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Human aging is characterized by dramatic changes in body mass composition that

include a general increase of the total fat mass. Within the fat mass, a change in the

proportions of adipose tissues also occurs with aging, affecting body metabolism, and

playing a central role in many chronic diseases, including insulin resistance, obesity,

cardiovascular diseases, and type II diabetes. In mammals, fat accumulates as white

(WAT) and brown (BAT) adipose tissue, which differ both in morphology and function.

While WAT is involved in lipid storage and immuno-endocrine responses, BAT is aimed

at generating heat. With advancing age BAT declines, while WAT increases reaching the

maximum peak by early old age and changes its distribution toward a higher proportion

of visceral WAT. However, lipids tend to accumulate also within lipid droplets (LDs) in

non-adipose tissues, including muscle, liver, and heart. The excess of such ectopic

lipid deposition and the alteration of LD homeostasis contribute to the pathogenesis

of the above-mentioned age-related diseases. It is not clear why age-associated tissue

remodeling seems to lean toward lipid deposition as a “default program.” However, it can

be noted that such remodeling is not inevitably detrimental. In fact, such a programmed

redistribution of fat throughout life could be considered physiological and even protective,

in particular at extreme old age. In this regard, it has to be considered that an excessive

decrease of subcutaneous peripheral fat is associated with a pro-inflammatory status,

and a decrease of LD is associated with lipotoxicity leading to an increased risk of insulin

resistance, type II diabetes and cardiovascular diseases. At variance, a balanced rate of

fat content and distribution has beneficial effects for health and metabolic homeostasis,

positively affecting longevity. In this review, we will summarize the present knowledge on

the mechanisms of the age-related changes in lipid distribution and we will discuss how

fat mass negatively or positively impacts on human health and longevity.
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INTRODUCTION

Aging is a complex process characterized by progressive changes
in body mass composition that lead to a functional decline at
cellular and organ levels over time.With advancing age, leanmass
and bone mineral density decrease, while total fat mass increases
and changes its distribution, particularly in the abdominal region,
often without concomitant changes in body mass index (BMI)
(1). In mammals, fat mass accumulates as adipose tissue or
ectopic lipid deposition. Adipose tissue is a dynamic organ
involved in the regulation of energy homeostasis, mainly divided
in three types, brown (BAT), white (WAT), and BEIGE which
differ in embryogenesis, anatomy, and function (2–4). While
BAT possesses high levels of mitochondria and is specialized in
fat burning to generate heat, WAT is characterized by a low
density of mitochondria and it is generally involved in lipid
storage in two biological distinct compartments: subcutaneous
(SAT) and visceral (VAT) adipose tissue. WAT is not only
involved in the storage of lipids, but also plays an important
role as immuno-endocrine organ (5). With advancing age, BAT
mass declines, while WAT increases reaching the maximum
peak by early old age and changing its distribution toward
a higher proportion of VAT (2). WAT redistribution is also
accompanied by an accumulation of fat mass in non-adipose
tissues and organs, such as muscle, liver, heart, pancreas and
others, that normally contain only small amounts of fat, stored
within lipid droplets (LDs) (6). Adipose tissue shows also an
extraordinary plasticity (7), in fact it can differentiate into
another type of adipose tissue, such as BEIGE (8, 9) or replace
the parenchyma of organs that undergo involution with age, such
as the thymus.

It is well-described that increased proportions of fat
mass affect body metabolism and play a central role
in many chronic diseases, including insulin resistance,
obesity, cardiovascular diseases, type II diabetes, and
sarcopenia (1, 10, 11).

In this review, we will summarize the changes that occur
in lipid distribution with increasing age, and we will propose
that: (i) the generalized increased amount of fat (in form
of adipose tissue or intracellular lipid droplets) should be
interpreted as an adaptive response to environmental conditions
and, as such, is not per se a detrimental phenomenon; (ii)
it can be a case of antagonistic pleiotropy, i.e., while it has
detrimental effects at old age, it can turn to be protective in
extreme longevity.

