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The metabolism-disrupting chemicals (MDCs) are molecules (largely belonging to the

category of endocrine disrupting chemicals, EDCs) that can cause important diseases

as the metabolic syndrome, obesity, Type 2 Diabetes Mellitus or fatty liver. MDCs act

on fat tissue and liver, may regulate gut functions (influencing absorption), but they

may also alter the hypothalamic peptidergic circuits that control food intake and energy

metabolism. These circuits are normally regulated by several factors, including estrogens,

therefore those EDCs that are able to bind estrogen receptors may promote metabolic

changes through their action on the same hypothalamic circuits. Here, we discuss data

showing how the exposure to some MDCs can alter the expression of neuropeptides

within the hypothalamic circuits involved in food intake and energy metabolism. In

particular, in this review we have described the effects at hypothalamic level of three

known EDCs: Genistein, an isoflavone (phytoestrogen) abundant in soy-based food (a

possible new not-synthetic MDC), Bisphenol A (compound involved in the manufacturing

of many consumer plastic products), and Tributyltin chloride (one of the most dangerous

and toxic endocrine disruptor, used in antifouling paint for boats).

Keywords: metabolic disruptor, food intake, hypothalamus, estrogens, bisphenol A, tributyltin, genistein

THE HYPOTHALAMIC CONTROL OF FOOD-INTAKE AND
ENERGY METABOLISM

The hypothalamus plays an essential role in controlling food intake and energetic status, mainly
through two antagonistic neuronal populations of the hypothalamic arcuate nucleus (ARC):
the orexigenic neurons (appetite-stimulating), characterized by the co-expression of agouti-
related peptide (AgRP) and neuropeptide Y (NPY), and the anorexigenic neurons (appetite-
suppressing) that co-express pro-opiomelanocortin (POMC) and cocaine- and amphetamine-
regulated transcript (CART) (1–4) (Figure 1). These ARC neurons project to other hypothalamic
nuclei, among which the Ventromedial hypothalamic (VMH), and the Paraventricular (PVN)
nuclei (Figure 1). The latter one is the most important center of metabolic control: it integrates
orexigenic and anorexigenic inputs from ARC and modulates energy expenditure through the
hypothalamic pituitary adrenal (HPA)-axis (5), and the hypothalamic pituitary thyroid (HPT)-axis
(6, 7).
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FIGURE 1 | Schematic drawings summarizing the effect of estradiol, genistein, bisphenol A, and tributyltin on the orexigenic (NPY/AgRP) and anorexigenic

(POMC/MCH) neurons of the hypothalamic arcuate nucleus (ARC), projecting to the ventromedial (VMH) and paraventricular (PVN) nuclei. All these nuclei contain

estrogen receptors α and β mediating the effects of estradiol and of the other substances. The exposure to different molecules induces an imbalance in food intake

(food) or energy expenditure (energy). These effects may be similar in both sexes (estradiol), or different (the other MDC) and are mediated by effects on the two main

populations of ARC (up arrow = increased expression, down arrows = decreased expression). POMC projections to PVN are also affected.

These systems are sensitive to peripheral signals of energetic
balance (for example leptin, insulin, and GHrelin). Leptin
blood levels depend on the size of fat stores (8) and acts
as an anorexigenic factor to adjust energy requirements, fat
reserves, and food intake (9). In contrast, GHrelin has an
orexigenic role in the central control of appetite and metabolism
(10). Moreover, also sexual hormones, thyroid hormones,
and growth factors can modulate the hypothalamic circuits
regulating appetite, satiety, and metabolism (11). In particular, in
mammals, estradiol (E2) has an important role on the regulation
of food intake and metabolism with an appetite-suppressing
effect (12, 13).

Several synthetic or natural molecules that are present in
the environment may interact with the estrogen or androgen
signaling chain (xenoestrogens, xenoandrogens) and have been
classified as endocrine disrupting chemicals [EDCs, (14)]. In
addition, many of these EDCs have been considered to belong

to the category of metabolism disrupting chemicals (see below),
however, little attention has been dedicated, until now, to their
action of neural circuits controlling food intake and energy
metabolism.

