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Bone marrow adipose tissue (MAT) is distinct from white adipose tissue (WAT) or

brown adipose tissue (BAT) for its location, feature and function. As a largely ignored

adipose depot, it is situated in bone marrow space and resided with bone tissue

side-by-side. MAT is considered not only as a regulator of bone metabolism through

paracrine, but also as a functionally particular adipose tissue that may contribute to

global metabolism. Adipokines, inflammatory factors and other molecules derived from

bone marrow adipocytes may exert systematic effects. In this review, we summary the

evidence from several aspects including development, distribution, histological features

and phenotype to elaborate the basic characteristics of MAT. We discuss the association

between bone metabolism and MAT, and highlight our current understanding of this

special adipose tissue. We further demonstrate the probable relationship between MAT

and energy metabolism, as well as glucose metabolism. On the basis of preliminary

results from animal model and clinical studies, we propose that MAT has its unique

secretory and metabolic function, although there is no in-depth study at present.

Keywords: marrow adipose tissue, bone marrow, endocrine, bone mesenchymal stem cell, adipokine

INTRODUCTION

Adipose tissue, distributed in distinct depots in the whole body, may affect overall health through
endocrine function. White adipose tissue (WAT), as an energy-storing reservoir, principally
locates in the subcutaneous and visceral depots; while brown adipose tissue (BAT), specializing
in utilizing energy to produce heat, is primarily present above the clavicle and in the subscapular
region of the back (1, 2). In addition to brown adipocytes, brite/beige adipocytes, also expressing
uncoupling protein (Ucp) 1, principally store lipids and can be stimulated to transdifferentiate into
a “brown-like” state with well characterized-thermogenic function (2–4). The brite/beige fat has
been discovered in WAT in response to activators like cold exposure, indicating the involvement
of sympathetic signaling (5, 6). The adipocytes also exist in the bone marrow (BM), and such
marrow adipose tissue (MAT) accounts for over 10% of total adipose tissue mass in humans
(7, 8). MAT has long been considered as a relatively inert and underappreciated component in
the BM microenvironment but it has been recognized recently to have potentially significant and
diverse functions.

The tenet widely accepted is that the amount of MAT is increased with age, obesity, and
some metabolic disorders (9, 10). As the adipose tissue is one of the main components within
the BM niche, there is a need to characterize the properties and functions of MAT. Previous
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review literatures mainly focused on the relationship between
MAT and bone metabolism (11)/hematopoiesis (12). Although
it has been summarized the ability of MAT to secrete
traditional adipokines (7, 13) (including leptin and adiponectin),
this review, combining the latest reports, has discussed the
regulation of other small molecules derived from MAT,
including inflammatory factors and cytokines. In addition,
we have summarized the current evidence regarding the
fundamental features and regulatory factors of MAT and
discussed the inner relationships between MAT and some
metabolic disorders.

THE BASIC CHARACTERISTICS OF MAT

Development of MAT
BM, primarily consisting of adipocytes and hematopoietic red
blood cells (red marrow), is located in the cavities of trabecular
bone. At birth, BM cavities mainly contain active hematopoietic
red marrow. Then, MAT accumulates centripetally in a time-
dependent way: the process starts from the terminal phalanges,
continues to the appendicular skeleton and finally appears in the
axial skeleton (14, 15). Significantly, this depot makes up ∼50–
70% of the marrow volume by the age of 25 and accounting for
over 10% of total adipose mass in lean, healthy adults (8, 16–18).
Afterwards, the BM transforms slowly into MAT throughout the
rest of lifetime.

Distribution of MAT
Deep analysis of the BM requires researchers to deal with
the anatomy of bone. This explains why most of the
initial work on BM in the late 1800s and early 1900s
was relied on the relatively larger animals like rabbits or
cats (19–22), so as to appropriately observe and analyze
anatomical structure of BM. The existence of MAT, traditionally
considered to be yellow marrow, has been neglected for
many decades although it was mentioned in the early
literature as a long-standing knowledge (23). However, one
such cell population known as MAT or yellow marrow has
attracted increasing attention by the scientific community recent
years (24–26). In 1976, Tavassoli began to characterize the
marrow adipocytes and delineate their morphologic features
(24). Two histochemically distinct populations of fat cells,
one is presented within the red marrow staining positively
with performic acid-Schiff (PFAS) and the other is located
in the yellow marrow non-staining with PFAS (24). This
staining reaction is considered to rely on the oxidation of
ethylene to acetaldehyde in the unsaturated fat and treatment
with Schiff ’s reagent to produce a red/purple color. PFAS-
positive adipocytes in red marrow disappeared in response to
experimentally induced hemolysis, while non-stained adipocytes
remain unaffected (25). This implies that red marrow with PFAS-
positive cells is mainly composed of unsaturated lipids, while
yellow marrow with PFAS-negative cells primarily consists of
saturated lipids.