THE ROLE OF FAT MASS IN THE
EVOLUTION AND DURING AGING

Body fat storage has a long evolutionary history and represents
a fundamental strategy to store energy fuel that is crucial for
survival in conditions where food is not continuously available
(12). All living organisms, from prokaryotes to mammals, have
the ability to store energy that can be mobilized in response
to a need, such as growth, metabolism, and reproduction
(13). While simple organisms obtain and use energy only in

response to an immediate need, more complex organisms have
developed a mechanism to store energy in form of adipose
tissue or ectopic lipid deposition (5). In insects, fat bodies
represent not only lipid deposits but also organs able to perform
complex endocrine and exocrine functions similar to those of
the liver (14). Fat bodies play their biosynthetic and metabolic
activities by the production of circulating proteins, acting as
hormones, necessary in several physiological conditions, such
as morphogenesis, egg maturation, and lipid and carbohydrate
metabolism (15).

In mammals, fat mass distribution has reached a quite
high degree of complexity. In these organisms, fat mass is
widely distributed in the whole body and it is involved
in many physiological processes, i.e., energy supply during
periods of starvation or undernutrition, regulation of metabolic
homeostasis, reproduction, thermoregulation, immune response
with production of cytokines and chemokines (13, 16). However,
fat mass does not remain constant during lifespan, but changes
in content and distribution from birth to extreme old age
(17). These changes regard both adipose tissue and intracellular
lipid stores (LDs) in non-adipose sites, and some of them, as
in the case of thymic involution occurring at puberty, have
to be considered as physiologically programmed. Much less is
known about the fat mass changes occurring at advanced age.
The “thrifty genotype theory” (18) explains the accumulation
of adipose tissue as a strategy of metabolic adaptation, shaped
by natural selection, to survive conditions of food scarcity.
However, the existence of a specific genetic program leading
to lipid deposition during aging is unlikely, considering that,
according to the more advanced theories, aging in mammals
is neither programmed nor selected by evolution. Thus, it
seems more plausible that the age-associated lipid deposition
is rather a phenomenon of adaptive remodeling in response to
environmental conditions. Like many other adaptive phenomena
it is conceivable that it may have both beneficial and detrimental
effects. A growing body of evidence demonstrates that high
levels of fat mass are associated with the development of several
metabolic diseases (10), for this reason very often the fat
deposition is considered tout court purely detrimental for the
organism, and every age-associated weight gain bad for health.
However, several lines of evidence demonstrate that also the
deficiency of adipose tissue, as observed in transgenic mice or
during lipodystrophy, results in the development of metabolic
dysfunctions (19–21). For example, human lipodystrophies are
characterized by genetic defects in lipid storage with total or
partial loss of fat mass and related metabolic abnormalities
such as insulin resistance and hypertension (22). Moreover,
transgenic mice expressing dominant-negative protein A-ZIP/F
(19) are characterized by the absence of WAT, reduced amount
of BAT, elevated serum glucose, insulin, free fatty acids (FFA),
triglycerides and type II diabetes (19). Consistently, adipose tissue
results to have beneficial protective effects toward metabolic
syndromes (19, 23–25). We argue that also during aging fat
deposition can have beneficial effects, in particular at very old
age, when it can be an important reserve of strategic energy
crucial for resilience and recovery from stress and, eventually,
for survival.
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FAT MASS DISTRIBUTION IN HUMAN
AGING

In normal aging total fat mass increases over the adult lifespan
with a peak at about 65–70 years, while in extreme old age
fat mass decreases (26). In the following paragraphs, we will
describe the different types of body fat mass (adipose tissue and
ectopic lipid depots) and the re-distribution of such fat mass
during aging.

White Adipose Tissue (WAT)
WAT is a complex tissue composed by unilocular adipocytes,
other cellular types, such as immune and stem cells, and
connective tissue (4). The main role of WAT is the storage of
energy and, as such, it actively controls the energy metabolism
of all organs and tissues. In fact WAT secretes cytokines and
proteins that communicate with other organs, such as brain,
liver, muscle, or pancreas (27). As mentioned in the introduction,
the two major WAT depots are SAT and VAT. In human
body, SAT is present in the hypodermis of abdominal, gluteal,
and femoral districts, while the counterpart VAT resides within
abdominal cavity (omental, mesenteric, retroperitoneal, gonadal
fat) and mediastinum. Moreover, VAT is also present around
specific organs such as heart, stomach and blood vessels. With
aging WAT increases and re-distributes, in particular a relative
decline of SAT in the abdomen and limb region (thigh, calve),
and a concomitant increase of VAT can be appreciated (4, 28).
While SAT is considered protective, being the main source of
adiponectin (29), VAT is considered detrimental as it produces
pro-inflammatory mediators such as leptin, that boost the status
of chronic, subclinical inflammation typically found in the
elderly and indicated as inflammaging (30). Aging also entails
a dysregulation in WAT and a consequent excess of circulating
FFA. Higher levels of circulating FFA lead to lipotoxicity and the
development of metabolic disorders (31, 32).

