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Since gonadotropin-inhibitory hormone (GnIH) was discovered in 2000 as the first

hypothalamic neuropeptide that actively inhibits gonadotropin release, researches

conducted for the last 18 years have demonstrated that GnIH acts as a pronounced

negative regulator of reproduction. Inhibitory effect of GnIH on reproduction is mainly

accomplished at hypothalamic-pituitary levels; gonadotropin-releasing hormone (GnRH)

neurons and gonadotropes are major targets of GnIH action based on the morphological

interaction with GnIH neuronal fibers and the distribution of GnIH receptor. Here, we

review molecular studies mainly focusing on the signal transduction pathway of GnIH in

target cells, GnRH neurons, and gonadotropes. The use of well-defined cellular model

systems allows the mechanistic study of signaling pathway occurring in target cells

by demonstrating the direct cause-and-effect relationship. The insights gained through

studying molecular mechanism of GnIH action contribute to deeper understanding of the

mechanism of how GnIH communicates with other neuronal signaling systems to control

our reproductive function. Reproductive axis closely interacts with other endocrine

systems, thus GnIH expression levels would be changed by adrenal and thyroid status.

We also briefly review molecular studies investigating the regulatory mechanisms of GnIH

expression to understand the role of GnIH as a mediator between adrenal, thyroid and

gonadal axes.

Keywords: gonadotropin-inhibitory hormone/RFamide-related peptides (GnIH/RFRPs), GnIH receptor (GnIH-R),

gonadotropin-releasing hormone (GnRH), kisspeptin, vasoactive intestinal polypeptide (VIP), gonadotropes,

glucocorticoid (GC), thyroid hormone (TH)

INTRODUCTION

Gonadotropin-inhibitory hormone (GnIH) was initially isolated from the Japanese quail
hypothalamus that inhibited gonadotropin release from the cultured quail anterior pituitary; this
was the first demonstration of a hypothalamic neuropeptide directly inhibiting gonadotropin
release in any vertebrate (1). GnIH peptides have since been identified in all vertebrate
classes, and these share an LPXRFamide (X = L or Q) motif at their C-termini (2–
4), thus also known as RFamide-related peptides (RFRPs). In mammals, GnIH precursor
gene is translated and cleaved into at least two peptides, RFRP1 and 3 (2–4). Not
only the presence of GnIH/RFRP peptides, but their function to inhibit gonadotropin
secretion is also conserved across mammals, including mice, rat and humans (2, 3, 5–8).
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Two G protein-coupled receptors, GPR147 and GPR74 have
been identified as GnIH receptors (GnIH-Rs) (9–12). Yin et al.
identified that membrane fraction of COS-7 cells transfected
with quail GPR147 binds specifically to GnIH (12). Ikemoto
and Park cloned GnIH-Rs in the chicken; GPR147 cDNA was
only expressed in the brain and pituitary, whereas GPR74
cDNA was ubiquitously expressed in various tissues (11). In
mammals, Hinuma et al. identified a specific receptor for RFRP
and named it OT7T022, which was identical to GPR147 (10).
Bonini et al. reported two GPCRs for neuropeptide FF (NPFF),
which has PQRFamide motif at its C-terminal, NPFF1 (identical
to GPR147) and NPFF2 (identical to GPR74) (9). From the
higher GnIH binding affinity for GPR147 than GPR74, GPR147
is thought to be the principal receptor for GnIH (9, 11). GnIH-
R couples to Gαi, which inhibits the activity of adenylate cyclase
(AC), thus reducing intracellular cAMP levels and protein kinase
A (PKA) activity (10, 13–15). Cell bodies of GnIH neurons
are located in the paraventricular nucleus (PVN) in birds (1,
16, 17) and in the dorsomedial hypothalamic area (DMH) in
most mammals (10, 18–21). The projection of GnIH neurons to
gonadotropin-releasing hormone (GnRH) neurons is the most
conserved property of GnIH neurons. GnIH neuronal axon
terminals contact with GnRH neurons in axo-somatic as well as
axo-dendritic contacts, that express GnIH-R in the preoptic area
(POA) (18, 21–25). GnIH neuronal fibers are also observed in
the median eminence to control anterior pituitary function via
GnIH-R expressed in gonadotropes (1, 6, 7, 17, 22, 26, 27).