Indeed, 40 years later, Scheller and collaborators demonstrated
a different distribution of lipid saturation in the BM by proton
MRS (1H-MRS) from the findings of Tavassoli. MAT arisen first

and early in life in the distal skeleton (e.g., distal tibia and caudal
vertebrae) is identified as constitutive marrow adipose tissue
(cMAT) within the yellow marrow. The other subtype of MAT
exists in the lumbar/thoracic vertebrae, proximal limb skeleton,
hip, and ribs, which is formed late and in a more scattered
way. This type of MAT is known as regulated marrow adipose
tissue (rMAT) within the red marrow. Researchers have found
that distal marrow adipocytes (cMAT) contain more unsaturated
lipids than those in proximal/central skeletal regions (rMAT)
(26) (Figure 1A). This implies that the populations of rMAT
fail to stain with PFAS while their constitutive counterparts
readily display the characteristic pattern of PFAS staining (24,
27). Of note, this study yielded a conclusion of the increase
in cMAT unsaturation which is opposite to the theory based
on the proposed mechanism of PFAS staining. Nevertheless,
there is possibility that both regulated and constitutive MAT
adipocytes exist in the same position (26). It is possible
that the rMAT can be matured into the stable cMAT in
some conditions.

Histological Features of MAT
Similarly to WAT, MAT pre-adipocytes accumulate lipid
that merges into a unilocular droplet, replacing nucleus and
cytoplasm gradually (14, 28). The average MAT adipocyte
diameter is measured and calculated to be 30–40mm through
osmium-based MAT analysis (26). BAT and brite/beige
adipocytes are smaller and occupied by high mitochondrial
content, as well as multilocular lipid droplet (29), while neither
of which is observed in BM adipocytes (8, 30). Analysis of
C3H mice and Sprague-Dawley rats demonstrated that cMAT
adipocytes are significantly larger than rMAT adipocytes (26).
MAT in diet-induced obesity mice show greater adipocyte
size and number, while both measures are reduced with
exercise (31–33).

Phenotype of MAT
It has been hypothesized that the metabolic profile of MAT
resembles both BAT and WAT. On the one hand, MAT is
assumed to have a similar feature to BAT, as the volume of MAT
is adjusted by temperature (34). Compared with BAT, the entire
tibia bones express higher BAT-specific gene markers, including
modulators of thermogenesis such as deiodinase (Dio) 2 and
peroxisome proliferator-activated receptor-gamma coactivator
(Pgc) 1α, as well as transcription factor positive regulatory
domain-containing (Prdm) 16 in C57BL6/J mice (35). However,
the expression of Ucp1 in tibia was not suggested to be higher.
Sulston et al. demonstrated that antidiabetic thiazolidinedione
(TZD) rosiglitazone upregulated Ucp1 in BAT, but not in MAT
of tibia (30), revealing that MAT of tibia may not share the
thermogenic properties. Moreover, Ambrosi et al. indicated that
the gene expression patterns of MAT in tibia are similar to
inguinal WAT (iWAT) rather than BAT. MAT expresses similar
levels of peroxisome proliferator-activated receptor (Ppar) γ and
CCAAT/enhancer-binding protein (Cebp) α and low level of
Ucp1 (36). However, high expression of Ucp1 was found in
vertebral BM in humans and ICR mice (37). Taken together,
the seemingly contradictory results tend to suggest that the
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FIGURE 1 | (A) Comparison of rMAT and cMAT. (B,C) Regulatory factors of MAT.

potential presence of active brite/beige adipocytes in MAT
of vertebrae in mammals. That means, marrow adipocytic
lineage may possess the BAT-like thermogenic properties
in vertebrae, but often exhibits a WAT-related phenotype
in tibia.

Additionally, both in human and rodent bones, cMAT is
reported to express elevated levels of the adipogenic transcription
factors (e.g., Cebpα and Cebpβ) and be principally composed
of unsaturated lipids. Conversely, rMAT is described to express
reduced Cebpα and Cebpβ and be mainly constituted of
saturated lipids (26, 28) (Figure 1A). These evidences imply
that constitutive and regulated MATs not only differ in their
position but also exhibit distinct features in their function.
Since the time for identification of MAT classification is
not long, there still remains much unclear about cMAT
and rMAT. It is unknown whether they originate from a
common progenitor or not and how the microenvironment
affects their development. In addition, we also need to explore
the effect of each subtype on metabolism not only in bone
turnover but also in the whole body during some specific
physiopathological conditions.