Overall, WAT is involved in several physiological processes,
as demonstrated by different studies on animal models. Studies
on leptin-deficient ob/ob mice, with metabolic and immune
dysfunctions, demonstrated that the transplantation of WAT
normalizes high glucose levels, body weight and fertility (33), as
well as thymus/spleen cellularity and inflammatory parameters
like IL-6 (21). Moreover, a novel protective role for WAT in
the immune response has been proposed (34). In particular,
WAT from mice infected with bacteria represents a reservoir of
memory T cell populations and promotes a protective memory
response to infections (34). Studies in humans, and in particular
in healthy centenarians, demonstrated thatWAT becomes crucial
in the extreme old age, as it secretes circulating factors such as
adiponectin, that are associated with a protective metabolic and
anti-inflammatory phenotype (35, 36).

As a whole, all these data suggest that WAT remodeling
with aging may have not only negative but also positive effects
on health.

Brown Adipose Tissue (BAT)
BAT is a highly vascularized, heat-producing tissue, aimed at
protecting animals from hypothermia through thermogenesis.

This role is prominent in small size animals and newborns. It
is distributed in cervical, supraclavicular, axillary, paravertebral,
mediastinal, and upper abdominal regions (4). BAT is
characterized by the presence of multilocular adipocytes
containing abundant mitochondria that express high levels
of UCP1 through which dissipate the proton gradient across
the inner membrane and produce heat (37, 38). In addition
to the traditional role of BAT in thermogenesis, recent data
suggest that BAT plays an important endocrine role through
the release of several endocrine factors, particularly in response
to thermogenic activation (39). All these signaling molecules
control metabolic processes via autocrine, paracrine, and
endocrine mechanisms. These factors include (i) vascular
endothelial growth factors (VEGFs) and insulin-like growth
factor I (IGF-I), which, respectively, favor angiogenesis and
increase the number of brown adipocyte precursor cells; (ii)
several bone morphogenetic proteins (BMPs), implicated
in the regulation of adipocyte differentiation and energy
expenditure; (iii) thyroid hormone (triiodothyronine, T3), a
well-recognized regulator of thermogenesis; iv. interleukin-6
(IL-6) and fibroblast growth factor 21 (FGF21). Although IL-6 is
commonly considered a pro-inflammatory cytokine, studies of
BAT transplantation demonstrate the beneficial effects of IL-6
derived from BAT in the control of metabolism (40). IL-6 is a key
mediator to improve glucose homeostasis and insulin sensitivity,
and contributes to the increase of circulating levels of FGF21
that plays an important role in the control of glucose and lipid
metabolism (41).

In humans, BAT is abundant in newborns and infants, while
it gradually declines from adolescence to adulthood (42, 43).
In adults the amount of BAT is modulated by several factors,
such as hormones, physical activity, cold exposure, and diet
(44, 45), however the responsiveness to these stimuli declines
during aging (46). Due to the endocrine role of BAT, several
evidences demonstrate that its induction plays a protective role
in counteracting age-related metabolic diseases. While the loss
of BAT predisposes to WAT accumulation and weight gain
(47), the transplantation of BAT in murine models induces an
enhancement of energy expenditure, weight loss and insulin
sensitivity, and prevents or even reverses obesity (48, 49). It
was also shown that caloric restriction is able to stimulate
BAT growth, conferring protection against the major age-
related pathologies, such as cardiovascular diseases, cancer, and
neurodegenerative disorders (50, 51). Moreover, increased levels
of BAT mass promote longevity and enhance metabolism (52).