As reviewed elsewhere (2, 3, 8, 15, 28–31), much evidence
now supports the notion of GnIH as a key neurohormone to
inhibit reproduction by regulating the hypothalamic-pituitary
function. Recent studies for deeper understanding of the detailed
molecular mechanisms of GnIH action have reinforced the
physiological significance of GnIH in reproductive regulation.
Here, we address selective studies demonstrating the GnIH
action mechanism uncovered by using cellular and molecular
model systems.

POTENTIAL SIGNALING PATHWAYS THAT
CONVEY THE INHIBITORY ACTION OF
GNIH IN GNRH NEURONS

Regulators of GnRH Neuronal Function
GnRH is the final output of the brain that regulates reproduction
by stimulating gonadotropin secretion, thus GnRH neuronal
functions are finely tuned by various stimulatory and inhibitory
signals. There is strong evidence supporting a direct suppressive
effect of GnIH on GnRH neuronal activities. Direct application
of GnIH to hypothalamic brain slices decreases the firing
rate of a subpopulation of GnRH neurons (32) and a
direct postsynaptic inhibition of GnRH neuronal firing may
occur via GnIH-mediated hyperpolarization of K+ channels in
vGluT2-GnRH neurons (33). Similarly, intracerebroventricular
administration of GnIH suppresses c-Fos immunoreactivity in
GnRH neurons (34).

Following the discovery of GnIH, kisspeptin, encoded by the
kiss1 gene (35), was demonstrated to play an important role in

the up-regulation of the reproductive system in mammals (36–
38). In contrast to GnIH actions, kisspeptin treatment potently
activates electrical firing of GnRH neurons in hypothalamic slices
(39, 40). Kisspeptin neurons make close contact with GnRH
neurons acting at both the cell body and the nerve terminals
(41, 42). The majority of GnRH neurons express the receptor
for kisspeptin, GPR54 (43), which couples to Gαq/11 to activate
phospholipase C and Ca2+ mobilization (44). Numerous studies
have shown that kisspeptin acts as a key stimulatory regulator of
the GnRH system (45).

Neurons synthesizing vasoactive intestinal polypeptide (VIP)
are located in the suprachiasmatic nucleus (SCN) core sub-
region and have monosynaptic connections with GnRH neurons
(46, 47). GnRH neurons express the VIP/PACAP receptor
subtype 2 (VPAC2) (48), which is preferentially coupled to the
Gαs signal transduction pathway that leads to accumulation of
cAMP (49). VIP-targeted GnRH neurons preferentially express
c-Fos during the afternoon of the luteinizing hormone (LH)
surge on the day of proestrus (50, 51), and blocking VIP
signaling via in vivo antisense antagonism abolishes GnRH/c-
Fos activation in ovariectomized, estradiol-treated female rats
(52, 53). Additionally, electrical responses of GnRH neurons
to exogenous VIP exhibited peak activity around the predicted
onset of the LH surge (54). Together, these lines of evidence
suggest that VIP may facilitate GnRH release that leads to the
preovulatory LH surge.

