insulin resistance,

mediated by inhibition of AMPK.

(106)

In vivo

T2DM mice model (db/db,

leptin knockout) treated with

doxorubicin (15 mg/kg/body

weight, 5 days before

sacrifice)

Doxorubicin treatment induced an inflammatory milieu in diabetic

muscle by exacerbating a pro-inflammatory microenvironment

(upregulating transcription factor HIF-1α, NFκB, and TNF-α) as

well as decreasing anti-inflammatory actions (downregulating

regulatory molecule AMPK and IL-15).

Doxorubicin treatment induced a dysregulation in glycolytic

metabolism in diabetic skeletal muscle by upregulating pyruvate

dehydrogenase kinase-4 and lactate dehydrogenase and

downregulating phosphorylation of ACC.

Metabolic Dysfunction:

Results suggest that doxorubicin treatment in

the context of diabetes may cause an

environment, which can worsen diabetes

related effects.

(212)

ACC, Acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; FABP-4, fatty acid binding protein-4; FAS, fatty acid synthase; FFA, free fatty acids; GLUT-4, glucose transporter-

4; HOMA-IR, homeostatic model assessment of insulin resistance; HIF-1α, hypoxia inducible factor-1α; IL-15, interleukin-15; NFκB, nuclear factor kappa B; PPAR-α, peroxisome

proliferator-activated receptor-α; PPAR-γ, peroxisome proliferator-activated receptor-γ; TAGs, triglycerides; TNF-α, tumor necrosis factor-α. ↑, Increased; ↓, Decreased.
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FIGURE 3 | Proposed role of doxorubicin in an obesogenic breast cancer model. ACC, Acetyl-CoA carboxylase; CD36, fatty acid translocase; FFA, free fatty acids;

FABP, fatty acid binding protein; FABP-4, fatty acid binding protein-4; FAS, fatty acid synthase; HSL, hormone sensitive lipase; PPAR-γ, peroxisome

proliferator-activated receptor-γ; TAGs, triglycerides.

resistance by altering drug pharmacokinetics, impairing drug
metabolism and delivery, and inducing chronic inflammation as
well as altering tumor-associated adipocyte adipokine secretion.
However, the exact underlying mechanisms by which obesity
achieves this remains unclear.

It is suggested that adipose tissue/adipocytes, serve as a
potential energy source for cancer cells to sustain their survival
thereby promoting cell growth and proliferation (Figure 3). This
is especially significant in the case of breast cancer; as adipose
tissue is the most abundant tissue type in the breast. Breast cancer
cells dysregulate lipid related metabolic pathways i.e., lipolysis,
adipogenesis, de novo fatty acid synthesis and exogenous lipid
uptake by altering the secretion of adipokines by adipocytes,
which in turn results in the release of FFA (Figure 3). These fatty
acids can then serve as energy substrates for breast cancer cells to
sustain its high proliferation rates or can be stored in tumors in
the form of lipid droplets and/or in membrane lipids in order to
avoid lipotoxicity, which protects against the cytotoxic effects of
anti-cancer drugs.

Additionally, doxorubicin treatment itself has also been
shown to modify adipose tissue/adipocytes through inhibition
of adipogenesis, downregulating lipogenesis, inducing lipolysis,
and subsequently disrupting lipid storage. Resulting in

phenotypical changes in adipocytes (Figure 3), which in
turn produces more “bioavailable” energy substrates (increased
FFA), which cancer cells can potentially utilize to sustain
survival and proliferation demands and thereby could
indirectly contribute to chemotherapeutic treatment resistance
(Figure 3).

It should be stressed that studies investigating the effects of
doxorubicin on adipose tissue/adipocytes and lipid metabolism
in the context of obesity, where adipose tissue is dysfunctional
are lacking. We thus propose that doxorubicin treatment in
patients with dysfunctional adipose tissue and/or adipocytes,
may further exacerbate the tumor promoting effects of obesity
itself. This may be achieved by further dysregulating adipokine
secretion, which in turn affects lipogenesis, adipogenesis and
lipolysis, linking adiposity to breast cancer treatment resistance
(Figure 3). It is thus of importance to investigate the effect
of doxorubicin in the context of obesity, and how obesity
may aggregate factors playing a role in the development of
doxorubicin treatment resistance, as there is an increase in the
prevalence of breast cancer patients who are either overweight
or obese, treated with doxorubicin. Specifically, since, obese and
normal weight patients receive the same treatment regimens.
Therefore, extensive investigation is needed to elucidate the
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underlyingmechanism by which obesity contributes to treatment
resistance.

The role of lipid metabolism in breast cancer also remains
understudied as well as the cytotoxic effects of chemotherapeutic
drugs on adipose tissue/adipocytes, both of whichmay contribute
to the promotion of breast cancer cell survival and treatment
resistance. Therefore, the identification ofmolecularmechanisms
underlying both the effects of a neoplastic state and doxorubicin
treatment on adipose tissue, will promote the identification
of novel pharmacologic targets as well as the development of
appropriate management protocols for adipose tissue driven
chemotherapeutic drug resistance as well as doxorubicin related
toxicities in order to improve over-all survival of breast cancer
patients.
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