REGULATORY FACTORS OF MAT

MAT Expansion
MAT alters its volume in order to adapt to various physiologic
and pathologic conditions. Indeed, MAT is a potentially critical
participant in bone homeostasis since osteoblasts and adipocytes
are derived from the same common progenitor cells-bone
marrow mesenchymal stem cells (MSCs) (38–41). Marrow
adiposity is correlated with low bone mass, indicating that the
decision for MSCs to differentiate into osteoblasts or adipocytes
may create a tug-of-war between MAT and bone tissue (42, 43).

Many osteoporotic states in humans, including aging (36, 44–
46), menopause (47, 48), skeletal disuse or unloading (49, 50),
alcohol abuse (51), and anorexia nervosa (52, 53), are associated
with increased bone marrow adiposity, suggesting the balance
betweenMAT and bonemineral density (BMD) has been broken.
Researchers have also shown that glucocorticoids (18), TZDs
(30, 31, 41, 54–59), caloric restriction (8, 18, 60), chemotherapy
and/or radiation (8), obesity (36, 45, 61), high-fat diet (HFD)
(33, 61–64), and hormonal factors such as estrogen withdrawal
(46, 48), fibroblast growth factor (FGF) 21 administration (65)
are related to a significant increase in MAT. However, increased
marrow fat led by HFD or obesity is coincided with preserved
or increased bone density (33, 61–64). Thompson et al. also
demonstrated that des-octanoyl ghrelin, a major circulating
form of ghrelin, promotes BM adipogenesis in vivo by a direct
peripheral action (66). Besides, a recent work demonstrates
a direct role for sclerostin (Sost), secreted from osteocytes,
to induce BM adipogenesis through inhibiting Wnt signaling
(67) (Figure 1B). It has been reported that inhibition of Wnt
signaling increased expression of adipogenic transcription factors
Pparγ and Cebpα and stimulated adipogenesis (68–70). Levels
of mRNA expression adipogenesis markers Pparγ2, lipoprotein
lipase (LPL), adipocyte-specific fatty acid binding protein (aP2),
and adiponectin were lower when incubated with adipocytes
induction medium containing wnt3a than without wnt3a (71).
Osteocyte-derived Sost induced adipogenesis in mouse primary
bone marrow MSCs, increased the expression of Pparγ and
Cebpα, and simultaneously decreased the expression of β-catenin
responsive genes Axin2 and Smad6 (67). The above results
demonstrate Wnt signaling inhibits adipogenic differentiation of
mouseMSCs and humanMSCs, and Sost derived from osteocytes
could inhibit Wnt signaling, thus promoting adipogenesis
in BM.
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MAT Loss
The exercise or mechanical loading have been reported to lower
MAT volume (31, 33, 57, 63, 64, 72–75). The exercise can reduce
MAT adipocytes in both lean and obese mice (33). Moreover,
metformin, the most widely prescribed medicine for type 2
diabetes (T2D) worldwide, ameliorates elevated MAT induced
by HFD in tibia (61). Besides, vanadate impedes adipogenesis
significantly in MSCs within BM (76). A recent study revealed
that proximal rMAT adipocytes are decreased in size and
number in response to cold exposure (26). Some endocrine
signals like parathyroid hormone (PTH) also strongly influence
the extent of MAT. Fan et al. found MAT increased through
conditional deletion of the PTH/PTHrP receptor (PTH1R) in
MSCs using Prx1-Cre recombinase (77). Moreover, intermittent
PTH administration can effectively reduce the increased marrow
fat in mice and osteoporotic patients (77, 78) (Figure 1C).
Therefore, many regulatory factors lead to the changes of
MAT. This reflects the strong plasticity of MAT and implies its
vital functions.