CENTRAL ACTION OF
METABOLISM-DISRUPTING CHEMICALS
(MDCS)

Themetabolism-disrupting chemicals (MDCs) have been defined
(Parma Consensus Statement, (15) as those endocrine disrupting
chemicals (EDCs) that are able to promote metabolic changes
that can result in obesity, Type 2 Diabetes Mellitus (T2DM) or
fatty liver in animals including humans. The major targets for
these compounds are the fat tissue and the liver (11), however,
they may regulate nutrient ingestion and metabolism by altering
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intestinal transport, secretion of gut peptides, composition of
the gut microbiota as well as the expression of hypothalamic
neuropeptides that control food intake (11, 16). Several studies
reported that MDCs can alter food intake, with different effects
based on dose, timing, and exposure duration (17–19). In
particular, exposure to MDCs during the perinatal period and/or
adulthood modifies the cues that regulate energy homeostasis,
such as serum levels of insulin, leptin, and fatty acids (20).

In this short review, we will describe the
neuroendocrinological effects of a possible new, not-synthetic,
MDC (Genistein), and of two synthetic identified MDCs
(Bisphenol A and Tributyltin), (Table 1).

Genistein
Soy isoflavones, in particular Genistein (GEN), are very abundant
in soy-based food (28) and are an important source of EDCs (29).
GEN action requires both estrogen receptor (ER)α and ERβ (30),
although, compared to E2, GEN affinity is low for ERα, while
it is similar for ERβ (31–33). ERα is required for GEN effect in
females and ERβ, as well as PPARγ, in males (34, 35). Even if
the sensitivity of the hypothalamus to GEN is well-acknowledged
(36, 37), very little is known on neuronal circuits controlling
energetic metabolism.

In vitro, GEN induces adipocytes’ apoptosis, decreases lipid
accumulation, and increases lipolysis. Moreover, GEN decreases
leptin synthesis (38) and inhibits its secretion (39). In vivo, GEN
effect depends on sex (40, 41) and on the administered dose
(42). In females, an anti-obesogenic effect of GEN is reported
for many obese mouse models (43, 44), in juvenile and adult
ovariectomized (45, 46) and intact mice (34). This effect is dose
dependent (42): GEN inhibits adipogenesis at low concentrations
and enhances it at high concentrations (47, 48). GEN effect on
fat pad weight is opposite in males, with an obesogenic effect
at low doses (34, 35, 49) and an antiobesogenic effect at high
doses (34). The effect of GEN during perinatal development
may be very different: many studies report an obesogenic effect
(50, 51), although only in females (52), while others report
an anti-obesogenic effect in males (21, 53). GEN effect during
development may be due to epigenetic modifications in the
offsprings (54) or to an alteration of the development of estrogen
sensitive circuits regulating energetic metabolism, as for other
MDCs (11). In fact, GEN is able to affect neural circuits
controlling animal welfare and fertility (36, 37), although little is
known about its effects on neuronal circuits controlling energetic
metabolism. A previous study (21) addressed the effect of soy
phytoestrogens, daidzein, and genistein, on the hypothalamus of
male mice, reporting that high phytoestrogens levels throughout
embryonal and postnatal life decrease AgRP and increase MCH,
orexin A and TRH mRNA levels, but it has no effect on
NPY, POMC, and CART expression [(21), Figure 1]. While,
our ongoing study in male and female mice demonstrates that
early postnatal exposure to GEN, in a dose comparable to
exposure level in babies fed with soy-based formula, determines
an obesogenic phenotype in adult females and a long-term
sex specific effects on hypothalamic kiss, POMC and Orexin
systems (55). Early post-natal administration of GEN is also
influencing the differentiation of other neural circuits in mice

not directly related to the control of metabolism (i.e., nitrergic,
vasopressinergic, and dopaminergic circuits, [(36), Ponti et al.
submitted].