Beige Adipose Tissue and Browning
BEIGE or BRITE (“brown in white”) adipose tissue is a subset
of WAT with features of BAT. In particular, BEIGE tissue is
composed of adipocytes derived from differentiation of WAT
pre-adipocytes or trans-differentiation of WAT adipocytes, a
phenomenon known as “WAT browning” (53, 54). In adults
BEIGE tissue is localized within white fat depots, at inguinal
and neck levels, where acts as WAT (55), while under particular
stimuli, beige adipocytes acquire brown-like functions (56). The
stimuli inducing the browning are not still well-understood,
however it is known that they influence several molecular factors
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to orchestrate browning and thermogenesis mechanisms. Briefly,
browning and thermogenesis are generally mediated by chronic
cold exposure or hormones and peptide factors that activate the
β-3-adrenergic receptor, an adipose tissue-selective adrenergic
receptor (57). Moreover, the zinc finger protein PRDM16 and the
mitochondrial protein UCP1 are considered the key contributors
to prompt browning activity in the new BEIGE tissue (58).
Noteworthy, a reduced expression of PRDM16 and UCP1 leads
to the reversion of beige adipocytes into white adipocytes
(59–61). Browning is a reversible mechanism pointing to the
extraordinary plasticity of the adipose tissue. The process of
browning is impaired during aging leading to a loss of BEIGE
tissue and to a progressive decline in metabolic activity. This
phenomenon is in part due to a reduction in the response to
the β-adrenergic stimuli with aging (62). In fact, some studies
have demonstrated that the loss of β-3-adrenergic receptor
leads to an incapacity of white adipocytes to differentiate in
beige adipocytes upon cold exposure (63, 64). Other studies in
knockout or transgenic mice for different molecular regulators
of browning underline the importance of this thermogenic tissue
on age-associated metabolic dysregulations. As an example, in
old mice the ablation of the winged helix factor FOXA3, a factor
inducing the increase of adiposity and decrease of BAT mass
with aging, induces browning, increases thermogenic capacity,
decreases WAT expansion, thus leading to improved insulin
sensitivity and lifespan extension (65). Other factors involved
in the formation of brown adipocytes and in the regulation of
lifespan are the BMPs. For example, BMP4, BMP7, and BMP8b
control beige adipocyte development. In particular, mice treated
with these factors increase browning processes and are protected
from insulin resistance (29, 66).

Ectopic Lipid Depots
Several tissues, such as bone marrow, skeletal muscle, liver and
pancreas, make use of fatty acids as energy source, and these
fatty acids accumulate within LDs in form of neutral lipids,
mainly as triacylglycerols (TAGs) and steryl esters. LDs play
an evolutionarily conserved role from yeasts to multicellular
eukaryotic organisms (67). The physiological role of LDs is the
maintenance of cellular energy homeostasis and the protection
from lipotoxicity caused by an excess of FFA accumulation (68).
An alteration in LD homeostasis leads to an excess of lipid
intermediates, such as diacylglycerols, which in turn perturb
metabolic pathways and cellular functions causing inflammation,
mitochondrial stress and increase of reactive oxygen species
(ROS) (68). The amount and size of LDs increase with age and
contribute to the development of several age-related metabolic
diseases such as type II diabetes, obesity, hepatic steatosis, and
sarcopenia (68–75). Nevertheless, the primary causes of age-
dependent ectopic fat accumulation remain largely unknown.
However, not only the excess but also the deficiency of LDs
leads to the onset of metabolic disorders (6, 20), in fact a
growing body of evidence suggests that a balance between
neutral lipid accumulation and their degradation is essential
for the health and longevity of the organism. Numerous
studies of model organisms, such as yeasts, nematodes, insects,
and mice indicate that LDs are involved in the regulation

of several longevity-related mechanisms, most of which are
evolutionary conserved. It has been demonstrated that LDs
control metabolic and lipid homeostasis and stimulate the
release of different molecular mediators, such as lipophilic
hormones that act as aging regulators and promote longevity
(76). As an example, LD accumulation in the intestine of
Caenorhabditis elegans contributes to the secretion of hormonal
steroid pregnenolone, also present in humans, that extends
lifespan (77–79). Consistently, the accumulation of TAGs has
been reported as a novel pro-longevity factor in yeast. In fact,
genetic manipulations leading to an increase in TAG content
(by either the decrease of TAG lipases or the increase of
TAG biosynthesis enzymes), extend yeast chronological lifespan
(80, 81) independently of other lifespan regulators, such as
dietary restriction (82). Moreover, LDs are involved in the
adaptive stress responses and cell survival by the production of
signaling molecules involved in the immune response pathway
(83). As an example, in humans LDs serve as main storage
site for arachidonic acid, which is the precursor of signaling
molecules, such as eicosanoids or retinoic acids, which regulate
inflammation (84).

