
MINI REVIEW
published: 20 February 2019

doi: 10.3389/fendo.2019.00094

Frontiers in Endocrinology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 94

Edited by:

Lori Robin Bernstein,

Pregmama, LLC, United States

Reviewed by:

Frank Nawroth,

Amedes Group GmbH, Germany

Giuliano Marchetti Bedoschi,

University of São Paulo, Brazil

*Correspondence:

Danilo Cimadomo

cimadomo@generaroma.it

Specialty section:

This article was submitted to

Reproduction,

a section of the journal

Frontiers in Endocrinology

Received: 07 June 2018

Accepted: 01 February 2019

Published: 20 February 2019

Citation:

Ubaldi FM, Cimadomo D, Vaiarelli A,

Fabozzi G, Venturella R, Maggiulli R,

Mazzilli R, Ferrero S, Palagiano A and

Rienzi L (2019) Advanced Maternal

Age in IVF: Still a Challenge? The

Present and the Future of Its

Treatment. Front. Endocrinol. 10:94.

doi: 10.3389/fendo.2019.00094

Advanced Maternal Age in IVF: Still a
Challenge? The Present and the
Future of Its Treatment
Filippo Maria Ubaldi 1, Danilo Cimadomo 1*, Alberto Vaiarelli 1, Gemma Fabozzi 1,

Roberta Venturella 2, Roberta Maggiulli 1, Rossella Mazzilli 1,3, Susanna Ferrero 1,

Antonio Palagiano 4 and Laura Rienzi 1

1Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy, 2Department of Experimental and Clinical

Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy, 3 Andrology Unit, Department of Clinical and Molecular

Medicine, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy, 4Department of Gynecological, Obstetrical and

Reproductive Sciences, University of Campania Luigi Vanvitelli, Caserta, Italy

Advanced maternal age (AMA; >35 year) is associated with a decline in both ovarian

reserve and oocyte competence. At present, no remedies are available to counteract the

aging-related fertility decay, however different therapeutic approaches can be offered to

women older than 35 year undergoing IVF. This review summarizes the main current

strategies proposed for the treatment of AMA: (i) oocyte cryopreservation to conduct

fertility preservation for medical reasons or “social freezing” for non-medical reasons, (ii)

personalized controlled ovarian stimulation to maximize the exploitation of the ovarian

reserve in each patient, (iii) enhancement of embryo selection via blastocyst-stage

preimplantation genetic testing for aneuploidies and frozen single embryo transfer, or (iv)

oocyte donation in case of minimal/null residual chance of pregnancy. Future strategies

and tools are in the pipeline that might minimize the risks of AMA through non-invasive

approaches for embryo selection (e.g., molecular analyses of leftover products of IVF,

such as spent culture media). These are yet challenging but potentially ground-breaking

perspectives promising a lower clinical workload with a higher cost-effectiveness. We

also reviewed emerging experimental therapeutic approaches to attempt at restoring

maternal reproductive potential, e.g., spindle-chromosomal complex, pronuclear or

mitochondrial transfer, and chromosome therapy. In vitro generation of gametes is also

an intriguing challenge for the future. Lastly, since infertility is a social issue, social

campaigns, and education among future generations are desirable to promote the

awareness of the impact of age and lifestyle habits upon fertility. This should be a duty

of the clinical operators in this field.

Keywords: advanced maternal age, ovarian stimulation, embryo selection, single embryo transfer, oocyte

donation, oocyte cryopreservation

INTRODUCTION

Advanced maternal age (AMA) is a critical social and clinical issue. Currently, the proportion
of women delaying childbearing until the late 3rd–early 4th decade of life has greatly increased,
especially in Western societies (1, 2). The reasons can be associated with increased education
and woman employment, career goals, highly-effective contraceptive strategies, paucity of social
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incentives to support parenthood, as well as a diffused and
misleading idea that IVF can compensate for the natural decline
in infertility with aging (1, 3). The misperception about the
resolutive effect of IVF is due to both a lack of knowledge and
its growing popularity. This trend is challenging for fertility
specialists who are witnessing an increase in the number of
women seeking a pregnancy who are older than 35 year, namely
the cut-off age to consider a patient of AMA (4). Such threshold is
mainly based upon a genetic background: women older than 35
year experience a dramatic increase in embryo aneuploidy rate
from a 30% baseline production up to 90% in their late 40s prior
to the menopause (5, 6). Specifically, the chance of producing a
chromosomally-normal blastocyst might be even lower than 5%
in women older than 43 year (7, 8). This can be attributed, on
the one hand to the gradual depletion of the ovarian reserve, and
on the other hand to the progressive decrease in oocyte/embryo
competence, defined as the ability to produce a live birth (9–11).
A number of processes have been suggested as causative for the
latter: dysfunctional cohesins (12), reduced stringency of spindle-
assembly checkpoint (SAC) (13–15), shortening of telomeres
(16, 17), and impaired mitochondrial metabolic activity (18, 19).
All these processes are directly or indirectly involved in proper
chromosome segregation, and therefore in modulating embryo
competence (11).

In AMA patients, an infertility work-up is recommended
already after 6 months of regular unprotected intercourse, since
the impact of time upon couple’s reproductive chances clearly
exceeds any other putative cause of infertility (20–22). A multi-
marker approach to evaluate the ovarian reserve has been
proposed, which mainly encompasses basal follicle stimulating
hormone (FSH), anti-mullerian hormone (AMH) and antral
follicle count (AFC) (23). Moreover, many other factors might
impact woman reproductive potential, therefore to rule them
out some other investigations are recommended, such as thyroid
function, coagulation disorders, previous chlamydial infections,
tubal patency, and sperm quality. A thorough counseling
is also pivotal, which must cover any possible gestational
complication, such as hypertension, diabetes, preeclampsia,
placental abruption, intrauterine growth restriction, placenta
previa, low birth-weight, pre-term delivery, fetal deaths, and a
higher incidence of obstetrical conditions: a glance upon pre-
conception education is the very first step for a physician to
counteract misinformation (20).

The aim of this review is to focus on current and
emerging experimental therapeutic approaches for AMA patients
undergoing IVF (for a summary see Figure 1).

