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The traditional view of follicle-stimulating hormone (FSH) as a reproductive hormone

is changing. It has been shown that FSH receptors (FSHRs) are expressed in various

extra-gonadal tissues and mediate the biological effects of FSH at those sites. Molecular,

animal, epidemiologic, and clinical data suggest that elevated serum FSH may play

a significant role in the evolution of bone loss and obesity, as well as contributing to

cardiovascular and cancer risk. This review summarizes recent data on FSH action

beyond reproduction.
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INTRODUCTION

Follicle-stimulating hormone (FSH) is long thought to exert its effects in gonadal tissues, mainly
limited to Sertoli cells in testes and granulosa cells in ovaries (1). Recently, using methods such
as RT-PCR, Sanger sequencing, immunohistochemistry, and competitive binding assays, FSH
receptors (FSHRs) have been shown to be expressed in extragonadal tissues, including endothelium,
monocytes, developing placenta, endometrium, malignant tissues, bone and fat (2–10).

Our group first demonstrated that by increasing bone resorption by osteoclasts, FSH regulates
bone mass in mouse models (11). Moreover, we found that FSH exerts action on adipocytes. In
particular, a novel FSH antibody blocks the action of FSH on FSHRs (10, 11), causing an increase
in bone mass, a reduction of body fat and induction of beiging of white adipocytes (9). These
findings are consistent with large epidemiologic data. Indeed, the Study of Women’s Health Across
the Nation (SWAN) has shown significant reductions in bone mineral density (BMD) and high
resorption rates ∼2–3 years prior to menopause, which was also associated with increased body
weight and visceral adiposity (12, 13). It is important to note that these changes take place when
serum FSH level is increasing and estrogen level remains normal (14). Emerging epidemiologic
evidence also suggests a relationship between FSH and several cardiovascular risk factors such
as coronary artery calcium deposition, carotid intima-media thickness, and the number of aortic
plaques (15–17). In particular, FSH interacts with its receptor on monocytes, up-regulates RANK
expression and promotes monocytic infiltration of atherosclerotic plaque (18).

With this new evidence, the view that FSH acts solely as a gonadal hormone has changed
rapidly over the past decade. It also provides perspectives on new roles that FSH might have in
the pathophysiology of certain diseases and how treatment approaches targeting FSH may open
up new possibilities for prevention and treatment. For example, we showed that a FSH blocking
antibody could prevent bone loss and visceral adiposity in various mouse models (10). These data
provide the foundation for future human studies. Similarly, detection of vascular endothelial FSHR
in various types of solid tumors and sarcomas has prompted a debate as to whether an anti-FSH
antibody could serve as a treatment modality in future anti-cancer drugs (7, 19).

Here, we review the epidemiologic, molecular and animal data on FSH action in normal
physiology and the pathophysiology of osteoporosis, obesity, cardiovascular disorders, and cancer.
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The Role of FSH in Reproduction
FSH, luteinizing hormone (LH), thyroid-stimulating hormone
(TSH) and human chorionic gonadotropin (hCG) are
all glycoprotein hormones, which share the same alpha
subunit and differ in their beta polypeptide units, specific
for each of aforementioned molecules (20). Pulsatile release
of gonadotropin-releasing hormone (GnRH) from the
hypothalamus stimulates the release of FSH and LH. Inhibin B
and estradiol are the primary inhibitors of FSH secretion (21–
23). Several other pituitary-regulatory proteins, such as activin
and follistatin, have been implicated in FSH secretion and action
(22). The activity of FSH is regulated in part by glycosylation.

FSH exerts its biological action via a G protein-coupled
receptor, FSH receptor (FSHR). A stimulatory Gαs protein
initiates signal transduction via the cAMP/protein kinase A
(PKA) pathway (1, 24). This cascade of events leads to the
activation of cAMP regulatory element-binding protein (CREB)
(24). In addition to CREB, cAMP-activated PKA activates several
other factors such as p38 MAP kinases, p70-S6 kinase and
phosphoinositide-3 kinase (PI3K), PKB/Akt and FOXO1 and
regulates gene expression in target tissues (25, 26). According
to recent data, the effect of FSHR activation is not limited to
the classical pathway, but also produces its action through Gαi
(27), Gαq (28), and via other molecules, including β-arrestins
(29) and an adapter protein having pleckstrin homology and
phosphotyrosine binding domains together with a leucine zipper
motif (30). In this case, the signal transduction is accomplished
though inositol trisphosphate (IP3), Akt and ERK1/2.