GEN effect on humans is not clear (56). GEN metabolism
and bioavailability depends on gut microbioma (57) and GEN
exposure may be highly affected by vegan/vegetarian diets (58).
The use of soy-based meal replacement formula was effective in
lowering body weight and fat mass and reducing LDL cholesterol
in obese individuals and together with physical exercise has a
beneficial effect on leptin levels in postmenopausal women (59).
In contrast, healthy, normal-weight postmenopausal women did
not show improvement in metabolic parameters when given
high-dose isoflavones (60).

The complexity of the data on the animal and epidemiological
studies on the regulation of energetic metabolism, as well as on
other neuronal circuits indicate that GEN is a powerful natural
compound which may have at the same time highly beneficial
or detrimental effects (37) which are worth to be investigated
in more detail. Moreover, the contradictory experimental data
underline the importance of considering the timing of exposure,
the dose/concentration, the sex, and the species-specificity when
establishing safety recommendations for dietary GEN intake,
especially if in early-life.

Bisphenol A
Since 1930s, Bisphenol A (BPA) has been involved in the
manufacturing of many consumer products [e.g., plastics, PVC,
food packaging, thermal papers, (61)]. Thanks to its structure,
BPA interacts with a variety of hormone receptors (22): ERα,
ERβ, GPR30, and estrogen-related receptor γ [ERRγ, (22)].
Moreover, BPA could also interact with androgen receptor
(AR), peroxisome proliferator-activated receptor γ (PPARγ),
glucocorticoid receptor (GR), and thyroid hormone receptors
[THs, (22)]. These findings strongly suggest that BPA is a multi-
target compound that can act on a wide range of hormone-
sensitive elements. In fact, BPA has been described also as MDC
and the evidences of its role in the alterations of the metabolic
axis are increasing (11).

BPA potential obesogenic effects are related to alteration of
peripheral parameters, such as weight gain, modifications of
leptin or insulin plasma levels, or alterations in the adipose
tissue [for a recent review see (62)]. Few studies investigated
BPA effects on hypothalamic systems controlling food intake and
energy homeostasis, and they are mainly focused on the perinatal
exposure (18). BPA exposure of mice from gestational day 0
to Post Natal Day (PND) 21 through diet (1 or 20 µg BPA/kg
diet) in combination with HFD had a sexually dimorphic effect
on hypothalamic circuits: in males, it impairs glucose tolerance,
reduces POMCfiber innervation in the PVN and, in combination
with HFD, increases NPY and AgRP expression in the ARC.
In females, BPA induces a weight gain, increases food intake,
adiposity, and leptin blood levels, while in combination with
HFD reduces POMC mRNA expression in the ARC (18). Taken
together these data support the idea that BPA acts as a MDC in a
sexually dimorphic way [(22), Figure 1].

Gestational BPA exposure (5 mg/L BPA through drinking
water) of Sprague-Dawley rat dams increases the proliferation
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and differentiation of cultured primary hypothalamic neural
progenitors (NPCs), as well as the expression of AgRP, while the
expression of POMC is reduced (23). BPA is also acting on the
kiss system in both rats (63) and mice (64), inducing sexually
dimorphic alterations in the cell number of ARC and preoptic
populations. Moreover, perinatal treatment with BPA decreases
the percentage of kisspeptin-ir fibers in PVN during the postnatal
development in female mice (65).

While studies on BPA effects are slowly increasing, only a few
studies focus on BPA-analogs: postnatal exposure from PND21
for 10 weeks with 25-50-100 µg/kg BW/day of bisphenol S
(BPS) in drinking water affects orexigenic hypothalamic systems
resulting in a dose-dependent increase of AgRP mRNA level
but not in NPY one or in anorexigenic neuropeptides [POMC,
CART; (24)].