CURRENT MANAGEMENT OF AMA
PATIENTS IN IVF

Even if infertility is classified as a disease by the World Health
Organization (WHO) (24), it does not automatically require a
medical treatment. Therefore, the physicians must propose a
treatment based on scientific evidences as well as patient-specific
careful investigation: any therapeutic approach must be planned
together with the couple attempting to achieve the best clinical

outcomes with respect to patients’ will and possibilities. In this
scenario, the counseling is critical, especially in AMA patients.

The management of AMA should be based on female age, a
correct evaluation of the ovarian reserve and additional factors
that can impair each couple’s chance to conceive. The well-
known opposite trend between the increasing aneuploidy rate
and decreasing ovarian reserve with maternal aging outlines a
thorny situation: in older patients producing less oocytes, far
more eggs are required than in young patients to identify at least
one chromosomally-normal (i.e., euploid) embryo during an IVF
cycle. Recently, we estimated that in women aged 35–37, 38–
40, 41–42, and >42 year we would need to collect ∼5, 7, 10,
and 20 oocytes, respectively, to find at least one euploid embryo
(8). In other terms, a proper estimation of the ovarian reserve
and of the ovarian response to the stimulation complements
woman age to achieve a reliable definition of the specific chance
to conceive. AMH, AFC, and FSH should be accounted as
the most predictive parameters defined to this end (23, 25).
Currently in IVF, no therapy exists to restore the intrinsic
gamete/embryo competence, hence the clinician can only tailor
the proper strategy tomaximize the ovarian response and retrieve
the highest possible number of oocytes. The expertise of the
embryological team (i.e., efficiency in conducting oocyte and
embryomanipulation) and a safe in vitro culture environment are
then essential to safeguard oocyte/embryo competence (26). At
last, reliable and informative strategies for embryo selection are
pivotal to estimate that competence (27), aiming at an increased
IVF efficiency (i.e., higher implantation rate per transfer, lower
miscarriage, and possibly shorter time to achieve a pregnancy)
and at adopting a single embryo transfer (SET) policy, in turn
also minimizing the risk for multiple gestations.

Maximization of the Ovarian Response
An accurate estimation of the ovarian reserve, the optimization
of the ovarian response and the collection of a consistent number
of oocytes represent the ideal workflow to compensate for the
reduced competence of the female gametes in AMA patients.
Clearly, the main measure of success in any IVF treatment
should be the cumulative live birth rate (CLBR) per started
cycle, namely the total number of newborns from all the fresh
and/or consecutive frozen ETs performed by a couple (28).
Indeed, while the target number of oocytes to collect has been
set as ∼15 if only fresh transfers are accounted (29), when
the focus is the CLBR, the larger the cohort of oocytes, the
better the outcome (30–33) (Figure 2). Still, these considerations
arose from studies mostly targeted to young patients with a
good ovarian reserve, rather than to AMA women with a
poor prognosis. To this regard, ovarian stimulation can only
support the growth of the follicles available during each ovarian
cycle, but it cannot generate follicles ex-novo. In other terms,
it is worthless increasing the dose of gonadotrophins beyond a
maximal threshold, which has been set as 300–375 IU/day of
FSH plus 75–150 IU/day of LH (34–37) [for a comprehensive
review on how ovarian stimulation is conducted and the different
regimens see (38–40)]. LH is not always recommended. However,
adding LH might be important to promote steroidogenesis
and folliculogenesis in specific populations of patients, like
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FIGURE 1 | Summary of the current and potential future approaches to prevent, compensate or solve the issues related with advanced maternal age on infertility,

while limiting the putative concurrent risks. The consequences deriving from the onset of aging-related female infertility might be prevented by performing oocyte

cryopreservation ideally when women are younger than 35 year; in the future, social campaigns and education are advisable to promote the awareness of the

age-related female fertility decay. The main current strategy to compensate for the consequences of aging on oocyte competence (woman age range: 35–45 year)

entails the maximization of the ovarian response by tailoring patients-specific protocols; in the future, oocyte competence might be rescued via promising approaches

such as mitochondrial, spindle-chromosomal complex, pronuclear transfer or chromosome therapy, even though all these perspectives still need thorough and careful

investigation. Oocyte donation represents the main current option to solve irrecoverable aging-related infertility conditions (woman age range: 40–50 year); the future

avant-gardes that are motivating the academic research instead entail the generation of new gametes in vitro [e.g., from induced pluripotent stem cells (iPSCs) or

oogonial stem cells (OSCs)]: an intriguing challenge with yet unpredictable outcomes. At last, the increasing maternal age brings about greater reproductive risks for

the woman, the pregnancy she will eventually achieve and the new-born: to date, embryo selection via preimplantation genetic testing of aneuploidies (PGT-A)

performed by molecular platforms for comprehensive chromosome testing (CCT) on trophectoderm (TE) biopsies represents the most efficient workflow to counteract

the hazards derived from embryo chromosomal aneuploidies. Agonist trigger and cycle segmentation are important to minimize the risk of ovarian hyperstimulation

syndrome (OHSS) after IVF. Moreover, to avoid the onset of multiple gestations, single embryo transfer (SET) is strongly recommended, especially for euploid

blastocysts. In the future, molecular analyses (DNA, mRNA, miRNA, and/or proteins) on leftover products of IVF retrieved via non-invasive procedures (e.g. cumulus

cells, spent culture media after IVF) might be implemented clinically to complement (or even replace) invasive approaches of embryo selection thereby aiming at a

successful SET. From left to right, the gray arrow represents the increasing maternal age from <30 to 50 year The blue triangle depicts the decreasing maternal

fertility, while the orange triangle depicts the increasing risks that could derive from the treatment of infertility and/or the establishment of a pregnancy as the maternal

age increases. In light blue, the current and emerging approaches to prevent the fertility decay. In light orange, the current and emerging approaches to compensate

it. In green, egg donation is proposed as a current strategy to circumvent the aging issue of female gametes, while emerging still experimental approaches aim at

solving this issue. In yellow, we summarized the current strategies recommended to limit the putative risks of an IVF treatment; in the future, non-invasive approaches

for embryo selection might be implemented in this workflow to identify the embryo for SET.

AMA women (41). This is due to the effect of aging, which
reduces the production of androgens and brings about a
decreased ovarian sensitivity and responsiveness to exogenous
FSH (42).