Possible Interaction Between GnIH and
Kisspeptin Signalings
From the opposite effects of kisspeptin and GnIH on the GnRH
neuronal system, the interaction of their signal transduction
pathways is expected to finetune the GnRH neuronal activity.
The use of well-defined in vitro GnRH neuronal model system
allows to examine their possible interaction occurring in GnRH
neurons. GT1-7 is a clonal line of mature GnRH neurons
of mouse hypothalamus (55). GT1-7 cells exhibit neuronal
morphology with synapse formation and secrete mature GnRH
in a pulsatile fashion, similar to GnRH neurons in vivo (55, 56).
GT1-7 cells express GnIH-Rs, GPR147 and GPR74, as well as
GPR54 (57–60), and the stimulatory effect of kisspeptin on
GnRH system in GT1-7 cells has been demonstrated (57, 61–63).
However, there was yet no evidence for direct inhibitory effect
of GnIH on kisspeptin-induced signaling pathway in GnRH
neurons. As the major downstream signaling events induced
by kisspeptin/GPR54 in GT1-7 cells, Ca2+ mobilization-related
nuclear factor of activated T-cells response element (NFAT-
RE) activity and protein kinase C (PKC)-mediated extracellular-
signal-regulated kinase (ERK)/mitogen activated protein kinase
(MAPK) activity has been identified. However, it has been shown
that GnIH has no inhibitory effect on these activities, even
if GPR147 is overexpressed (60) (Figure 1). Although GnIH
does not directly inhibit Gαq/11-mediated activities induced by
kisspeptin in GT1-7 cells, there is strong evidence showing
that GnIH may be involved in Ca2+ or PKC-related signaling
pathway. Clarke et al. have found that ovine GnIH (RFRP3)
potently blocks the generation of intracellular free Ca2+ in
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FIGURE 1 | A schematic representation of GnIH action at the

hypothalamic-pituitary levels. GnIH neurons project to hypothalamic GnRH

neurons and pituitary gonadotropes, and GnIH directly acts via Gαi-coupled

GPR147 or GPR74 expressed in its target cells. GnRH neurons are activated

by kisspeptin or vasoactive intestine peptide (VIP) stimulation. GnIH has no

direct inhibitory effect on kisspeptin/Gαq-coupled GPR54-induced Ca2+ or

PKC pathway. Although kisspeptin/GPR54 pathway is not the direct target of

GnIH action, GnIH may regulate kisspeptin neuronal activity via direct fiber

contact and GnIH receptor expressed in kisspeptin neurons. On the other

hands, GnIH effectively inhibits VIP/Gαs-coupled VPAC2-induced pathway by

specifically acting on adenylate cyclase (AC)/cAMP/protein kinase A

(PKA)-dependent pathway. In gonadotropes, GnIH exerts its inhibitory effect

via AC/cAMP/PKA pathway, thus Gαs-coupled GnRH receptor signaling is

specifically inhibited by GnIH.

the pituitary elicited by GnRH, although they did not directly
investigate the site of ovine GnIH action within the Ca2+ system
(26). Reversely, Nichols et al. have shown that PKC inhibitor
blocks human RFRP1 activity in cardiomyocytes, suggesting that
RFRP1 activates PKC pathway to modulate cardiac contractile
performance (64). Nevertheless, the effect of GnIH on kisspeptin-
induced Ca2+ or PKC pathway has not yet been verified.

A study using another GnRH neuronal cell model, mHypoA-
GnRH/GFP, generated from adult-derived GnRH-GFP neurons,
shows the interaction of GnIH and kisspeptin on GnRH
transcriptional regulation (65). In mHypoA-GnRH/GFP cells,
treatment of GnIH attenuates basal GnRH mRNA expression,
whereas kisspeptin induces GnRH levels. Co-treatment of GnIH
and kisspeptin suppresses GnRH mRNA expression, suggesting
the inhibitory effect of GnIH may override the stimulatory

effect of kisspeptin on GnRH mRNA expression. By using
transcriptional inhibitors (actinomycin D and DRB), Gojska
et al. further show that GnIH-mediated repression is involved
in new RNA synthesis rather than affecting the stability of
pre-existing GnRH mRNA in mHypoA-GnRH/GFP cells (65).
Although they present a novel action mechanism of GnIH on
GnRH transcriptional regulation, these results do not indicate
the direct inhibitory effect of GnIH on kisspeptin-induced
signaling pathway.