SECRETORY PROPERTY OF MAT

Extracellular Vesicles
The adipogenic/osteogenic differentiation of MSCs has always
been considered to affect bone metabolism. In fact, MSC
differentiation and even bone metabolism could be directly
regulated by mature BM fat cells. Human MSC-derived
osteoblasts demonstrated an elevated adipogenic profile and
reduced osteogenic markers such as osteocalcin (OC) upon co-
culturing with humanMSC-derived adipocytes in the early study
(79). In recent years, the same research group has explored
the mechanism underlying this modulation. Adipocytes have
been described as liberating extracellular vesicles (EVs) (80)
(Figure 2). However, the definition of EVs is still lacking.
It is conventionally believed that EVs are heterogeneous in
size, encompassing the so-called microparticles/microvesicles
(>100 nm) and exosomes (<100 nm) in diameter (81, 82). The
EVs from the human MSC-derived adipocytes were observed
∼30–100 nm in size under transmission electron microscopy,
but their protein profile remains to be characterized to classify
(80). The EVs contain adipocyte specific transcripts e.g., Pparγ,
leptin, Cebpα, Cebpδ, and anti-osteoblastic miRNAs including
miR-138, miR-30c, miR-125a, miR-125b, and miR-31 (80). These
EVs are probably involved in the down-regulation of osteogenesis
in the co-culture system. Early studies have demonstrated that
adipocytes have the ability to secrete exosomes (83, 84). Thus,
the EVs in this study should be more accurately called exosomes.
The evidence suggests that BM fat cells impact the phenotype
of osteoblasts through paracrine of adipogenic transcripts and
anti-osteoblastic miRNAs.

Leptin
Leptin and adiponectin are known for their role in the regulation
of global energy metabolism from 1990s (8, 85–88). Leptin is
closely correlated with obesity, which forms a sense of satiety
in the brain and reserves energy in peripheral tissues via leptin
receptor (LepR) (89). Expression of leptin in primary culture

system of human BM adpocytes was first confirmed in 1998 (88).
Later studies proved that humanMSC-derivedmature adipocytes
and human primary BM adipocytes can express and secrete leptin
(90–94). Moreover, Liu et al. compared the expression of leptin in
MAT and epididymal WAT (eWAT) in male C57BL/6J mice by
microarray analysis. Their results showed that leptin is expressed
at lower level in MAT than in eWAT (95). However, MAT
expresses the similar level of leptin as iWAT and perirenal WAT
(pWAT) in rabbits, while MAT secretes distinct concentration
of leptin from WAT in humans (8). Nevertheless, the different
secretion volume of leptin between MAT and WAT has not been
studied in depth. It remains to be answered whether MAT could
release more metabolic leptin that the traditional WAT.

LepR is highly expressed on MSCs (96). Previous research has
suggested that leptin directly inhibits adipogenic differentiation
and enhances osteogenesis in MSCs (97). Central or peripheral
administration of leptin notably decreases the size and number
of BM adipocytes in the leptin-deficient ob/ob mice (98–100).
Besides, leptin treatment also blunts marrow fat in type 1 diabetic
mice and calorie-restricted mice (101, 102). Compared to earlier
studies, researchers have gotten different results recent years.
Yue et al. found that limb bones exhibited a lower adipogenesis
with conditional deletion of LepR from limb MSCs using Prx1-
Cre, but not from the axial skeleton or hypothalamic neurons
(103). Further studies suggested leptin increased adipogenesis by
activating Janus kinase (Jak) 2/signal transducer and activator
of transcription (Stat) 3 signaling pathway in MSCs (103)
(Figure 2). The conflicting results may be resulted from the
different animal models. A global gene knockout mouse model
was used in the previous studies. However, the animal model
with conditional deletion of leptin/LepR signaling in MSCs of
limb bones was used in recent years, which is more intuitive and
rigorous for exploring the role of leptin in MAT.

Adiponectin
Since its discovery in 1995, adiponectin has gradually been
considered as a biomarker for increased risk of insulin resistance
(IR), cardiovascular diseases, bone loss, and certain cancers
(104). Although adiponectin is derived from adipocytes, the
plasma concentration of adiponectin is paradoxically decreased
during obesity (105). As early as 2003, Delporte et al. have
found that the plasma level of adiponectin is elevated in
women with anorexia nervosa (106). Adiponectin is expressed
in adipocytes derived from human and mouse MSCs (107, 108)
and human MSC-derived adipocytes can secrete adiponectin
(91, 109). However, the results from different groups showed
diverse amount of adiponectin produced by BM adipocyte or
MAT. Compared to peripheral adipocytes, mature human MSC-
derived adipocytes, and human primary BM adipocytes express
lower level adiponectin (110), which has also been confirmed in
primary BM adipocytes from mice (95). In addition, the amount
of adiponectin secreted byMSC-derived adipocytes is reported to
be very low (94), even after stimulated with glucocorticoids (111,
112). However, Cawthorn et al. demonstrated that adiponectin
secretion is greater from MAT than from WAT in conditions
such as anorexia nervosa and cancer therapy in humans (8,
13). This discrepancy could be related to the fact that some
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FIGURE 2 | Secretion of MAT as well as adipocyte-derived molecules in the regulation of bone metabolism in the bone marrow cavity. MAT could secrete EVs, leptin,