Of note, ovarian hyperstimulation syndrome (OHSS) could
be one of the most serious iatrogenic complications when
controlled ovarian stimulation (COS) protocols are adopted to
fully-exploit the ovarian reserve. OHSS is characterized by cystic
enlargements of the ovaries and an extra-vascular fluid shift
caused by an increased capillarity permeability and by ovarian
neo-angiogenesis. Even though OHSS is more frequent in young
patients, this condition cannot be excluded in AMA women

with a good ovarian reserve. To drastically limit the prevalence
of OHSS after IVF, the most recommended strategy is known
as “cycle segmentation” (43). According this approach, COS is
conducted in a menstrual cycle and the ET of cryopreserved
embryos is performed in a following non-stimulated cycle on
a physiological endometrium. Usually, the COS protocol used
to this end entails gonadotrophins releasing hormone (GnRH)
antagonist protocol in combination with gonadotrophins and
the use of GnRH agonist to trigger ovulation. Clearly, the
systematic cryopreservation of all the oocytes retrieved and/or
embryos produced after IVF is mandatory to implement cycle
segmentation in an IVF unit.
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FIGURE 2 | The current clinical strategies to treat advanced maternal age (AMA) in IVF. The oocytes retrieved from a young patient undergoing controlled ovarian

stimulation (COS) and oocyte pick-up (OPU) are cryopreserved (i) to be used from the same woman years later thereby preventing the onset of infertility due to medical

or non-medical reasons (in blue), or (ii) to be used from a different woman indicated to egg donation (in green). The main strategy to compensate for the age-related

infertility in AMA patients is to tailor COS on each woman peculiar characteristics attempting at maximizing the ovarian response. Indeed, while the live birth rate (LBR)

per fresh embryo transfer (ET; i.e., only first transfer accounted) plateaus when more than 15 oocytes are retrieved (in gray), the cumulative LBR (CLBR) per cycle (i.e.,

all consecutive fresh and frozen ETs accounted) instead keeps increasing at any age (in orange). Data adapted from (30).

Across the years,mild ovarian stimulation protocols adopting
low doses of gonadotrophins have been also proposed to manage
infertility in women older than 35 year (44–46). The rationale

was to prevent a putative reduction in oocyte and embryo quality
that was claimed for convention stimulation protocols. However,
some concerns about this mild stimulation strategy have been
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raised: (i) the number of oocytes retrieved and available for
fertilization is limited, (ii) more hormonal stimulation cycles
and oocyte retrievals might be required to achieve a pregnancy
(i.e., longer the time-to-pregnancy), (iii) its cost-effectiveness is
still indeterminate, (iv) increased cycle cancellation rate due to
no/limited ovarian response derived from its application (47–
49). To overcome these important issues, the number of oocytes
retrieved must be maximized by fully exploiting each patient’s
ovarian reserve. This is especially important in AMA women
subject to high blastocyst aneuploidy rate (6). The concept of
tailoring ovarian stimulation protocols was therefore introduced.
A proper dose of gonadotrophins should be outlined to retrieve
an ideal number of oocytes and produce a higher number of
blastocysts according to patient-specific prognostic features.

As stated previously, a direct correlation exists between the
sequential number of oocytes collected and an increased CLBR
per started IVF treatment (30–33). Still, when adopting mild
stimulation approaches, some groups reported that embryos of
a higher quality were obtained and that better clinical outcomes
were achieved, but only on a per fresh ET perspective (50–
52). However, embryos’ morphological quality just moderately
associates with their chromosomal and reproductive competence
(53), and a study design accounting only fresh ETs suffers from
at least two limitations. Specifically, a comprehensive clinical
picture is missed if accounting only fresh ET (28), and the
increased hormonal levels after COS might impair endometrial
receptivity, in turn biasing an objective evaluation (54). In
contrast, no data instead exist to support an impact of ovarian
stimulation on oocyte competence. To conclude then, the full
exploitation of the ovarian reserve in AMA should be considered
so far the most reasonable strategy to counteract the effect of
aging on oocyte competence. Nevertheless, this issue is still
controversial. Only large randomized controlled trials (RCTs)
will clarify whethermild stimulation protocols can be considered
adequate for the treatment of AMA.

Several pharmacological co-treatments to COS have been
proposed throughout the last decade aiming at an improved
IVF outcome in patients of a poor prognosis (i.e., AMA and
reduced response to the stimulation). Growth hormone (55,
56), dehydroepiandrosterone (57, 58) or testosterone (59, 60)
represent some of the molecules suggested. Yet, the data about
a putative increase in oocyte quantity and/or quality are not
concordant. RCTs are thus desirable to clarify the potential
positive effect of these co-treatments and/or which population
might benefit from them.

As mentioned previously, a detailed characterization of each
patient is one of the most crucial requirements to improve
success in modern IVF. In this regard, the most concerning
population of patients is represented by women suffering from
low ovarian response after conventional COS. Therefore, a
panel of experts known as the POSEIDON (Patient-Oriented
Strategies Encompassing IndividualizeDOocyte Number) group,
has recently introduced a novel framework to further improve
the classification of these women that encompasses also the
issue of AMA. The POSEIDON criteria stratify low prognosis
patients in four main categories based on the oocyte yield
after COS. In detail, patients with sub-optimal response but

normal markers of ovarian reserve were clustered in POSEIDON
Group 1 (<35 year) and 2 (≥35 year), while patients with
sub-optimal response already predicted by markers of low
ovarian reserve were clustered in POSEIDON Group 3 (<35
year) and 4 (≥35 year) (8, 61). POSEIDON Group 1 and
2 might benefit from an increased FSH dosage with the
addition of LH during COS to overcome their putative
ovarian hyposensitivity to gonadotrophins. Instead, no benefit
is predicted by this COS strategy for POSEIDON Group 3
and 4. A more promising approach outlined for them entails
either oocyte/embryo accumulation and cryopreservation after
consecutive egg retrievals (62–64) or double stimulation in
the follicular and luteal phase of the same ovarian cycle
(i.e., DuoStim) (65–69). The implementation of the latter
approach originated from the intriguing evidence that multiple
waves of follicle recruitment may arise in the same ovarian
cycle [for a comprehensive review see (70)], also in a phase
(i.e., the luteal phase) that in physiological conditions is
anovulatory. Such findings can revolutionize the theory behind
folliculogenesis with a direct impact upon ovarian stimulation
and the way we conceive it (71). Interestingly, accumulating
evidence are outlining encouraging clinical results after luteal
phase stimulation per se in both oncological and poor prognosis
patients whomust quickly undergo an IVF treatment (72–77). To
conclude, DuoStim and luteal phase stimulation per se represent
intriguing protocols that certainly demand further investigation
to define their safety and real clinical efficiency.