Interestingly, it was shown that GnIH effectively suppresses
kisspeptin-induced GnRH release in hypothalamic culture of
adult mice (60). This phenomenon may be a result from
the inhibition of GnIH effects on exocytosis of GnRH, not
on kisspeptin/GPR54 signaling pathway in GnRH neurons. It
would be also explained by the action of GnIH on kisspeptin
neurons. Compared with GnRH neuronal cell models, there
exist several neuronal networks for the actions of GnIH and
kisspeptin controlling GnRH release in hypothalamic culture,
similar to the in vivo environment. In this respect, GnIH may
not directly interfere with the stimulatory effect of kisspeptin
on GnRH neurons; but rather regulate the kisspeptin neuronal
activity leading to GnRH release. It has been shown that ∼25%
of kisspeptin neurons in the arcuate nucleus express GPR147
or GPR74, where ∼35% of arcuate kisspeptin cells received
GnIH fiber contacts (66), suggesting a regulatory role of GnIH-
mediated signaling in arcuate kisspeptin neurons.

Inhibitory Action of GnIH on VIP/VPAC2
Signaling and its Physiological Significance
GT1-7 cells specifically express VPAC2 but not VPAC1 likewise
GnRH neurons in situ and well respond to VIP stimulation
(60, 61, 67, 68). Our recent study using GT1-7 cells clearly shows
that GnIH suppresses the stimulatory effect of VIP at multiple
levels, cAMP-response element (CRE) activity, ERK and p38
MAPK pathways, and c-Fos expression (60). In this study, the
use of pharmacological inhibitor H89, which is specific to PKA
pathway, but not the PKC inhibitor GF-109203X, results in an
inhibition of VIP-induced pathways. Furthermore, it has been
shown that ERK and p38 pathways activated by forskolin, which
raise cAMP level, are effectively inhibited by GnIH, but GnIH
has no inhibitory effect on PKC activator PMA (phorbol 12-
myristate 13-acetate)-induced pathways (60), demonstrating the
specific inhibitory action of GnIH on the cAMP/PKA pathway
in GnRH neurons as in gonadotropes (Figure 1 and see also the
section Specific inhibition of GnRH-induced signaling via cAMP
pathway in gonadotropes by GnIH). Supporting this specific
inhibitory role of GnIH on VIP-induced pathway shown in GT1-
7 cells, GnIH eliminates the stimulated effect of VIP on GnRH
release in female mouse hypothalamic explants (60).

It is hypothesized that VIP input is required for appropriate
LH pulse frequencies and induction of an appropriately timed
LH surge (52, 69, 70). The SCN of female rats, compared tomales,
have significantly greater VIP innervation of GnRHneurons (47),
suggestive of a specific role for VIP in the regulation of estrous
cycle. The necessity of VIP in triggering the afternoon GnRH
surge has been also suggested (51, 52). These findings suggest

Frontiers in Endocrinology | www.frontiersin.org 3 February 2019 | Volume 10 | Article 110

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Son et al. GnIH Signaling and Transcriptional Regulation

that direct VIP projections from the SCN to GnRH system
positively drive the GnRH/LH surge. Given the pronounced
inhibitory actions of GnIH on VIP/VPAC2 signaling in GT1-
7 cells and VIP-induced GnRH release (60), it seems probable
that GnIH may regulate LH surge by suppressing VIP action on
GnRH neurons. The inhibitory effect of GnIH on LH surge has
been reported. Treatment of female rats with GnIH results in
marked inhibition of GnRH neuronal activity at the time of LH
surge (34) and intravenous infusion of GnIH blocks estrogen-
induced LH surge in ewes (71). Henningsen et al. also showed
that acute intracerebroventricular injection of GnIH just before
the LH surge reduces the LH surge amplitude in female Syrian
hamster (72). These findings have demonstrated the inhibitory
role of GnIH on the amplitude of GnRH/LH surge, although
the direct relationship between GnIH and VIP has not been
investigated. Notably, SCN-derived VIP fibers project to GnIH
neurons in female Syrian hamster, and central administration of
VIP reduced c-Fos immunoreactivity in GnIH neurons in a time-
dependent manner (73), indicating the possible SCN regulation
of GnIH activity by VIP to control the timing of LH surge.
Future studies are required to fully demonstrate the physiological
relevance of interaction between GnIH and VIP on the timing
and amplitude of GnRH/LH surge.