FSH plays a pivotal role in the development and regulation
of both the male and female reproductive systems by acting
on the FSHR which is predominantly expressed in granulosa
and Sertoli cells (24). In females, FSH induces follicular
growth and maturation, and contributes to LH-triggered
ovulation and luteinization (31–33). In males, FSH regulates
the mitotic proliferation of Sertoli cells, supports their growth
and maturation and prompts the release of androgen-binding
protein, which regulates the overall process of spermatogenesis
(34). Moreover, in testis, endothelial FSHR mediates FSH
transport across gonadal endothelial barrier (35). Below, we will
discuss the role of FSH on bone, fat, cardiovascular system and
cancer cells.

Epidemiologic and Clinical Data
Supporting FSH Action on Bone
Traditionally, bone loss in peri- and postmenopausal women
has been attributed primarily to reduced estrogen production
due to ovarian senescence. Estrogen replacement therapy has
been considered a logical therapeutic choice in an attempt
to slow postmenopausal bone loss and reduce fracture risk
(36). However, FSH has been implicated in bone loss in
reproductive and non-reproductive age women, as well as in
women undergoing menopausal transition (37, 38).

While data from placebo-controlled randomized clinical trials
is not available, the multi-center multi-ethnic cohort SWAN
showed a compelling correlation between FSH action and bone
loss during the menopausal transition. SWAN demonstrated that

changes in bone turnover markers and bone mass density (BMD)
in perimenopausal women undergoing menopausal transition
were independent of serum estradiol, but were inversely related
to changes in the FSH level. The levels of serum FSH over a 4-year
time period predicted BMD reduction in these women (14, 39).
Moreover, lower levels of bone loss in the lumbar spine during
perimenopause were noted in women with higher estrogen-to-
FSH ratio (40). All of these observations may suggest that bone
loss during perimenopause is not solely dependent on estrogen,
and may be due in part to FSH action on bone.

Epidemiological data from across the US, Europe, and China
further substantiate findings from SWAN (41–46). The US
NHANES III cohort study documented the relationship between
serum FSH and femoral neck BMD among woman between the
ages of 42 and 60 (41). Likewise, using univariate regression
analyses, another US cross-sectional study confirmed the inverse
relation of FSH to BMD in perimenopausal women (42). The
Italian Bone Turnover Range of Normality (BONTURNO)
study compared women undergoing menopausal transition, and
showed significantly increased bone loss in the group with
FSH>30 IU/L vs. age-matched controls, although both had
regular menses (43). Yet another cross-sectional study conducted
in Spain included 92 postmenopausal female participants and
showed a positive correlation between serum FSH and C-
terminal telopeptide of type I collagen (CTX) and serum
osteocalcin, but no relation to estradiol. Several Chinese studies
have reported a negative relationship between bone loss, bone
turnover markers and serum FSH levels in perimenopausal
women (45–47), with those in the highest quartile of serum FSH
showing bone loss at a rate that was 1.3–2.3-fold higher than
those in the lowest quartile (48).

The detrimental and deleterious effect of FSH on bone during
a woman’s reproductive years can be observed in instances
of hypergonadotropic conditions. For example, lower lumbar
spine bone density was reported in a hypergonadotropic
amenorrheic group as compared to hypogonadotropic European
patients under 40 years of age (49). Groups did not differ in
estradiol or progesterone levels; however, in hypergonadotropic
women, FSH levels had a negative relationship with lumbar
spine BMD. Interestingly, females diagnosed with functional
hypothalamic amenorrhea tend to develop less severe
bone loss (50, 51).

Evidence from genetic studies further explores the function
of FSHR in humans. In particular, women with an activating
FSHRN680S polymorphism have an increased risk of developing
postmenopausal osteoporosis, independent of circulating levels
of FSH and estrogens (52). Likewise, in a multicenter study of
postmenopausal Spanish women two-gene combinations of wild
type IVS4 or 3′UTRmarkers of CYP19A1with FSHR and BMP15
genes yielded skeletal protection (53). Therefore, epidemiologic
data derived from several cross-sectional and cohort studies,
together with genetic association studies, suggest a detrimental
effect of FSH on bone.

In contrast, a couple of clinical studies in humans using GnRH
agonists failed to demonstrate any effect of FSH suppression
on bone. For instance, FSH suppression with leuprolide acetate
in a group of postmenopausal women has not being associated
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with any significant changes in bone resorption markers (54).
In another study, eugonadal men receiving goserelin acetate
combined with daily topical testosterone gel did not demonstrate
any changes in serum N-terminal telopeptide, C-terminal
telopeptide, and osteocalcin compared to control (55). However,
both studies were relatively small and the duration of the
intervention was short (approximately 4 months).