Oocyte Cryopreservation for Medical and
Non-medical Reasons
IVFmight represent an efficient strategy for infertile couples who
wish to postpone parenthood. However, each woman (not only
oncological patients) should be opportunely informed about the
methods available to preserve her fertility. Until the last decade,
embryo freezing was considered the main established strategy to
conduct fertility preservation, since oocyte cryopreservation had
led to disappointing and generally inconsistent results. However,
the option of cryopreserving embryos for fertility preservation is
not always feasible, because of a multitude of ethical, legal and
moral issues. Moreover, one of the main drawbacks of freezing
embryos to preserve fertility is the putative restriction of female
reproductive autonomy, which will always be related to the male
partner involved at the time of cryopreservation (78).

The enormous improvement in oocyte survival rate reported
from the introduction of the vitrification approach (i.e., a
fast cryopreservation protocol that avoids the formation of ice
crystals, opposed to slow-freezing), led to the definition of
oocyte cryopreservation as the gold standard to conduct fertility
preservation (79). Today, the efficiency of oocyte vitrification
has been further boosted (80), thereby encouraging the clinician
to propose oocytes vitrification (also known as eggs-banking)
for medical reasons (e.g., cancer, endometriosis; i.e., fertility
preservation), as well as to prevent the age-related decline in
both quantity and quality of the eggs (non-medical reasons;
i.e., “social-freezing”) (81–83). The workflow simply entails
COS, transvaginal oocytes retrieval, cryopreservation of the
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mature oocytes, and long-term storage (Figure 2). Accumulating
evidence is outlining this workflow, especially if vitrification is
conducted, as an efficient approach in terms of survival rate,
unaffected oocyte quality (e.g., no increase in embryo aneuploidy
rate and no difference in gene expression), as well as clinical and
obstetrical outcomes (80, 84–89). Social-freezing in particular
might be considered a “reproductive insurance” against age-
related infertility (90, 91), since it reduces the incidence of
oocyte donation (OD) and the burden of ineffective fertility
treatment at older ages. Nonetheless, AMA could result in other
complications beyond oocyte incompetence, namely higher risk
for ectopic pregnancy, preeclampsia, delivery by cesarean section,
pre-term delivery and low birth-weight, which should not be
disregarded (20).

Clearly, woman age at the time of oocyte cryopreservation
and the number of oocytes stored represent crucial parameters
affecting the cost-effectiveness of oocyte freezing (92, 93). As
expected, the efficacy of such procedure in terms of CLBR is
higher in women aged <35 year compared to older patients (93,
94). Doyle et al. defined 37 year as the upper age limit to perform
oocyte cryopreservation so that the costs and the effectiveness
are sufficiently balanced (92). Therefore, a proper counseling to
women wishing to perform oocyte cryopreservation is due to
make them aware of its efficacy and prevent unrealistic hopes.

Lastly, although still experimental, alternative strategies to
eggs-banking for fertility preservation have been proposed. For
instance, the cryopreservation of the ovarian tissue or of either
immature or in vitro-matured oocytes can be attempted if ovarian
stimulation cannot be performed. These procedures are the only
available alternatives for prepuberal girls, but are not indicated
in AMA patients or in patients with a reduced ovarian reserve
(95–98). Therefore, the most appropriate fertility preservation
strategy has to be chosen according to the age of the patients, the
time available and the type of cancer and related risk for ovarian
metastasis (79, 99).

Oocyte Donation
In patients with a clear depletion of the ovarian reserve, or
in presence of recurrent IVF failures, especially after several
(euploid) ETs, the only options left are adoption or OD (100).
OD gives the chance to an infertile/sterile patient to undergo
IVF using a cohort of oocytes previously produced by a
young donor and cryopreserved to this end (Figure 2; of note,
cryopreservation is not compulsory and the donated oocytes can
be used also fresh, straight after retrieval).

In 2014, up to 12% of all IVF cycles in U.S. were performed
using donor eggs (www.sartcorsonline.com). The high pregnancy
rate achieved from women in their 50s is astonishing (>35%).
An evidence indirectly suggesting that in AMA patients the
endometrium might be receptive and uterus functional, despite
the onset of menopause. The main concerns are the ethical
and moral uncertainties related with the transfer of an embryo
partially non-self. Undoubtedly, the clinical outcomes after OD
in AMA patients encourage the couples toward this procedure
rather than aiming to achieve a pregnancy with their own
eggs. Still, if the patients are to make a last attempt with their
own eggs, these women should be guided toward an informed

and conscious decision based on the existing clinical evidence.
In this regard, a recent multicenter case series of IVF cycles
where preimplantation-genetic-testing-of-aneuploidies (PGT-A;
see next paragraph) was performed by women older than 44 year
outlined that no euploid embryo was produced beyond 46 year.
Specifically, even though the LBR when an euploid blastocyst
is transferred was as high as ∼50%, yet the overall chance to
conceive per IVF cycle between 44 and 46 year was as low
as∼5% (7).

Once a pregnancy is achieved, though, its follow-up
is not always easy to manage. Already back in the 90s,
especially pre-eclampsia has been associated with AMA,
nulliparity and ovarian failure (101). Moreover, aging per se
(>40 year) is an independent risk for gestational diabetes,
thrombophlebitis (102–104), proteinuria, premature rupture
of the membranes, hemorrhage, pre-term birth and low
birth-weight, intrauterine growth restriction and abnormal
placentation (105–107). Indeed, despite the high success rate of
OD, recent evidences from reviews and meta-analyses suggest
that pregnancies achieved by this strategy showed a significant
increase in the likelihood of several obstetrics and maternal
complications with respect to pregnancies achieved through IVF
with own eggs (108, 109). Interestingly, all these risks were
independent of maternal age, suggesting that their causes might
be ascribed to an immunological mechanism, e.g., host vs. graft
rejection phenomenon (109). OD-derived embryos are in fact
totally allogenic to the mother and may cause the onset of an
immunologic reaction in the recipient that could impair the
process of placentation. While these aspects are often neglected
by IVF specialists, these conditions expose the AMA patient to
severe adverse outcomes, including pregnancy loss, and even
maternal death, that might be even 2–4-fold higher compared
to young women (110). Fertility specialists, as well as general
gynecologists, should be aware of these risks and acknowledge
them to any woman seeking for a pregnancy in her 40s. Any
decision that the couple makes should pass through a thorough
clinical and ethical discussion.