All these findings indicate that the balance of fat accumulation
in non-adipose tissues is important for the maintenance of a
healthy status, in fact, both the excess and scarcity of fat are linked
to the development of pathologies (20).

THE ENDOCRINE ROLE OF ADIPOSE
TISSUE DURING AGING

Adipose tissue is an important endocrine organ that controls
numerous physiological functions such as appetite, body weight,
insulin sensitivity, fat distribution, glucose and lipid metabolism,
neuroendocrine functions. This endocrine activity influences the
whole body metabolism by releasing FFA, adipokines, cytokines
and other molecular factors (85) that play a pleiotropic function
on different tissues such as the liver, skeletal muscle, heart,
lung, blood vessels, and sensory receptors, such as olfactory
ones. Recent studies demonstrate that olfactory system is closely
linked to adipose tissue in the regulation of energy balance
(86, 87). In particular, the olfactory mucosa and bulb are
provided with receptors for adipose-derived factors, such as
leptin and adiponectin through which they influence body
metabolism (88). How the age-related changes in adiposity
modify olfactory function remains unclear. However, it is
reasonable to think that the adipose tissue dysfunction with
aging may affect energy homeostasis by perturbing the olfactory
system through the production of these adipokines, and, in turn,
outputs from the olfactory tract are among the causes of adipose
tissue modifications.

WAT regulates also immune functions. In this regards, a link
between white adiposity (in particular of VAT) and immune
aging was found. In WAT, there are different types of immune
cells that under stress conditions, such as obesity, impair their
immune capacity increasing the pro-inflammatory behaviors
in adipose tissue (89). Pro-inflammatory mediators can be
produced also by senescent cells that accumulate in adipose tissue
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during aging (10). As for the olfactory system, the regulation
of immune cell function by the adipose tissue depends on
the secretion of adipokines such as leptin and adiponectin,
that were originally classified as pro- or anti-inflammatory,
respectively. The primary function of leptin is the regulation
of appetite and energy expenditure by acting at the level of
the central nervous system. It is known that higher circulating
levels of leptin are present in obese and overfeeding individuals
(90, 91). However, studies in ob/ob mice have demonstrated
that the absence of leptin leads to obesity, hyperlipidaemia
and insulin resistance, while leptin administration reverses
these metabolic perturbations (92, 93). Accordingly, leptin
administration has been proposed as a possible therapy to
ameliorate glycemic control and dyslipidaemia in human patients
affected by lipodystrophy or congenital leptin deficiency (94, 95).
Likewise, adiponectin displays protective metabolic functions
such as stimulating fatty acid oxidation and improving insulin
sensitivity (96). High plasma levels of adiponectin are associated
with low fat mass (97) and low incidence of metabolic disorders,
including type II diabetes (98). Thus, leptin and adiponectin play
different roles that converge on the maintenance of balanced
energy levels and fat stores. Data from animal models highlight
the critical functions of adipokines in metabolic homeostasis
and longevity. In particular, these murine models, characterized
by mutation or knockout in genes involved in metabolism,
exhibit an extended lifespan associated to higher levels of
plasma adiponectin, reduced adiposity, and lower-fasting insulin
concentration (99–104). All these findings indicate that there
is a clear association between elevated circulating levels of
adiponectin and longevity, where the key mediator appears to
be the maintenance of adiponectin-dependent insulin sensitivity.
A recent cross-sectional study in caloric restricted mice of
different age shows that longevity phenotype is linked to a
specific adiponectin isoform with high molecular weight (105).
This isoform was recognized as the most effective in enhancing
the insulin sensitivity in humans (106). It is reported that the
circulating levels of adiponectin and leptin (only in males),
but not of resistin, increase with age (107). Noteworthy, also
centenarians display higher levels of adiponectin associated to
preserved insulin sensitivity. In particular, high adiponectin
blood levels are associated with high levels of HDL-cholesterol
and low levels of glycated hemoglobin (HbA1c) and C-reactive
protein (35). Moreover elevated adiponectin levels are inversely
correlated with the HOMA-IR, a risk factor for the onset of
age-related metabolic diseases (108, 109).