adiponectin, inflammatory factors, RANKL, and DPP4. These factors regulate bone metabolism from different aspects. Among them, adiponectin has been confirmed

to enter into the circulation. EVs cause a phenotypic transformation of osteoblast to adipocyte. Leptin regulates bone metabolism in three ways (À-Â). Moreover,

Adiponectin regulates bone metabolism through four pathways (I-IV). Inflammatory cytokines promote osteoclast formation and adipocyte differentiation. RANKL

promote osteoclast formation. The role of DPP4 in bone marrow cavity remains unclear.

groups analyzed the isolated BM adipocytes while Cawthorn
et al. studied the intact MAT, which has been discussed before
(7). It is undeniable that MAT has the ability to express and
secrete adiponectin which can be released into the circulation
(8, 30) to modulate systemic metabolism through endocrine
effects (Figure 2). In addition, osteoblasts and osteoclasts are
both in close contact with adipocytes in the BM, which creates a
favorable topographic distribution for the crosstalk among them.

Inflammatory Factors
The theme of MAT related pro-inflammatory factor has been
of great significance. Compared with the epididymal white
adipocytes, an independent transcriptomic study has revealed
a unique phenotype for BM adipocytes characterized by higher
levels of inflammatory response genes, such as tumor necrosis
factor (TNF)-α, interleukin (IL)-6, and IL-1β (95) (Figure 2). The
expression of TNF-α and IL1-β in BM adipocytes was also higher
than that of visceral adipocytes under normal diet in C57BL/6J
mice. Of note, mRNA level of pro-inflammatory cytokines was
increased in the visceral adipocytes, while it was decreased in
the BM adipocytes in high fat-induced obese mice (113). This
suggests that MAT does not show the similar inflammatory
response as WAT when stimulated by HFD. However, another
research reported that human BM adipocytes in primary culture
secrete only little amounts of IL1-β and TNF-α, but significant

levels of IL-6 (114). Whatever, the BM adipocytes have a
great potential to secrete pro-inflammatory factors, which may
regulate bone metabolism (115, 116) and haematopoiesis (117)
through paracrine, as well as affect the whole body metabolism
by entering into the circulation.

RANKL and DPP4
Fan and collaborators revealed BM adipocytes secrete receptor
activator of nuclear factor kappa B ligand (RANKL) (77).
In this study, they generated a mouse model with PTH1R
deleted in the bone MSCs. They found that Pref-1 (pre-
adipocyte marker) and RANKL tag synchronously were up-
regulated in B220 (B cell lineage marker) negative cells in the
knockout mice by flow cytometry. In addition, mRNA expression
of RANKL is remarkable higher in the isolated marrow
adipocytes than the whole BM. The above evidence suggests
that MAT secretes RANKL (77) (Figure 2). Moreover, primary
human BM adipocytes can also express RANKL to promote
osteoclast differentiation by co-cultures of pre-osteoclasts with
BM adipocytes (118).

As we know, dipeptidyl peptidase (DPP) 4 is a protease
and its inhibitors have been widely used for the treatment
of T2D (119). CD26, the membrane-bound form of DPP4, is
enriched on the surface of adipogenic cell populations, but not
osteochondrogenic progenitor cells. The shed CD26, also called
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DDP4, enters into the BM sera after adipogenic differentiation
(36). The amounts of DPP4 are increased in distal tibiae with
aging (36). These findings implyMATmay be involved in glucose
metabolism through secreting DDP4. Overall, more potential of
MAT for secreting factors remains to be clarified.