Minimizing the Reproductive Risks of AMA:
The Role of Preimplantation Genetic
Testing of Aneuploidies
Already back in 2003, Land and Evers (reporting the opinion
of an ESHRE Consensus) highlighted that safeguarding woman
health and achieving a singleton pregnancy are critical in IVF
(111). This is particularly true for AMA patients, whose safety
should be a primary concern, since the risk of maternal morbidity
and mortality significantly increases in their latest reproductive
ages (103). At present, a strategy to comply with these premises
requires to avoid the transfer of aneuploid embryos, increase
the pregnancy rate per transfer especially when performing SET.
Such scheme is needed to allow less burden and complications
(i.e., miscarriage and multiple gestation), as well as a shorter time
invested to achieve a pregnancy, both crucial aspects especially
for AMA patients.

The only clinical strategy reported to date possibly bringing
about all these benefits is PGT-A. This acronym stands for

Frontiers in Endocrinology | www.frontiersin.org 6 February 2019 | Volume 10 | Article 94

www.sartcorsonline.com
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Ubaldi et al. Treatment of AMA in IVF

the molecular comprehensive-chromosome-testing (CCT) (i.e.,
the analysis of the whole karyotype) of an embryo biopsy
conducted through quantitative polymerase chain reaction
(qPCR), array-comparative genome hybridization (aCGH),
single nucleotide polymorphisms-array (SNP-array), or next
generation sequencing (NGS) [for a review on these techniques
refer to (112)]. Such approach is meant to discriminate euploid
from aneuploid embryos in a cohort produced by a couple during
an IVF cycle and to transfer only the former, thereby preventing
the reproductive risks that might instead derive from the transfer
of the latter. Clearly, aneuploidy-testing represents only a tool to
conduct an efficient embryo selection and attempt to increase the
LBR per set, but it cannot increase the CLBR per cycle (Figure 3).
The CLBR is indeed dependent on the intrinsic predisposition
of all the embryos obtained after IVF to implant and of the
patient to carry a gestation, and aneuploidy testing cannot confer
reproductive competence but only provide a tool to estimate such
competence. In other terms, in theory, the number of babies born
from a cohort of oocytes collected after COS should be the same if
aneuploidy-testing is conducted or not, but preventing aneuploid
embryos from being transferred should involve a shorter time to
reach a pregnancy, a lower risk for miscarriage and a minimal
residual risk for vital chromosomal syndromes in the fetus [as low
as 0.13% by qPCR and 0.7% by aCGH according to (113, 114)]
(Figure 3). To this end, safety and cost-effectiveness are critical
parameters, namely embryo competence should not be impacted
from the manipulations required for PGT-A and the patients
should not be proposed additional procedures in vain.

Preimplantation Genetic Testing: The Development of

Different Approaches for Embryo Biopsy
Throughout the last 30 years from the first theorization of
PGT in the early 90s (118), three settings have been proposed
and clinically-adopted: blastomere biopsy at the cleavage stage
(i.e., day 3 of embryo preimplantation development), polar
bodies (PB) biopsy from the oocytes/zygotes (i.e., day 0–1) and
trophectoderm biopsy from the blastocyst (i.e., day 5–7).

• The old-fashioned workflow entailed blastomere biopsy
followed by its fluorescent in situ hybridization (FISH)-based
analysis (i.e., a cytogenetic technique which entails the use
of fluorescent probes to selectively bind to specific regions
on 9 embryonic chromosomes, thereby outlining a normal
or abnormal copy number). However, this approach provided
irrelevant benefits and was even detrimental in some cases for
AMA patients (119). This outcome was imputed across the
years firstly to blastomere biopsy itself, which has been shown
to impair embryo implantation potential (120, 121); secondly,
to single cell diagnosis, which was not sufficiently-solid and
reliable; and lastly, to FISH platform-based analysis, which
does not cover the whole embryonic karyotype (i.e., 22 pairs
of autosomes and 2 sex chromosomes).

• The setting entailing the biopsy of both PBs from fertilized
oocytes is instead time-consuming, since all oocytes should be
biopsied regardless their chance to develop to the blastocyst
stage. Moreover, it is poorly cost-effective, due to single
cells analysis-related limitations and since all PBs should

be tested. Finally it may be only partially-informative,
since paternal meiotic and mitotic post-zygotic chromosomal
missegregations are undetectable on PBs. Yet, PB-based
aneuploidy-testing seems not to impair embryo reproductive
competence and might be more efficient than conventional
IVF. This is what has been reported by the ESHRE Study
into the Evaluation of oocyte Euploidy by Microarray analysis
(ESTEEM), a recently published RCT conducted in women
aged 36–40 year (122). This RCT in fact showed consistent
CLBR, but also less transfers, cryopreservation procedures and
miscarriages when PBs-based PGT-A was conducted.

• Lastly, blastocyst biopsy setting entails the retrieval
of a multicellular fragment (ca. 5–10 cells) from the
trophectoderm, which is the section of the embryo that
gives origin to the extra-embryonic membranes, while
keeping untouched the inner cell mass, which is the section
that instead gives origin to the fetus. This approach has been
reported safe, standardized, informative, and is implicitly
more cost-effective than the previous ones, since only
developmentally-competent embryos would reach to the
blastocyst stage and be biopsied (112, 120, 121, 123–125).
All these evidences involved a wider implementation of
trophectoderm biopsy approach so that in 2016 its application
has finally outnumbered the other strategies (126).