Mechanistic Studies on FSH Action
on Bone
In 2006, we were the first to observe the direct regulation of
bone mass by FSH, which resulted mainly from osteoclastic
bone resorption in rodents (11). Accumulating evidence now
shows that FSH acts directly on bone via a specific shorter
isoform of the FSHR (identified in humans), which then increases
osteoclastogenesis and stimulates bone resorption (4, 11, 56–58).
Studies failed to identify the expression of FSHRs on osteoclast
lineage cells most likely used PCR primers designed to target
the full-length gonadal FSHR (59, 60). FSH binding to the bone
FSHR has subsequently been proven in vivo through the binding
of fluorophore-tagged FSH to gonads and bone. Amolar excess of
unlabeled FSH displaced tagged FSH underscoring the specificity
of FSH binding to bone (10, 61). The level of FSH glycosylation
is important, as fully glycosylated (i.e., 24 kD) recombinant FSH
isoform has a higher affinity to the bone FSHR, as compared
to the partially glycosylated FSH molecule (i.e., 21 kD isoform),
which is more active in gonads (62, 63).

FSH acts on FSHRs on osteoclasts, stimulating NFκB,
MEK/Erk, and AKT pathways and, thus, promoting osteoclast
formation, function and survival. The osteoclastic FSHR is
coupled to Gαi2, so that its activation causes intracellular cAMP
reductions, in contrast to the ovaries where the FSHR couples
with a Gαs-protein and triggers an increase in cAMP. Blocking
the aforementioned pathway or absence of Gαi2 leads to bone
unresponsiveness to FSH (11). Stimulation of osteoclasts by
FSH also occurs via an indirect pathway—the upregulation of
receptor activator NFκB (RANK) increases the synthesis of
interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis
factor alpha (TNFα) proportionately to FSHR expression (64,
65). Moreover, FSH can interact with an immunoreceptor
tyrosine-based activation motif (ITAM) adapter to enhance
osteoclastogenesis (57).

In vivo FSH injection caused enhanced bone loss, whereas
FSH inhibitor administration decreased bone resorption in
ovariectomized rats (66, 67). Mice with an absent or deficient
allele of FSHR or FSHβ had higher bone mass and diminished
bone loss, which may be partially explained by high serum
androgens (68). However, mice lacking aromatase, despite
elevated androgen levels, still showed dramatic bone loss (69).
Moreover, when FSH inhibitor was injected into male mice they
also developed increased bonemass (9). To prevent confounding,
generated by the opposite effects of FSH and estrogens on bone
resorption, we developed a specific antibody to FSHβ (70, 71),
which was shown to decrease osteoclastogenesis in vitro (10, 71),
and decrease bone loss and stimulate bone formation in vivo
(11, 70, 71). It is also known that FSH acts via the FSHR on

mesenchymal stem cells to suppress their differentiation into
osteoblasts (70).

Epidemiologic and Clinical Data
Supporting an Action of FSH on
Body Composition
There is strong correlative evidence between high FSH and
body fat in postmenopausal women. A Michigan sub-study of
the SWAN, which included women undergoing menopausal
transition, showed a positive relationship between fat mass and
serum FSH. Participants with higher FSH had increased fat
mass and waist circumference, even after adjusting for baseline
measurements, and lower lean and skeletal muscle mass (72).
In addition, the Oklahoma Postmenopausal Health Disparities
Study, which included a large group of postmenopausal
women, showed that the best predictors of waist-to-hip ratio
were serum FSH, estradiol and body mass index (BMI)
(73). A similar positive relation between FSH to central
obesity in infertile females of reproductive age has also been
reported (74).

FSH has also been independently associated with lean mass
in 94 postmenopausal participants after adjustment for estrogen,
testosterone, LH, parathyroid hormone, sex hormone binding
globulin (SHBG) and urine N-telopeptide (75). The Study of
Women Entering and in Endocrine Transition (SWEET) found
significantly higher lean mass in premenopausal Sub-Saharan
African females, as compared to postmenopausal females, with
a negative correlation between FSH and lean mass (76).