Another factor secreted by adipose tissue is FGF21, an
important metabolic regulator. FGF21 is in fact involved in
the transcription of adiponectin in WAT, and these two factors
together act to control energy metabolism and insulin sensitivity
in other organs, such as liver and skeletal muscle (110, 111).
FGF21 increases insulin sensitivity, energy expenditure, and
weight loss also by inducing browning activity (112). Moreover,
FGF21 has been also proposed as an antiaging hormone, in
fact the overexpression of FGF21 in mice extends the lifespan
(113). However, very recently we found that circulating levels of
FGF21 in humans increase with age from 21 to 100+ years in
healthy individuals and these high levels are related to worsened

biochemical health parameters in old persons and decreased
survival in extreme longevity (114). Accordingly, the role of
FGF21 as a pro-longevity hormone has been questioned, as
it appears to be responsible for the phenotype of accelerated
aging in Opa1-deficient mice (115). This apparent contradiction
could be explained in the framework of the hormetic paradigm.
In other words, FGF21 is per se protective and likely able to
recover a mild stress, but when the stress becomes stronger,
it overcomes the beneficial effects of FGF21 and possibly an
excessive production of FGF21 can have detrimental effects on
the health status (114). WAT secretes also various bioactive
compounds, indicated as Volatile Organic Compounds (VOCs)
(116). VOCs are low-weight molecules produced by cellular
metabolism that are involved in different physiological processes.
VOCs mirror normal or abnormal physiological processes and
reflect the metabolic condition of the organism and might have
promise as diagnostic tools for a number of diseases as well
as the metabolic condition of elderly people, as they seem to
be characterized by a modified production of VOCs (117–119).
Human fat can produce consistent amounts of VOCs detectable
in breath, skin and sweat, and fluids, such as blood, urine, saliva,
and in feces. It has been demonstrated that metabolic disorders or
other diseases are characterized by specific VOCs profiles (120).
Moreover, recent data demonstrate that the exposure to a new
profile of VOCs contributes to an increase of pro-inflammatory
cytokines involved in the development of metabolic diseases
(116, 121). Therefore, it is reasonable to think that the age-related
rearrangement of adipose tissue is at least in part responsible
not only of the alteration of fat hormones production, but also
of VOCs profiles, with at present unpredictable effects on the
health status.

As a whole, adipose tissue and its derived adipokines have a
critical role in controlling whole body energy metabolism, as well
as some of the major age-related dysfunctions and longevity.

ORGAN INVOLUTION AND FAT
INFILTRATION WITH AGING

One of the most universal manifestations of aging is the
progressive atrophy or involution of many organs and tissues.
This phenomenon is characterized by a loss of mass due to the
concomitant reduction of cell proliferation and the increase of
cell death rates, together with the accumulation of senescent cells
(122). In some cases, this age-related loss of organ parenchyma
does not lead to mere organ shrinkage, but is rather paralleled
by an infiltration of adipocytes and sometimes by a complete
replacement of organ with adipose tissue (122). The reasons
why the age-related organ involution is accompanied by a
replacement of adipose tissue remains poorly understood. As
described above, adipose tissue has a crucial role in metabolic
processes. Therefore, the adipose tissue substitution during organ
involution is not a simple replacement with a neutral tissue, but
it has to be considered as an adaptive response with dramatic
biological consequences, as adipose tissue plays an active role
as a source of hormones and adipokines that may regulate the
homeostasis of the adjacent tissues (2, 91, 123). The substitution
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of parenchyma with adipose tissue is particularly evident in
thymus, bone marrow, but also in muscle and pancreas, and
generally begins between 20 and 50 years of age, excepting the
thymic involution that begins much earlier, around late infancy-
puberty (122). However, all human organs are gradually invaded
by fat cells from birth onwards.

Thymus and bone marrow are two organs highly subjected to
age-associated changes. They represent primary lymphoid
organs, playing a fundamental role to provide cellular
components of immune system during lifespan (124). The
thymus is responsible for thymocyte differentiation and
maturation into T cells, while bone marrow is the main site for
the generation of all blood cells and for the maturation of B cells.
The thymus progressively loses its functionality with age, in a
process termed thymic involution or atrophy (125, 126). This
phenomenon begins relatively soon after birth and results in a
significant loss in thymic mass and a replacement with WAT
within the thymus but also in the peripheral areas (127, 128).
The organ replacement with WAT seems to occur in all species
that possess the thymus indicating that this process is not only
evolutionary ancient and conserved (129) but also important to
counterbalance the loss of thymus by maintaining the size of this
organ throughout life (125).