INHIBITORY MECHANISM OF GNIH
ACTION IN GONADOTROPES

Regulators of Pituitary Gonadotrope
Activity
In addition to the role of GnIH at the hypothalamic level, GnIH
neurons also project to the median eminence to control anterior
pituitary function via GnIH-R expressed in gonadotropes (6,
7, 26, 27). On the other hand, there are relatively few or no
GnIH fibers in some birds (74) and rodents (18, 21, 75), and
GnIH has no direct inhibitory effect on LH secretion by the
pituitary gonadotropes (34, 75, 76). Although there is some
debate whether GnIH can directly act on the pituitary in some
species, GnIH decreases the synthesis and/or release of pituitary
gonadotropins, LH and follicle-stimulating hormone (FSH) in
many species (24, 26, 77–80).

GnRH is the major activator of gonadotropes. Upon binding
to its receptor (GnRH-R) on gonadotropes, GnRH stimulates the
synthesis and release of LH and FSH (81). GnRH-R is a member
of GPCR family (82). Most of the biological actions of GnRH
are mediated by Gαq/11-coupled pathway (83). However, GnRH
signaling may not be exclusively linked to Gαq/11-pathway, but
also involve other pathways depending on the cell context (84).
In fact, GnRH-R was shown to be coupled to Gαs (85, 86). In
primary pituitary culture, rat pituitary-derived G-GH3 cells and
mouse gonadotrope LβT2 cells, GnRH-R couples to Gαs as well as
Gαq/11, whereas in αT3-1 pituitary precursor cells, CHO-K1 and
COS-7 cells, GnRH-R seems to couple exclusively to Gαq/11 (87–
89). Several studies have also suggested a physiological role of
cAMP as a mediator of GnRH actions via Gαs-coupled pathway
in the pituitary gland. A cell-permeable peptide that uncouples
Gαs from receptors is able to inhibit ERK and c-Fos activation,

and LHβ expression in LβT2 cells, indicating that Gαs is involved
in GnRH-R signaling (86).

Specific Inhibition of GnRH-Induced
Signaling via cAMP Pathway in
Gonadotropes by GnIH
It was shown that GnIH inhibits gonadotropin synthesis and/or
release from cultured pituitaries in birds (1, 90) and mammals
(79, 91, 92). Based on the characteristic of Gαi-coupled GnIH-
Rs, it is expected that GnIH inhibits cAMP-related signaling
pathways triggered by GnRH in gonadotropes. Using the LβT2
gonadotrope model system, the detailed mechanisms underlying
the inhibitory effect of GnIH on gonadotropin synthesis has
been investigated (93). LβT2 cells exhibit the characteristics of
fully differentiated gonadotropes, including the expression of LH,
FSH, andGnRH-R as well as displaying the appropriate responses
to GnRH with dose-dependent increase in LH secretion (94–
96). Furthermore, LβT2 cells express both GPR147 and GPR74
(59, 93), indicating that LβT2 is an appropriate cellular model
system to investigate GnIH action occurring in gonadotropes.

In this study using LβT2 cells, GnRH treatment activates
CRE activities, and GnIH effectively suppresses GnRH-induced
CRE activities in a dose-dependent manner as well as cAMP
production (93). GnIH also inhibits the downstream ERK
phosphorylation via AC/PKA-dependent manner (Figure 1).
The AC/cAMP/PKA-dependent inhibitory effect of GnIH
are also demonstrated in GnRH-stimulated transcriptions of
gonadotropin subunit genes, LHβ, FSHβ, and common α

subunit. The inhibitory effect of GnIH on GnRH-induced CRE
activity, ERK phosphorylation, and gonadotropin expression
leads to reduction in LH levels in LβT2 cells. This study suggests
that as in GnRH neurons (described in section Inhibitory
action of GnIH on VIP/VPAC2 signaling and its physiological
significance), GnIH specifically acts via cAMP pathway in its
target cells (93).