Implementing PGT in the Clinical Management of

AMA Patients
At present, cycle segmentation, blastocyst culture, vitrification,
blastocyst biopsy with CCT, and SET represent the most
promising advances in IVF that, if properly implemented,
involve a more efficient and safer treatment (43, 54, 80,
115, 116, 120, 121, 127). Dahdouh and Chen in their
two meta-analyses summarizing the RCTs published up to
2015 to investigate PGT-A efficiency, outlined consistently-
higher implantation and lower miscarriage rates when euploid
blastocysts are transferred (115, 116). Still, most of the evidence
were produced in relatively-young patients and the data were
reported only from a per transfer perspective. Therefore, the
American Society of Assisted Reproductive Technologies (SART)
recently recognized the clinical value of blastocyst stage PGT-
A, but also requested future investigations to address pending
issues. Specifically, “cost-effectiveness; the role and effect of
cryopreservation, time to pregnancy, utility in specific subgroups
(such as recurrent loss, prior implantation failure, advanced
maternal age, etc.); cumulative success rates over time; and
total reproductive potential per intervention” (128) should be
better outlined.

In a retrospective study published in 2015, we highlighted
how our clinical efficiency and safety in the treatment of AMA
was improved across the years in which we implemented in
our practice all the advances listed at the beginning of this
paragraph. Specifically a higher application of euploid blastocyst
SET resulted in the same CLBR with respect to untested cleavage
stage double ET, but also in drastically lower miscarriage and
multiple pregnancy rates (117). Likewise, the RCT conducted
by Rubio et al. in AMA women, reported a similar efficacy, but
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FIGURE 3 | The theory behind preimplantation genetic testing of aneuploidies (PGT-A) and the related workflow. For both non-PGT and PGT-A cycles, a woman

undergoes controlled ovarian stimulation (COS), oocyte pick-up (OPU), intracytoplasmatic sperm injection (ICSI) conducted with male partner’s sperm, and embryo

culture to the blastocyst stage. The differences between non-PGT and PGT-A cycles instead entail for the latter (in yellow): (i) the trophectoderm (TE) biopsy of the

blastocysts obtained, (ii) the molecular comprehensive chromosome testing (CCT) of the biopsied fragment, (iii) the definition of euploid blastocysts (in green), which

are selected for embryo transfer (ET), and (iv) the definition of aneuploid blastocysts (in red), which are instead prevented from being transferred. In an advanced

maternal age (AMA) population (e.g., 39 year mean maternal age), the aneuploidy rate at the blastocyst stage is about 50–55%. In theory, if all the untested

blastocysts obtained after a non-PGT and all the euploid blastocysts diagnosed after a PGT-A cycle would be transferred, the latter strategy is expected to bring

about (i) the same cumulative live birth rate (CLBR, i.e., the number of babies born per cycle; in blue), (ii) a lower miscarriage rate (in orange), (iii) less ETs resulting in an

implantation failure with a negative pregnancy test (in gray), and (iv) no chromosomally-abnormal pregnancy (in black). Data adapted from Capalbo et al. (5), Franasiak

et al. (6), Dahdouh et al. (115), Chen et al. (116), and Ubaldi et al. (117).

a higher efficiency for PGT-A, even if adopting a blastomere
biopsy-based CCT approach (129).

A last important advantage of euploid-SET (especially at the
blastocyst stage) is that it equals the pregnancy outcomes of
double untested blastocyst transfer, but largely limits (virtually

abates) multiple pregnancies and their related perinatal and
obstetrical complications. An evidence that has been elegantly
reported by Forman et al. in their RCT performed in 2013, whose
pregnancies were followed-up in a second paper published in
2014 (130, 131).
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The Relevance of Chromosomal Mosaicism
The main limitation of PGT-A in its current version is
represented by chromosomal mosaicism, namely the presence
of cells with different karyotypes in the same blastocyst. Errors
in chromosomal segregation can in fact occur also during the
mitotic divisions post-fertilization. If such errors happen, in
the absence of other constitutive meiotic aneuploidies derived
from the oocyte and/or the sperm, the deriving blastocyst
would be constituted of different euploid and aneuploid
populations of cells.

All the papers published to date attempting to define the
risk of mosaicism in human blastocysts disaggregated the
embryos in the inner cell mass plus 1–3 multicellular sections
of the whole trophectoderm, which were then analyzed one
at a time. If accounting only whole-chromosome aneuploidies,
overall <10% of the disaggregated blastocysts showed results
indicative of chromosomal mosaicism (132–138). However, in
the clinical setting, only ca. 5–10 trophectoderm cells are
analyzed and such small fragment cannot by definition be
sufficient to reliably diagnose “mosaicism” in the rest of the
embryo (>100 cells). This is known as the intrinsic sampling
bias and it is an inevitable issue. Therefore, even if healthy
pregnancies might be established from the transfer of allegedly-
mosaic blastocysts (139–142), still it is difficult to distinguish
between false positive calls and genuine mosaicism in the current
setting (143–146).

Only positive and negative predictive values (PPV and NPV)
generated through a blinded non-selection design could finally
provide an accurate definition of the real clinical meaning
(and the related risks) of reporting putative mosaicism after
PGT-A. In other terms, the trophectoderm biopsy should be
retrieved and analyzed, but the blastocysts should be transferred
without alleged-mosaicism being disclosed to both the IVF
practitioners and the couple. Later on, the results should be
finally disclosed to delineate an accurate estimate of the live birth
and miscarriage rates deriving from the transfer of allegedly-
mosaic blastocysts. Up to date, this design was indeed adopted
by Scott et al. back in 2012 (124) to address full aneuploidies
(not “mosaic”) detected via SNP-array on trophectoderm-
biopsies in a study that still represents a milestone in this
field. This study defined a 94% implantation failure and a
48% LBR when “aneuploid” and “euploid” blastocysts were,
respectively, transferred in a blinded fashion: those values are
still the main clinical first class data currently available in
the literature.

The debate upon PGT-A is still open in IVF, therefore
specific indications are required and an accurate counseling
to the patients is of utmost importance. Still its benefits in
AMA patients seem to outnumber the putative limitations,
and PGT-A currently represents the only efficient strategy
that might limit the age-related reproductive risks in these
women. Nonetheless, a successful implementation of PGT-A
requires the efficient application of blastocyst culture, biopsy,
and vitrification, therefore it must be performed in the hands of
experienced IVF units. These prerequisites currently represent
important limiting factors to its introduction in the clinical
practice worldwide.