Aging induces adipocyte accumulation also in bone marrow
cavities resulting in a loss of hemopoietic activity and bone
loss disorders. Mesenchymal stem cells (MSC) of bone marrow

can give rise to adipocytes or bone-forming osteoblasts. With
age, these MSC tend to differentiate more into adipocytes that
can become the prevalent cellular population of the marrow.
Several studies suggest that this process leads to an impairment
of osteogenic and hematopoietic activities (130–132) and is
associated with the development of a great number of age-related
diseases, such as osteoporosis and type II diabetes (133, 134). It
is however suggested that the presence of adipose tissue in the
marrow is necessary and beneficial for the health of the bone,
especially when it has features of BAT (135).

As previously mentioned, aging is also associated with adipose
tissue infiltration at non-adipose sites that normally are not
involved in the fat storage. This age-related ectopic adiposity
is associated with the progressive impairment of organs and
tissues. This phenomenon affects, in particular, skeletal muscle,
liver, pancreas, and heart. In skeletal muscle, elevated adipose
deposition is observed at both intra- and inter-muscular sites.
These two types of ectopic adiposity negatively impact on muscle
strength and quality, as demonstrated in previously studies
from our laboratory and others (75, 136, 137). In older people
intra-muscular lipid content is associated with insulin resistance
and the development of metabolic disorders (138). Moreover,
in skeletal muscle, a subset of stem cells indicated as fibro-
adipogenic progenitors (FAPs) appears to play a major role in
inter-muscular adipose tissue (IMAT) infiltration, a phenomenon
linked to progressive muscle dysfunction. FAPs appear to be

FIGURE 1 | Schematic representation of adipose tissue function in successful aging or in pathological conditions. In successful aging a preserved balanced

metabolism can maintain a physiological remodeling of adipose tissue that is likely an adaptive response to environmental conditions; in pathological conditions the

unbalanced energy homeostasis leads to an excessive adipose tissue hypertrophy that becomes detrimental and contributes to the onset of age-related

metabolic diseases.
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driven toward adipogenic differentiation by muscle inactivity
(139). It is therefore plausible to consider the increased adiposity
of skeletal muscle observed with age as an adaptive response to
mutated organismal requests.

Pancreas undergoes several alterations with aging, not only in
volume but also structure. In particular, a significant reduction of
pancreatic antero-posterior diameter, an increase of pancreatic
lobulation and a decline of parenchymal component with a
concomitant parenchymal fat mass increase (fatty replacement
or lipomatosis) have been observed. This fatty replacement in
pancreas is characterized by the infiltration of adipose tissue,
as interlobular fat, between pancreatic lobules, accumulating
around vessels (140, 141). The increase of pancreatic fat
infiltration with aging is not well-understood and is still
under debate. The degree of fatty replacement varies among
subjects and depends on the condition, physiological, or
pathological, in which each individual is involved. However,
in any case, like in other organs, also the age-related
atrophy of pancreas is associated to a replacement with
fat mass.

In liver, an increase of intracellular fat mass in hepatocytes
appears to be associated only with a progressive dysfunction
of hepatic organ. Several evidence indicate that hepatic fat
infiltration is associated with an increase of oxidative stress,
inflammatory response, and cellular senescence, leading to the
alteration of hepatic structure and the onset of non-alcoholic
fatty liver diseases (NAFLD) (142, 143). Studies on the causes or
effects of aging on hepatic adiposity are still limited. However,
several evidence suggest that the progression of NAFLD is
associated with telomere shortening, increased p21 expression
and increased M1 macrophage inflammatory responses that are
considered specific markers of cellular aging (144, 145). The
increased expression levels of these markers are also observed
in adipocytes, indicating that adipocytes under oxidative stress
exhibit increased levels of ROS, shortened telomeres and switch
to senescent/pro-inflammatory phenotype with the decline in
insulin sensitivity (146).

In heart, the epicardial adiposity increases in size between
myocardium and pericardium (147). In healthy conditions,
cardiac adipose tissue has physiological functions, including
metabolic, thermogenic and mechanical functions (148). New
findings demonstrate that epicardial fat is mainly composed of
adipocytes with features similar to brown or beige adipocytes
(149), playing a protective role against the development of
metabolic diseases (150). In particular, these adipocytes act
through paracrine secretion of anti-atherogenic cytokines, such
as adiponectin and adrenomedullin. However, the epicardial
fat is susceptible to age-associated changes. In fact, with
aging brown/beige adipose tissue undergoes a brown-to-white
transition becoming dysfunctional and contributing to the onset
of several pathologies.