COMMON GNIH INHIBITORY MECHANISM
IN ITS TARGET CELLS

From the identification of GPR147 and GPR74 as GnIH-Rs
(9–12), suppression of cAMP production by GnIH has been
shown in several studies (10, 13, 14). The precise mechanism of
GnIH action in hypothalamic GnRH neurons as well as pituitary
gonadotropes has been investigated in the cellular model systems
through the molecular approaches on GPCR-related second
messenger activity, downstream MAPK cascade, and the effect
of pharmacological modulators. The results obtained by analysis
of signaling pathway suggest that GnIH may play as a brake by
preventing the excessive action of stimulatory inputs to maintain
the balance in reproductive system. As a conserved mechanism
of GnIH action, the AC/cAMP/PKA-specific inhibitory pathway
has been demonstrated in hypothalamus-pituitary levels (60,
93) (Figure 1). Therefore, GnIH may govern the hypothalamic
neuronal activities of GnRH by inhibiting the action of VIP and
kisspeptin directly or indirectly, thus eventually reduce pituitary
gonadotropin secretion. However, there are several exceptions of
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the GnIH effect on GnRH/LH release. There is a report showing
that acute central injection of GnIH induces c-Fos expression
in GnRH neurons and increases LH, FSH, and testosterone
secretion in Syrian hamster (76). Similarly, GnIH has shown
the dose-dependent stimulatory effect on LH secretion in adult
malemice (97). Inmale Siberian hamsters, central administration
of GnIH inhibits LH release in long day photoperiods, whereas
stimulates LH release in short day, indicating that GnIH peptides
finely tune LH levels in an opposite fashion across the seasons
(21). Based on the complex regulation of GnIH action depending
on the species/sexes, seasons and reproductive stages, future
research is needed to determine when and how GnIH exerts its
inhibitory or stimulatory effect in target cells.

REGULATORY MECHANISM OF GNIH
EXPRESSION BY GLUCOCORTICOID AND
THYROID HORMONE

Considering the role of GnIH as an upstream regulator
of the hypothalamic-pituitary-gonadal (HPG) axis, abnormal
GnIH expression levels may cause reproductive dysfunctions.
Therefore, we discuss some endocrine regulators leading to
GnIH expressional changes. See the recent review (31) for the
regulatory mechanism of GnIH expression by melatonin and
photoperiod (19, 21, 98).

Molecular Mechanism of
Glucocorticoid-Mediated GnIH Activation
Reproductive function is suppressed under stress (99–101),
suggesting the interaction between hypothalamic-pituitary-
adrenal (HPA) and HPG axes. From the inhibitory role of GnIH
in reproduction, the GnIH system could be a good candidate
mediating stress-induced reproductive dysfunction. Supporting
this, there have been several studies showing that stress activates
the GnIH system in birds and mammals. In adult house
sparrows, capture-handling stress shows a significant increase
in the number of GnIH neurons (102). In rat, immobilization
stress leads to an up-regulation of GnIH expression (103) and
stressful stimuli increase the expression of c-Fos protein in GnIH
neurons of the DMH (104). These results suggest that suppressive
effects of stress upon reproductive functions are mediated
by the hypothalamic GnIH system. The inhibitory effect of
stress on reproductive function is potentially mediated by high
concentrations of circulating glucocorticoids (GC) acting via the
GC receptor (GR) (105, 106). In adult rat, approximately half of
hypothalamic GnIH neurons express GR (103). In quail, most
GnIH-positive cells express GR mRNA and 24 h treatment with
corticosterone (CORT) increases GnIH mRNA expression (107).

Using a GnIH-expressing neuronal cell line, rHypoE-23
derived from rat hypothalamus (108), the detailed molecular
mechanism of GC-mediated GnIH transcriptional activation has
been investigated (107). rHypoE-23 cells express GR mRNA and
GnIH mRNA expression is activated by 24 h CORT treatment.
There exist several glucocorticoid response elements (GREs) in
the upstream of rat GnIH precursor coding region. Through
promoter analysis, it has been identified that −1,530 bp GRE

FIGURE 2 | Regulation of GnIH promoter activity by glucocorticoid and thyroid

hormone. GnIH expression is regulated by glucocorticoid (GC). GnIH neurons

express GC receptor (GR) and GC-response element (GRE) is present in GnIH

promoter region. Stress increases GC levels, and GC acts by binding to GR.

When GC-bound GR is recruited to GRE, GnIH expression is up-regulated.