However, several groups reported an inverse relationship
between FSH levels and BMI in women, particularly those in the
reproductive age (77–82). This phenomenon can be explained
by feedback FSH inhibition by estrogens arising from adipose
tissue. For example, a study from France reported that non-
obese reproductive-age females undergoing infertility workups
had higher levels of gonadotropins and estradiol compared to
obese women (78). Another study found an inverse relationship
between FSH and BMI in reproductive age females over 326
IVF cycles (77). Overweight/obese fertile women from Italy
had lower FSH, LH, estradiol and inhibin B in the early
follicular phase (79). The same scenario was reported in post-
and perimenopausal females. For instance, Penn Ovarian Aging
Study compared abdominal MR images and hormonal levels in
women at different time points and demonstrated a positive
relationship between estradiol and visceral fat, but a negative
one was found between FSH and visceral fat (13). Furthermore,
data from the 11-year follow-up SWAN study demonstrated
that obesity is associated with low FSH trajectory in women
of all ethnicities (80). According to The Pan-Asia Menopause
(PAM) Study, gonadotropins and estradiol had a strong positive
correlation with BMI. Interestingly, estrogen and LH levels
were dependent on age, whereas FSH was not (81). Another
study, conducted among 73 postmenopausal Serbian women,
found higher FSH in normal weight individuals than in obese
females (82).

These observations are consistent with those in girls,
particularly among pubertal girls who underwent bioelectric
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impedance measures of body fat >29%. Sorensen and Juul
demonstrated that girls within this cohort had significantly lower
LH and FSH levels vs. normal weight comparators (83). Likewise,
Bouvattier et al. observed a negative correlation between LH,
FSH and GnRH responses regarding body mass index among
perimenarchial and young adult girls (84).

No significant correlation between BMI and FSH was
identified in observational studies of males regardless of age
(85–88), except that one cross-sectional study reported that
body mass index was negatively related to FSH, inhibin B, and
testosterone levels in adult men (89). However, very recent data
from a randomized clinical trial suggest that high serum FSH
levels cause an increase in body fat in the absence of changes
in other hormones. A two-arm open-label randomized clinical
study included 58 men with prostate cancer, who were randomly
assigned to orchiectomy or GnRH agonist treatment for 24 weeks
(90). Notably, serum FSH levels increased after orchiectomy,
while GnRH agonist injections inhibited FSH secretion (91). Men
treated with orchiectomy experienced greater increases in total
fat mass, subcutaneous adipose tissue mass, and weight at 48
weeks as compared to men treated with GnRH agonist (90). This
is the first intervention study to demonstrate that FSH regulates
body fat in human.

Limited data also suggests that serum FSH may be related
to metabolic syndrome. For example, one cross-sectional study,
of 320 Polish women reported FSH to be a better indicator of
increased risk for metabolic syndrome than SHBG levels (92).
Serum FSH also appeared to be more accurate in metabolic
syndrome prediction compared with leptin or C-reactive peptide
in menopausal females (93).

The role of FSH in non-alcoholic fatty liver disease (NAFLD)
has not been well-established. However, a few studies have
reported an association between serum FSH levels and fat
deposition in the liver, detected by ultrasonography (94, 95).
For example, the 2014 Survey on Prevalence in East China for
Metabolic Diseases conducted amongwomen over 55 years of age
have revealed that serum FSH levels were negatively associated
with NAFLD (94). In an adjusted model for waist circumference
and HOMA-IR, FSH levels were not associated with mild hepatic
steatosis, however the association of FSH with moderate-severe
hepatic steatosis remained evident (P for trend <0.01) (94).
Similarly, another cross-sectional study conducted among 71
elderly (i.e., 60 years of age or older) patients from China showed
that the “normal” diurnal rhythm of FSH was independently
associated with NAFLD (95).

FSH Action on Body Fat in Mice
There is compelling evidence for FSHR expression in chicken,
murine and human adipocytes (9, 96, 97). FSH directly stimulates
primary murine adipocytes and 3T3-L1 cells through Gαi-
coupled FSHR (Figure 1), resulting in the up-regulation of
core fat genes, such as Fas, Lpl, and Pparg, and the induction
of lipid biosynthesis (9). Moreover, FSHR activation leads
to cAMP reduction and subsequently UCP1 inactivation in
ThermoMouse-derived differentiated brown fat cells (9).