Considering the complex relationships between the different
circuits involved in the control of food intake and energy
homeostasis, further studies are needed to clarify all the effects
related to the exposure to BPA and to its less described analogs.
In fact, after recognizing the EDC’s properties of BPA (66),
the search for an appropriate substitute became a fundamental
problem to solve. At present, more than 15 BP analogs have been
synthesized (67, 68) but none is a real solution. The safety of
two of the most used BPA substitutes, BPS and bisphenol F, still
remain unclear: in vitro and in vivo studies, suggests that they
share with BPA not only the endocrine-disrupting properties but
also the metabolic disrupting ones (69–71).

Both GEN and BPA share a common xenoestrogenic activity,
therefore it is possible that theymay exert their action altering the
estrogens’ action on metabolism regulation. In fact, in mammals
estradiol (E2) has an important role on the regulation of food
intake and metabolism with an appetite-suppressing effect (12,
13). In female rodents, ovariectomy (OVX) induces an increased
body weight and hyper-adiposity, E2 treatment can robustly
inhibit food intake (72, 73). Similarly, in our species, women
report a decrease in appetite during the periovulatory stage of
ovarian cycle, when E2 reach a maximal peak (12, 74), while, the
development of obesity, type II diabetes and metabolic syndrome
in menopause has been correlated with the low E2 level (75, 76).
These metabolic diseases are partially reverted by E2 replacement
therapy (77, 78).

E2 action is mediated by ERs, in particular, the intracellular
ERα, may affect different aspects of regulation of food intake
and energy metabolism. This is confirmed by the observation
that in rodents deletion of ERα gene cause obesity (79) and the
blockage of the appetite-suppressing effect of E2 treatment (73).
In humans, the polymorphisms in the estrogen receptor alpha
gene have been associated with body fat distribution (80). The
suppression of ERα expression in VMH alters the anorexigenic
effect of E2 treatment, leading to obesity, hyperphagia, and
reduced energy expenditure in female mice and rats [(81),
Figure 1].

Moreover, in ARC and VMH, many neurons co-express ERα

and the isoform b of leptin receptor (LepRb) (82). Leptin levels
are correlated with E2 fluctuation: a decrease of E2 reduces
leptin secretion, which can be restored by E2 treatment (83).
Furthermore, both gonadal hormones (84, 85) and leptin (86)
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modulate Kisspeptin (kiss) anorexigenic neurons. In fact, kiss
peptide, co-localizes with ERα (87) and LepRb (88) in ARC.
Reciprocal connections link kiss cells, NPY and POMC neurons
(89): Kiss excites POMC system directly through the kiss receptor
(GPR54) expressed by POMC neurons (90) and inhibits NPY
neurons indirectly by enhancing GABA-mediated inhibitory
synaptic tone (91). Therefore, hypothalamic kiss system may be
a good target for E2 in the regulation of food intake and energy
metabolism along with the well-known control of reproduction.

Few studies analyzed sexual dimorphism on feeding circuits.
The World Health Organization (WHO) reported that the
obesity prevalently affects women, and it reaches at twice the rates
of men in some regions of the world (92). E2 has an important
anorexigenic role also in males: the deletion of ERα in mice,
(79, 93), as well as the mutation of ERα in men, causes obesity
(94, 95) (Figure 1). Moreover, E2 treatment in males reduces
body weight (4, 96). Sexual dimorphism is reported also for NPY
and POMC systems (97, 98) and for their receptors (99–101).

These data support the hypothesis that the metabolic
disrupting properties of GEN and BPA as well as of other
xenoestrogens are based on their ability in interfering with the
estrogenic regulation of metabolism and food intake [reviewed
in (11)].

Tributyltin
Organotin chemicals are compounds containing at least one
bond between tin and carbon. The most studied is Tributyltin
chloride (TBT), one of the most dangerous and toxic EDC
presents in the environment acting as MDC at both peripheral
(102) and central level [for recent reviews see (103–106)].
Due to its primarily use in antifouling paint for boats (94),
TBT exerted toxicological effects on marine organisms. As a
result, fish and fishery products are the main source of human
exposure.