GnIH expression is also actively changed by concentration of thyroid hormone

(TH). Although GnIH neurons express TH receptors (TRα and β) and putative

TH-response elements (TREs) exist in GnIH promoter region, TRs do not

directly bind to GnIH promoter. However, thyroid status highly regulates the

chromatin modification of GnIH promoter. Hypothyroidism exhibits increased

GnIH expression with hyperacetylation of H3 (Ac) in promoter region. On the

other hand, hyperthyroidism decreases GnIH expression associated with

H3K9tri-methylation (Me).

is critical for the CORT-stimulated GR recruitment and its
transcriptional activity (107) (Figure 2). This study provides a
putative molecular basis for transcriptional activation of GnIH
under stress by demonstrating that CORT directly induces GnIH
transcription by recruitment of GR to its promoter. Another
study using the rHypoE-23 GnIH neuronal cells has shown
that the GC agonist, dexamethasone (DEX), which directly acts
on GR, increases GnIH and GPR147 mRNA levels (109). The
effect of neonatal DEX exposure on reproductive maturation
has been also investigated in female mice (110). DEX-treated
females have exhibited delayed pubertal onset and irregular
estrus cycles with decreased GnRHmRNA expression in the POA
and increased GnIH cell numbers in the DMH, suggesting that
DEX-mediated activation of GnIH system may lead to inhibition
of GnRH expression.

Thyroid Hormone-Mediated GnIH
Regulation by Chromatin Modification
Recently, thyroid hormones (THs; thyroxine, T4 and
triiodothyronine, T3) have been suggested as a novel hormonal
regulator of GnIH expression (111, 112). THs play an important
role in proper development and function of the reproductive
system, particularly in pubertal onset (113, 114), indicating
interactions between the hypothalamic-pituitary-thyroid
(HPT) and HPG axes. Therefore, thyroid disorders such
as hypothyroidism and hyperthyroidism, cause abnormal
puberty (115–117). Kiyohara et al. showed that hypothyroidism
induced by long-term administration of propylthiouracil
(PTU) in juvenile female mice leads to delayed pubertal
onset with increased GnIH expression and reduced pituitary-
gonadal activity, and knockout of GnIH prevents the effect
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of hypothyroidism to delay the pubertal onset. In contrast,
hyperthyroidism induced by T4 leads to a decrease in GnIH
expression, although pubertal onset was normal. Further, T3

treatment suppresses GnIH mRNA expression in hypothalamic
explants. Although GnIH neurons express TH receptors, TRα

and TRβ, and putative TH-response elements (TREs) are present
in mouse GnIH promoter, TRs do not directly bind to GnIH
promoter (111). As the molecular mechanism by which different
TH concentration results in GnIH expressional changes,
Kiyohara et al. have also demonstrated that the thyroid status
highly regulates the chromatin modifications of GnIH promoter
to activate and repress GnIH expression by H3acetylation
and H3K9tri-methylation, respectively (Figure 2). Although
to date limited information is available for the TH-mediated
GnIH regulation, this study indicates a novel function of GnIH
to mediate HPT-HPG interactions that contribute to proper
pubertal development.

CONCLUSION

The endocrine systems, HPA, HPG and HPT axes are closely
connected, thus hormonal imbalance leads to reproductive
dysfunctions. As a key hypothalamic inhibitor, GnIH may act
on the most upstream level of the HPG axis by regulating
the hypothalamic GnRH and kisspeptin neurons as well as

pituitary gonadotrope activity. The significance of GnIH system

on reproduction has been emphasized by identifying the novel
function of GnIH system and its interaction with other endocrine
systems of HPA and HPT via GC and TH, respectively. Changes
in GnIH expression levels by these endocrine modulators
will alter GnRH neuronal activity and gonadotropin release
by specifically acting on AC/cAMP/PKA pathway. Based on
the complex regulatory system of endocrine interactions, it
is also expected to uncover a novel involvement of GnIH
system in reproductive regulation. The precise molecular
mechanism for GnIH action and identification of molecular
target for GnIH regulation may contribute to the development
of new pharmaceuticals.
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