MAT AND METABOLISM

MAT and Bone Metabolism
As early as 2001, Justesen et al. found an age-related increase
in MAT and decline in trabecular bone volume by iliac crest
bone biopsies (120). Compared with age-matched controls,
patients with osteoporosis exhibited an increased MAT (120),
which suggests a strong correlation between osteoporosis and
MAT. Furthermore, in diabetic mice, the trabecular bone loss is
significantly correlated with the increased BM adiposity (121).
In the young people, MAT was found to be negatively correlated
with the amount of bone in the axial and appendicular skeleton
(122, 123). Similar performance also occurs in the pelvis of
the elderly (124) and children (125). In African-American and
Caucasian men and women, a negative relationship existed
between MRI-measured MAT and hip and lumbar BMD
(126, 127). However, opposite result has revealed a positive
relationship between MAT and bone mineral content (BMC) in
white and non-Hispanic black girls aged at 4–10 years (128).
Subjects with metabolic disorders such as morbid obesity and
T2D have higherMAT but also higher femoral neck BMD (45). In
short, most studies have shown a negative relationship between
MAT and BMD in humans. But some studies suggest that BMC
or BMD is positively associated with MAT, which reveals the
relationship between marrow adiposity and bone mass is not a
simple inverse correlation.

The communication between MAT and bone is complex.
Factors including EVs, adipokines (leptin and adiponectin, etc.),
inflammatory factors (IL-6 and TNF-α, etc.), and RANKL derived
from MAT can regulate bone metabolism. EVs, containing
adipocyte specific transcripts, down-regulate osteogenesis (79,
80). Leptin regulates bone metabolism at least in three
ways. First, leptin decreases bone formation by activating
Jak2/Stat3 signaling in MSCs (103). Second, leptin increases
sympathetic activity through an indirect way depending on
inhibition of 5-HT synthesis in raphe nuclei of brainstem (129,
130). The sympathetic signaling strengthens bone resorption
through an ATF4-mediated process, and reduces bone formation
through a CREB-mediated process (131, 132). Third, leptin
also directly stimulates LepR in hypothalamic arcuate nuclei
neurons and elevates Cart (cocaine amphetamine regulated
transcript) expression, which decreases RANKL expression via
an unknown mechanism, and thereby decreases bone resorption
(133) (Figure 2).

The effect of adiponectin on bone metabolism presents a
confusing situation. Serum adiponectin is negatively correlated
with BMD in young healthy men (134), male hemodialysis
patients (135), and men with spinal cord injury (136). In
addition, adiponectin is also associated with decrease of bone
mass in childhood (137). However, studies have shown that
circulating level of adiponectin is not related with BMD

in postmenopausal women (138, 139). Significant decrease
of BMD was observed in adiponectin-knockout mice (140),
suggesting a positive effect of adiponectin on bone geometry and
density. Adiponectin regulates bone metabolism through four
pathways. First, adiponectin signals could activate p38/mitogen-
activated protein kinase (MAPK) pathway to increase RANKL
expression in osteoblast through adiponectin receptor (AdipoR)
1 (141). Moreover, another signaling phosphoinositide 3-
kinase (PI3K)/AKT pathway in osteoblasts is also induced
simultaneously, resulting in inhibition of forkhead box protein
O (FoxO) 1 and decrease of osteoblasts proliferation, as well
as increase of osteoblasts apoptosis (142). The synergistic effect
is to reduce osteogenesis and increase bone resorption, leading
to decreased bone mass. Second, in MSCs, adiponectin serially
activates AdipoR1, p38/MAPK, and the c-Jun signaling pathway
to induce cyclooxygenase (COX) 2 expression (143). In this
way, the adipocyte differentiation of MSCs is inhibited (144)
and osteogenic differentiation is promoted. Third, in pre-
osteoclast, adiponectin treatment significantly induces Appl1-
mediated down-regulation of AKT1 activity and removes
glycogen synthase kinase (GSK)-3β-mediated phosphorylation
of nuclear factor of activated T cells (NFAT)2, giving rise
to expressions of NFAT2-targeted genes decreased (145). The
activation of this pathway leads to the inhibition of RANKL-
induced osteoclastogenesis and increase of bone mass. Forth,
adiponectin signals decrease the sympathetic tone also through
FoxO1 in neurons of the locus coeruleus, further lower
expression of RANKL, thereby inhibiting bone resorption (142).
In the four signaling pathways above, the first one reduces
bone mass while the other three increase bone mass. Previous
study has suggested that adiponectin regulates bone mass via
opposite central and peripheral mechanisms through FoxO1
(142) (Figure 2). It is unclear that the net effect of adiponectin on
bone mass. Under different pathophysiological conditions, there
must be a dominant pathway for adiponectin signal transduction.