We have fine-mapped the receptor-binding epitope of FSHβ

and developed a blocking antibody capable of binding to this

FIGURE 1 | Mechanism of Action of FSH on Adipocytes. The newly described

FSH signaling pathway opposes β3 adrenergic signaling. The latter is known

to cause the transdifferentiation of white to beige adipocytes via interaction of

the β3 receptor with a Gαs protein that stimulates cAMP production and

activates the MAP kinase p38 and the transcription factor ATF2, which then

translocates to the nucleus causing the transcriptional activation of the Ucp1

gene (98, 99). FSH opposes this action by interacting with a Gαi-coupled FSH

receptor, also involving CREB-mediated pathway (9, 97).

motif to prevent FSHβ/FSHR interaction (9, 10). Injection of
this anti-FSHβ antibody in various murine models, including
ovariectomized mice and mice either pair-fed on a high-fat
diet or allowed ad libitum access to normal chow, caused a
significant reduction in visceral, bone marrow and subcutaneous
fat (9). The FSH antibody also significantly increased bone
mass in ovariectomized mice (9, 70). These phenotypes were
recapitulated in haploinsufficient Fshr+/− mice, indicating a
dominant role of FSH in bone and body fat regulation.
Interestingly, anti-FSHβ antibody failed to decrease adiposity in
Fshr+/− male mice fed on a high-fat diet, proving FSH specificity
(9). These observations were reproduced contemporaneously in
other centers, using various laboratory methods (9, 100).

FSH blockade in mice also led to the up-regulation of
brown adipocyte genes, such as Cox7, Cox8a, Ucp1, and Cidea,
in visceral fat indicating “beiging,” which, we found, was
occurring independently of sympathetic tone (9). However,
it is not clear as to whether the beige adipocytes were
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the product of transdifferentiation of white adipocytes or
if they were formed from a specific precursor (101, 102).
Using in vivo fluorescence imaging on the IVIS platform,
FSH blockade in ThermoMice triggered UCP1 transcription
in brown-fat-rich areas initially with increases in white fat-
predominant regions. The production of mitochondria-rich,
thermogenic “beige” adipose tissue with the anti-FSHβ antibody
was further substantiated using PhAMmice, and by documenting
elevated basal energy expenditure in metabolic cage studies (9).
Interestingly, FSH blockade did not affect glucose or insulin
metabolism (92, 93).

Other studies have found a direct correlation between
abdominal fat mass and FSHR mRNA expression in female
chickens (96). FSH was found to alter lipid metabolism by
affecting the expression of Dci, Lpl, RarB, Rdh10, Dgat2, and
Acsl3 genes, shifting fatty acid and retinol metabolism, and
altering PPARγ signaling (96). Interestingly, FSH has also been
shown to inhibit hepatic cholesterol metabolism. FSH was found
to interact with FSHRs in HepG2 cells, reducing LDLR levels
(103). Moreover, FSHR knockdown with specific siRNA in mice
demonstrated lower LDLR (103), suggesting that FSH may
be indirectly involved in the pathogenesis of NAFLD. Finally,
in a Chinese cohort, rising FSH levels correlated positively
with serum cholesterol and LDL levels in postmenopausal
women (104).

FSH Action on Cardiovascular System
Males receiving androgen deprivation therapy (ADT) for
prostate cancer have an increased risk of cardiovascular
dysfunction, atherosclerosis and thrombosis (105–107). For
example, it has been shown recently that FSH promotes the
development of cardiovascular risk in ADT-treated males (18).
Moreover, several studies in females have demonstrated effects
of FSH on cardiovascular risk measures, such as coronary artery
calcium deposition and carotid intima-media thickness. For
example, the SWAN study showed that in 856 women who never
reported a stroke or a heart attack, FSH trajectory was correlated
positively with intima-media thickness(17). Furthermore, a sub-
study of the Prospective Army Coronary Calcium project, called
the Assessment of the Transition of Hormonal Evaluation with
Non-invasive Imaging of Atherosclerosis, showed that serum
FSH levels were associated with the number of aortic plaques
in 126 women undergoing menopausal transition using contrast-
enhanced CT angiography and carotid ultrasound (16). However,
a 22-site population-based Survey on Prevalence in East China
for Metabolic Diseases and Risk Factors, showed a negative
association between FSH levels and cardiovascular risk (108). The
study had a cross-sectional design and any causal relationship
between FSH levels and cardiovascular risk factor factors could
not be established.