Unlike GEN and BPA, Tributyltin chloride (TBT) is an
androgen agonist (it binds ARs), while it has no affinity
for ERα (107). More recently, TBT has been identified as
agonist ligand for RXR and PPARγ (108) and as a promoter
of adipogenesis, favoring obesity (109). In fact, PPARγ and
RXRγ are strongly express within hypothalamus (110) by nuclei
interesting in metabolic and food intake control (as VMH, LH,
PVN). Moreover, blocking with pharmacological antagonists or
with shRNA the central endogenous activation of PPARγ led
to negative energy balance, restored leptin-sensitivity in high-fat
diet (HFD)-fed rats (111).

Acute exposure to TBT induced a significant increase of cell
expressing c-fos in the ARC nucleus in adult mice (25), thus
suggesting a direct action of TBT at the hypothalamic level. A
few other studies confirmed this observation. In fact, a chronical
exposure to TBT induced a diminution of NPY expression in
adult male but not in female mice, a decrease of circulating
leptin level, and a decrease of Y1 receptor transgene expression
in both sexes (19). Also the POMC immunoreactive system was
influenced (26) with a significant decrease of POMC-positive
structures in female mice only (Figure 1).

In rats, TBT exposure increased significantly NPY expression
in the female together with an increase of food intake, while

male presented a decrease of AgRP and CART and appetite
(27). Another interesting study in rats investigated whether TBT
dependent metabolic disorders were correlated with abnormal
hypothalamus-pituitary-gonadal (HPG) axis function, as well as
kisspeptin action: after a chronic treatment with TBT, female
showed metabolic dysfunctions and HPG axis abnormalities,
providing evidence that TBT leads to toxic effects direct on the
HPG axis and/or indirectly by abnormal metabolic regulation of
the HPG axis (112). TBT has an action also on the hypothalamic-
pituitary-adrenal (HPA) axis function (113): a recent study
showed that, in female rats, TBT disrupts the morphophysiology
of the HPA, leading to an increase in CRH mRNA expression,
a decrease in ACTH release and an increase in corticosterone
levels (114). Moreover, many studies in vivo and in vitro have
shown TBT effects also on the thyroid morphophysiology and
the homeostasis of hypothalamus-pituitary-thyroid axis. TBT
may act altering T3 and T4 level (115, 116), down-regulating of
thyroid peroxidase, and up-regulating of the thyroid-stimulating
hormone receptor (117). TBT given to pregnant mice induces
hypothyroidism in the progeny, and induces a dose-dependent
increase of T3-independent TRH transcription levels in the
hypothalamus of dams (118).

Experimental and epidemiological evidence suggest that the
gut microbiota is responsible for significant immunologic,
neuronal and endocrine changes that lead to obesity (119), and,
recently, it was demonstrated that TBT affect the microbiota
system in treated mice, inducing dyslipidemia (120).

In conclusion, TBT has strong effects on both the periphery,
with its effects on the mechanisms promoting adipogenesis (121,
122) and the brain by altering the hypothalamic neuroendocrine
centers regulating food intake and metabolism (19, 26, 105, 123).
All data collected up to now strongly suggest that TBT is a potent
MDC.

CONCLUSION

In recent years, obesity and metabolic syndromes are
increased; even if it is necessary to consider the possible
genetic predispositions, and the excessive food intake without
appropriate physical exercise, probably the causes should be
sought also in numerous natural or synthetic substances that
pervade our environment, known as MDCs.

While the possible role as metabolic disruptors of these
substances, in particular BPA and TBT, is widely recognized both
at hypothalamic and peripheral level, the GEN effect remains
controversial on a peripheral level and still unclear, on the
hypothalamic neuroendocrine circuits involved in food intake.
Therefore, more studies are needed to clarify the interference
of these compounds on the complex neural circuit that controls
food intake and metabolism.
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