All these data suggest that the increase of fat mass with
age (including the increase of volume of adipose tissue,
replacement of parenchyma and ectopic lipid deposition) is an
apparently universal phenomenon, linked in general (but not
exclusively) to the onset of pathological conditions (Figure 1).
In fact, it is considered that adipocytes in adipose tissue
do not change in number with age but rather in size, thus
resembling the phenomenon occurring in obesity (151, 152).
Adipocytes from obese persons are larger and unilocular,
they release high amounts of FFA, produce less adiponectin
and are infiltrated with M1 macrophages and produces pro-
inflammatory cytokines (152), thus representing a risk factor for
many age-associated diseases. The same seems to occur with
age, as the large majority of the persons show a remodeling
of adipose tissue with these features. In this regard, obesity
could be considered as a sort of accelerated aging of the
WAT. However, adipose tissue remodeling with age is likely an
adaptive response to environmental conditions, therefore is not
necessarily detrimental, and a preserved balanced metabolism
can maintain a physiological remodeling of adipose tissue,
without excessive WAT hypertrophy, but also without excessive
loss of adiposity. This could be a key feature for achieving
successful aging and longevity.

FIGURE 2 | Fat mass remodeling with aging. During aging, from birth to advanced age, fat mass changes its amount and distribution. White adipose tissue (WAT)

increases both in number and volume of adipocytes, while brown adipose tissue (BAT) decreases. Concomitantly there is an increase in lipid deposition in ectopic

tissues (ECT) such as liver, muscles, pancreas where lipids are stored within lipid droplets.
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CONCLUSIONS

The maintenance of a balanced amount of fat mass is crucial
for health and survival, as discussed above. According to the
“thrifty phenotype” theory, humans were selected to accumulate
fat depots to face periods of food shortage. However, while a
critical lower threshold of fat content exists, an upper threshold
is apparently missing, and adipose tissue can accumulate in
great amounts. The absence of an upper threshold for fat
accumulation is probably due to the fact that this phenomenon
did not occur in the wild frequently enough to undergo
selection, or, alternatively, resulted neutral for the fitness
of individuals.

With aging, the “thrifty phenotype” seems to emerge more
dramatically, and the balance is tilted toward an increase
of fat mass, at the level of VAT and SAT as well as in
ectopic sites (liver, muscles, etc.) (Figure 2). This increase in
fat deposition at the level of SAT and VAT can be considered
an adaptive response to modified health conditions interacting
with contingent environmental conditions, leading eventually
to decreased energy expenditure. However, in some cases the
storage of surplus energy can not be claimed as the reason for
fat accumulation, especially when this occurs ectopically at the
expenses of other tissue types with important vital functions, as
in the case of thymic involution or skeletal muscle infiltration. In
this case, it seems that fat deposition in form of WAT is a sort of
physiological program (genetically determined?) for organs and
tissues undergoing age-related atrophy or involution. We have
mentioned the fact that different stem cell subpopulations such as
muscle FAPs and bone marrow MSC preferentially differentiate
to adipocyte with age, therefore, we are tempted to speculate that
the pathway leading to this cell type is a sort of a default choice
in involution processes. Should this speculation be verified, the
reasons for this choice remain elusive.

The accumulation of WAT has been for long time viewed as
detrimental, being the source of pro-inflammatorymediators and

other important endocrine modulators and strongly associated
with metabolic diseases such as insulin resistance and type II
diabetes, cardiovascular diseases and cancer. However, it is not
totally clear whether this negative role is present also in extreme
old age. Actually, data on body composition in non-agenarians
and centenarians are largely missing, even though the BMI of
these people is usually lower than that of younger (70–80 years-
old) persons. It is possible that, as for other risk factors like lipid
serum profile and inflammatory parameters (153, 154), also the
presence of a consistent amount of WAT can be important for
survival at very advanced age. Further studies are needed to verify
this hypothesis.

To sum up, human aging is characterized by a general
tendency to increase adiposity, a phenomenon that in
industrialized Countries can synergize with obesogenic
conditions and become a health-threatening phenomenon.
However, low adiposity is a risk factor too, as discussed, and a
qualitatively adequate amount of fat is likely a key feature of
long life.
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