The deletion of inflammatory factors like IL-6 and TNF-α
has been reported to be a protective effect on HFD-induced
trabecular bone loss (115, 116), but the molecular mechanisms
is unclear. In addition, other adipocyte-secreted molecules,
including chemerin (146–149), resistin (150, 151), visfatin (152),
and omentin-1 (153, 154) have also been shown to modulate
bone metabolism. But it is not clear if they are also expressed
in BM adipocytes. Of course, only certain factors play a
dominant role in regulating bone metabolism under specific
conditions. This partly explains why adipocytes and osteoblasts
share common precursor (39), but they are not always in a
trade-off relationship. There are few studies on the molecular
mechanism of MAT affecting bone metabolism. Future studies
should pay more attention to it in order to predict the positive or
negative regulation of MAT on bone metabolism under different
pathophysiological conditions.

MAT and Energy Metabolism
MAT as an Energy Depot in Bone
WAT reflects the high capacity of storing lipids. However, the
transfer of lipids from WAT to other depots reflects the ability
of retaining lipids is not a unique feature of WAT. Marrow
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adipocytes store significant quantities of fat and express insulin
receptor (InsR) (34), they also respond to insulin-sensitizing
anti-diabetic TZDs (54). This evidence tightly links MAT with
the energy metabolism. Fatty acids and lipids can be used to
generate adenosine triphosphate (ATP) for osteoblasts via the
tricarboxylic acid cycle, although much less is known about
their utilization (155). Studies have demonstrated that fatty acids
can also be metabolized to generate ATP via Wnt activation in
osteoblasts (155, 156). Although the relative concentrations and
degree of saturation may be different (26, 157), fatty acids and
lipids constantly circulate and are also present in BM sera, which
favoring MAT as an energy depot in bone.

HFD in mice and obesity in humans promote expansion
of bone MAT (45, 113), suggesting a stage of energy reserve.
A recent research showed that HFD significantly increased
expression of lipid storage marker fat-specific protein (FSP) 27,
LepR and perilipin (PLIN) 5 in total bone tissue (33). This data
suggests that there is an increase in lipid storage in MAT. In
addition, running can improve bone quantity and quality while
reduce the diameter and number of marrow adipocytes in obese
mice (33). PLIN3 has been reported to play an important role in
the β-oxidation of lipids as well as in promoting basal lipolysis
(158, 159). Expression of PLIN3 is increased in MAT after
running. In summary, these findings indicate that the marrow fat
may be utilized as fuel to enhance bone formation.

MAT May Not Provide Energy During Acute Starvation
Nevertheless, other studies suggested that MAT is not a
preferential position to provide energy. It seems that there
is no connection between MAT and visceral adipose tissue
(VAT) (160). During malnutrition, MAT does not decrease
as a result of energy supply. Studies have shown that caloric
restriction in animals and anorexia nervosa in humans lead
to high marrow adiposity (53, 60). The incremental amount
of MAT during nutritional deprivation may result from the
differentiation of MSCs into adipocytes (8, 60). As early as
1979, Bathija et al. found that MAT is not catabolized during
acute starvation (161). Moreover, the latest research has shown
that MAT has the capacity to respond to β-adrenergic stimuli,
however, its responses are muted in states of fasting and caloric
restriction (162). This suggests that MAT may not participate in
lipiolysis stimulated by β-adrenergic neuron to provide energy as
peripheral WAT in the absence of energy.

MAT and Glucose Metabolism
MAT and TZDs
TZD compounds, Pparγ agonists, have been widely used for
the treatment of T2D and impaired glucose tolerance (IGT)
with IR or hyperinsulinemia by reducing circulating free fatty
acids (FFAs) and strengthening insulin sensitivity (163). TZDs
stimulate Pparγ activation in adipose tissue and upregulate
expression levels of genes involved in lipid metabolism, such
as scavenger receptor CD36, fatty acid-binding protein (FABP)
4 and LPL (164, 165). Elevated expression of these genes
promotes FFAs to translocate into adipose tissue, thus decreases
serum FFAs concentration and eventually ameliorates IR. TZD-
induced Pparγ activation contributes to MSCs differentiating

into adipocytic lineage and is associated with bone loss and
marrow adiposity, especially in aging female mice (56). These
lines of evidence highlight the clinical observations that TZDs
increase fracture risk in postmenopausal women (166, 167).
Correspondingly, Pparγ inhibitor inhibits BM adiposity in mice
after radiation exposure and in streptozotocin (STZ)-induced
diabetic mice (168, 169). This evidence indicates the close
relationship between MAT and glucose metabolism.