POTENTIAL FUTURE APPROACHES TO
TREAT AMA INFERTILITY

Minimally- and Non-invasive Embryo
Selection
Even if safe and effective, trophectoderm biopsy is a procedure
that requires further embryo manipulation, well-experienced
and skilled operators, a higher workload for the laboratory,
as well as costly instrumentations (e.g., a laser-equipped
micromanipulator). Therefore, a quest for non-invasive
approaches to conduct embryo selection started in IVF.

Recently, several groups investigated leftover products of
IVF for their content in proteins, metabolites and even nucleic
acids (e.g., mRNA, miRNA, and DNA). The putative sources
encompassed the follicular fluid after egg retrieval, the cumulus
cells after oocyte decumulation, the spent media after embryo
culture, or the blastocoel fluid in the inner cavity of the embryo
after blastulation. However, a future clinical application cannot
be envisaged for any of these sources. The molecular approaches
to investigate them still need to be refined and tested for their
real clinical value before they could be implemented to attempt
at improving the cost-effectiveness of CCT (147–152).

The most promising game-changer among the proposed
approaches is the screening of genomic-DNA from the spent
culture media after IVF (non-invasive PGT). Scrupulous pre-
clinical studies are therefore required to validate and improve
the contrasting results published to date (153–162). Great efforts
have been already made to push the detection limit of CCT
down to cell-free DNA; yet, the data are far from being
indicative of a short-term clinical implementation (153, 162). IVF
clinics and molecular biology laboratories are currently closely
collaborating on both the culture and molecular protocols. This
multidisciplinary perspective is needed to increase the DNA
amplification rate and to characterize the embryonic features and
the biological causes related with the presence of cell-free DNA
in the culture media. Currently, the main issues are represented
by the risk of contamination from exogenous and/or maternal
DNA deriving from degenerated PBs or cumulus cells (153, 162).
Therefore, future studies should define protocols to avoid or
circumvent these limitations.

Germline Engineering
Even if no clinical therapy is available to counteract the
age-dependent fertility decline, recently emerging therapeutic
approaches have been proposed to restore the developmental
competence of aged oocytes.

The first strategy proposed entails the replacement of
dysfunctional mitochondria, since they represent the main
ooplasmic factor determinant for oocyte quality which might
be affected by aging (163). The earliest attempt was performed
already back in the 90s and entailed the transfer of a small volume
of cytoplasm from a presumably-fertile young donor’s oocyte into
a presumably-defective recipient one. This practice, known as
“cytoplasmic transfer,” resulted in about 50 live births (164–166)
suggesting that the ooplasm with its components (i.e., mainly
mitochondria) might be crucial to confer oocyte competence
(Figure 4). Nonetheless, the clinical value of this procedure (in
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general and to AMA patients) is uncertain and ethical concerns
arose also due to unpredictable genetic implications underlying
it (e.g., mitochondrial heteroplasmy, namely the presence of two
different mitochondrial DNA in the same oocyte). Therefore, the
U.S. Food and Drug Administration (FDA) banned it in 2002.

The autologous transfer of mitochondria from the patient’s
own germ cells allows to circumvent the ethical restriction
related to cytoplasmic transfer strategy. Recently, oogonial stem
cells (OSCs), i.e., the precursor cells of oocytes, have been
proposed as autologous source of germline mitochondria: a
further emerging therapeutic approach (167–169). Specifically,
autologous additional mitochondria isolated from OSCs of
patients’ ovarian cortex may be transferred into oocytes
by microinjection attempting to restore fertility in poor
prognosis women (Figure 4). Additional sources of autologous
mitochondria can be represented by somatic cells, but, besides
possibly suffering from the same aging-related issues affecting the
gamete, the effectiveness of their use might be impacted from
tissue-specific characteristics of the mitochondria themselves.
Indeed, the most promising results have been obtained
using somatic cells of ovarian origin (170) like granulosa or
cumulus cells (Figure 4). Other proposed sources of autologous
mitochondria are mature oocytes obtained by in vitro follicle
activation of ovarian cortical biopsies or discarded immature
oocytes retrieved after ovarian stimulation (169) (Figure 4).

Although live births have been reported, concerns and
skepticism are still in place regarding the efficacy of all
these procedures (171). Extensive validation through properly
designed large trials employing them in the clinical practice is
indeed still strongly needed (172, 173).

A further alternative option to attempt at rescuing oocyte
competence is spindle-chromosomal complex transfer, as
theorized by Tachibana et al. and practiced in animal models
(174), or pronuclear transfer, as previously conducted
in developmentally-abnormal embryos (175). Spindle-
chromosomal complex transfer practice involves the removal
of the spindle from a patient’s mature oocyte as well as from
a young donor oocyte; the spindle from the former oocyte is
then transferred into the ooplasm from the latter (Figure 4).
Pronuclear transfer approach instead entails a similar workflow,
but in this case the pronuclei are transferred after fertilization
has been achieved in both the patient’s and donor eggs with the
sperm collected from the male partner (Figure 4). However, the
safety and efficacy of these approaches are yet to be outlined.
Furthermore, in many countries these practices are not allowed
and the scientific community raised several ethical concerns.
The restored gametes will in fact inherit nuclear genetic material
and cytoplasmic components from oocytes retrieved from two
different women.

To conclude, all these practices have been described mainly in
small proof-of-concept studies and in young patients. Scientific,
medical, legal, and ethical implications exist for of all these
technologies and need to be elucidated by the competent
authority. Only then, “germline engineering” could be considered
for any clinical use in humans, either for preventing inheritable
diseases such as mtDNA disorders (176), or as an option to
attempt at restoring the competence of aged oocytes.

Chromosome Therapy
Recently, ground-breaking experiments have been performed
in both animal models and human cells ex-vivo aiming at
the definition of molecular strategies to conduct chromosome
therapy, namely the correction of aneuploidies in living cells.
In the future, such practice might find direct application in
the treatment of cancer or chromosomal disorders, but might
also apply to the correction of aneuploid germ cells and
embryos in IVF.