MAT Responds Differently to Insulin Stimuli
MAT may respond differently to insulin stimuli compared to
peripheral WAT. Studies have shown that marrow adipocytes
express InsR (34). In obesity and T2D, peripheral WAT develops
IR and exhibits impaired insulin signaling (170). However, HFD-
induced obesity did not impair insulin sensitivity in adipocytic
progenitors of BM, as BM shows normal levels of pAKT as well
as insulin signaling genes after insulin stimulation (113). This
indicates that MAT has different insulin sensitivity fromWAT.

MAT and IR
The augment of MAT has been observed in some conditions
such as aging, and glucocorticoid-induced osteoporosis (GIOP),
both of which are accompanied with IR (45, 171). Other
results clearly showing a positive connection between MAT and
glycated hemoglobin (HbA1c) or serum glucose concentrations
(45, 160, 171). The adipocyte markers and marrow adiposity
are increased in tibias in STZ-induced diabetic mouse model
(121, 172). Moreover, patients with diabetes show a higher MAT
compared to non-diabetic persons (173). In short, IR and diabetes
status are strongly associated with increased MAT. However,
no studies have investigated the molecular mechanisms as well
as the crosstalk between MAT and glucose metabolism. We
speculate MAT may regulate insulin sensitivity by secreting
certainmolecules like DPP4 and TNF-α. A latest research showed
that hepatocyte DPP4 promotes VAT inflammation and IR in
obesity (174). TNF-α is also involved in obesity-linked IR (175).
Moreover, studies have shown that MAT can release DPP4 and
TNF-α (36, 95). Thus, MAT may increase IR through secreting
DPP4 and TNF-α, but more evidence is required to verify
this view.

MAT and Insulin Sensitivity
Nonetheless, evidence also demonstrated there are no differences
in MAT by diabetic status (176, 177). It has been summarized
in the past that leptin and adiponectin can regulate food
intake, lipid metabolism, glucose metabolism, etc. (178, 179).
To our knowledge, MAT may secrete adiponectin and leptin
to regulate blood glucose levels or insulin sensitivity. Previous
study has shown that serum levels of adiponectin are positively
associated with insulin sensitivity (105, 180). Insulin-resistant
states including obesity and T2D are correlated closely to
decreased adiponectin (105, 180, 181). Although adiponectin
is increased in patients with type 1 diabetes (T1D), its levels
are still positively correlated to insulin sensitivity (182). Studies
have revealed that adiponectin can activate fatty acid oxidation
and glucose uptake by increasing AMP-activated protein kinase
(AMPK) phosphorylation and Pparα activity (183). A recent
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study of 50 obese and non-obese premenopausal women
revealed a negative relationship between BM adiposity and IR,
possibly mediated by increased secretion of adiponectin (184).
In addition, it has been reported that more MAT content and
adiponectin exist in the non-obese group (8, 184). Furthermore,
leptin is increased in obesity inversely. The leptin signal is
transmitted by Jak/Stat pathway to regulate food intake and
body weight. In addition, PI3K signaling stimulated by leptin
appears to take part in the decrease of blood glucose level (183).
Therefore, adiponectin and leptin can increase insulin sensitivity
and reduce blood glucose level, which is contrary to the effect of
DPP4 and TNF-α derived fromMAT. In brief, some studies have
shown that MAT is positively related to IR and blood glucose
levels, while some other studies have shown no correlation. More
in-depth studies are needed to clarify the exact relationship.

CONCLUDING PERSPECTIVES

Substantial evidence have indicated that MAT secretes EVs,
leptin, adiponectin, inflammatory cytokines such as IL-6 and
TNF-α, RANKL, as well as DPP4. However, it has not been
proved synchronously that these factors are both derived
from BM fat cells and also regulate bone metabolism, energy
metabolism and glucose metabolism. Since BM adipocytes
and osteoblasts are derived from the same precursor cells,
both of which exhibit a push-pull relationship in most
conditions. Nevertheless, some studies have also shown a
positive correlation between adipocytes and osteoblasts. The

reason for these contradictory results has not been studied

in-depth. The available evidence have manifested MAT can
provide energy for osteoblasts during exercise, while the
hypothesis of MAT acting as an energy supplier has been
doubted as MAT is increased during caloric restriction and
HFD. Animal and human studies have found that MAT and
IR are inextricably linked. We infer that DPP4 and TNF-α
secreted by MAT may increase IR, yet adiponectin and leptin
increase insulin sensitivity. Because of the opposite effects of
these hormones, different studies have yielded different results.
As reviewed herein, MAT may affect global metabolism as a
novel endocrine organ. Future studies will be critical to gain
insight into the role of MAT and its relationship to bone and
global metabolism.
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