For instance, in a study XIST, which is the non-coding RNA
that induces heterochromatinization and inactivation of one
of the X chromosomes in the female karyotype, was inserted
and transcribed in iPSCs from a Down Syndrome individual.
By this mean, Jiang et al. could silence the chromosome 21
in those cells (177). Amano et al. instead corrected trisomy
21 and 18 to euploidy in human cells ex vivo. To do so they
used Sendai virus vectors and human aneuploid fibroblasts in
which they induced the expression of ZSCAN4, which in murine
embryos ensures genome stability throughout preimplantation
development (178). Finally CRISPR/Cas9 system has been
used to conduct targeted trisomic chromosomes elimination in
murine cultured cells, embryos, and tissues in vivo, as well as in
human Down Syndrome iPSCs and cancer cells ex-vivo (179).

The research in this field has just begun and the efficiency of
these approaches, as well as their putative side effects are still
unpredictable to date. However, these are fascinating strategies
that might find a clinical application in reproductive medicine in
the next decades.

Generation of New Gametes in vitro
A very intriguing perspective is certainly the possibility to
generate gametes in vitro (Figure 4). Murine iPSCs were
differentiated into functional oocytes in presence of specific
growth-factors by Hayashi et al. for the first time in 2012 (180).

In the last decade, different studies presented important
results investigating the existence of OSCs and their capability
of creating new oocytes. Tilly and his group (181) were the
first authors to question the long-held dogma lasting 50 years
according to which no renewable germinal cells are present in
the mammalian ovaries postnatally or after irradiation (182).
Studying oogenesis in mouse ovaries, the authors reported
the presence of mitotically-active OSCs capable of generating
new oocytes that can be fertilized to produce viable offspring
(Figure 4). Subsequently, several other studies sustained their
hypothesis (183–194), whereas others instead criticized their
findings supporting that the results were ambiguous and possibly
misinterpreted (195–201). Therefore, many questions are still
open concerning both their existence in the first place and then
their putative clinical usefulness (202). If their existence would
be confirmed and their isolation protocol would be reproducible,
OSCs might represent an important avant-garde not only for the
treatment of AMA.

OSCs might be beneficial for women suffering from primary
ovarian insufficiency (203), to restore endocrine function in
women suffering from post-menopausal health conditions (204)
or for fertility preservation. For this last goal, they should be
removed and cryopreserved before chemo-/radio-therapy and
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FIGURE 4 | Potential future therapeutic approaches to treat advanced maternal age (AMA) infertility.

To compensate before fertilization. The approaches that have been theorized are:

• The spindle-chromosomal complex transfer from the mature oocyte of an infertile AMA woman (in orange) to the oocyte of a young donor (whose

spindle-chromosomal complex was previously removed; in gray). The latter oocyte should be then used to perform IVF;

• The transfer of additional mitochondria to the oocyte of an infertile AMA woman. The source of the additional mitochondria might be a donated oocyte (in gray).

Also autologous sources have been proposed, i.e., oocytes obtained from ovarian biopsies and in vitro maturation (IVM), other immature oocytes that cannot be

used for IVF, ovarian somatic cells (e.g., cumulus or granulosa cells) (all in orange). Some groups reported that autologous mitochondria can be obtained also from

oogonial stem cells (OSCs) isolated from ovarian biopsies (in green);

• Chromosome therapy to correct meiotic aneuploidies in the oocyte.

To compensate after fertilization. The approaches that have been theorized are

• The use of the sperm from male partner (in orange) to fertilize both the patient’s (in orange) and the donor’s egg(s) (in gray), to then remove the pronuclei from the

zygote originating from the latter and replace them with the pronuclei from the zygote originating from the former (i.e., pronuclear transfer);

• Chromosome therapy to correct aneuploidies in the zygote.

To solve (in green). Two strategies have been theorized:

• The isolation of OSCs from ovarian biopsies retrieved from the infertile patient to then trigger the formation of new autologous oocytes by either transplanting

them back in the ovary or by performing IVM;

• The isolation of somatic cells, that are then transformed into induced pluripotent stem cells (iPSCs), which are finally differentiated into new autologous oocytes.

Of note, all these putative future therapeutic strategies are still experimental and/or raised biological, genetic, technical, and ethical concerns.

then re-implanted soon after. These are just some of their
putative clinical uses (183, 203), which are further supported
by Zou et al., who claimed that the cryopreservation of OSCs

does not jeopardize their proliferative or differentiation capacity
(187). Recently, Silvestris et al. demonstrated that OSCs collected
from fresh ovarian cortical fragments of non-menopausal and
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menopausal women are able to differentiate into large haploid
oocyte-like cells and enter meiosis under appropriate culture
conditions (205). However, the rate of differentiation was low
and the results pointed out that the OSCs might be unable to
differentiate in menopausal women due to the inactivity of the
ovulatory cycle. Furthermore, it cannot be excluded that the
oocytes deriving from OSCs isolated from AMA women may be
genetically-compromised.

Further research is certainly required in order to provide
unequivocal evidence of OSCs existence and, mostly, to
understand how could we use them either to improve a
woman’s ovarian reserve, to treat different disorders or aiming
at fertility preservation.

Recently, Herraiz et al. have reported that fertility rescue and
ovarian follicle growth can be promoted by bone marrow stem
cell infusion in mice. This provides another possibilist alternative
to improve follicular development in aged women, or to preserve
fertility in oncological and poor responder patients (206).

Clearly, the future might be bright in this field. Great efforts
are required, but equal successes could derive. Of note, any novel
therapeutic approach must pass through extensive validation
before its clinical application, especially concerning its safety
(e.g., epigenetic aspects, etc.).

Education and Prevention
The last but not least important challenge is prevention in the
future generations. There is increasing evidence that lifestyle
factors such as nutrition, exercise, smoking, and substance abuse
can dramatically affect the reproductive competence (207–209).
Furthermore, it has been widely shown an alarming lack of
knowledge in the young population, including medical students
and healthcare professionals, who ignore or underestimate the
age-related fertility decline (210, 211). Generating awareness
about the impact of aging and lifestyle habits upon fertility
in the future generations represents the main social strategy
to limit the increasing prevalence of infertility. The issue of
infertility and its limitation/prevention should be faced from a
multi-disciplinary perspective and embrace also lifestyle. Positive
and negative habits are indeed important during the peri-
conceptional period (212), and even more during the first 2 years
of life of the new-born.
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