Mice receiving ADT have been used to study the relation
of serum FSH and cardiovascular disease (CVD) development.
The interaction of FSH with FSHR on monocytes has been
shown to up-regulate RANK expression and promote monocytic
infiltration of atherosclerotic plaques (18). Th1 helper cells then
release RANKL, which activates RANK on monocytes, leading
to osteoclast formation. Osteoclasts resorb calcified areas and

provoke atherosclerotic plaque instability, increasing the risk of
rupture and thrombosis (18). In a second study, serum FSH
levels were also found to be significantly lower in mice treated
with GnRH antagonists, as compared to animals getting GnRH
agonist or orchiectomized (109). The first group displayed less
fat mass, at least a two-fold lower atherosclerotic plaque burden,
high levels of high-density lipoproteins (HDL), and reduced
serum low-density lipoproteins (LDL) compared to the latter
two groups. Although all animals developed fatty changes in the
aortic wall, the necrotic regions were dramatically smaller in the
first group (109). This suggests that increased CVD risk in ADT
cannot be explained solely by hypoandrogenemia, and may relate
to changes in serum FSH. Furthermore, it has also been surmised
that, as atherosclerotic plaque development is dependent on
neovascularization (110), FSH may act by stimulating new
vessel formation [as effectively as vascular endothelial growth
factor (111, 112)] via FSHR present on vascular endothelial
cells (7). The mechanism includes the stimulation of VCAM-1
synthesis by FSHR expressed on endothelial cells. VCAM-1 then
recruits monocytes to affect their migration and differentiation
into macrophages that accumulate lipid droplets and eventually
become foam cells (17, 113). Finally, FSHmay elevate production
of cytokines, namely IL-6 and TNFα, from macrophages to
cause low-grade inflammation, atherosclerosis development and
insulin resistance (114). We have documented this direct action
in osteoclasts (115).

FSH Action in Oncogenesis
FSH levels are elevated in ovarian cancer (116, 117).
Furthermore, epithelial and endothelial FSHRs have been
detected in various cancer types, including prostate (118, 119)
and ovarian cancers (120–122), as well as in established
cancer cell lines, namely prostate cancer cell lines DU145
(118) and PC-3 (118, 119), ovarian cancer cell lines including
OVTOKO, CaOV-3, RNG1, OVCAR-3, and TOV-21G (121–
126). Endothelial FSHR was detected by immunohistochemical
and immunoblotting analysis in samples obtained from >1,000
patients with breast, prostate, colon, pancreas, urinary bladder,
kidney, lung, liver, stomach, testis, and ovarian cancer (7).
Recent data indicates that these FSHRs are signaling-efficient.
In particular, endothelial FSHR expression is associated with
vascular remodeling and tumor angiogenesis (6, 7), whereas
epithelial FSHR induces cell proliferation (118–120), migration,
and cancer cell invasion (127).

Interestingly, murine T-cells directed against FSHR- positive
ovarian cancer cells showed increased survival without
causing toxicity (122). FSHR stimulation upregulated Oct4
expression via the Erk1/2 pathway in epithelial ovarian
cancer (128). Epithelial-to-mesenchymal transition in ovarian
cancer was also stimulated through PI3K/Akt-Snail signaling
(129). It has been suggested that FSH stimulates ovarian
cancer cell proliferation via FSHR isoform 3, which is not
coupled with G-proteins and not associated with cAMP
production, but activates the Erk pathway in a Ca2+-dependent
manner (130, 131).

Cancer cells express abundant receptors to various growth
factors, suggesting the potential possibility of restricting cancer
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growth through antibody-mediated blockade of these receptors
(132, 133). Unfortunately, the delivery of antibodies through the
endothelium is poor and high doses are prone to cause toxicity
(134, 135). To avoid this problem, a different approach, notably
targeting the tumor vasculature, has been proposed. However,
two major groups of extensively studied agents targeting tumor
vessels have proven limitations and lack efficacy. Antiangiogenic
agents reduce the action of various growth factors inside the
tumor, preventing new blood vessel formation (136–139). Their
maximum effect is tumor shrinkage and these agents have
failed to improve survival (140, 141). The second group of
agents, namely vascular disrupting agents, affect mature vessels,
rearranging the endothelial cytoskeleton and increasing vascular
wall permeability (142), thus disrupting blood supply and leading
to extensive central necrosis of a tumor (143); this nonetheless
leaves viable peripheral neoplastic tissue that subsequently
repopulates the necrotic area (144–146). A new promising
direction for anticancer target therapy is to cause peritumoral
infarction using truncated tissue factor (tTF) coupled to ligands
that are highly specific for FSHR (147). Antihuman FSHR
antibody, conjugated with tTF, binds the FSHR, which is
abundant in peritumoral endothelium, initiating blood clotting
with subsequent blood supply disruption and tumor necrosis
(148). Interestingly, the vasculature of bone and fat has not been
shown to express FSHRs: thus, such therapy will most likely
cause no issues (8, 149). However, their presence in the female
reproductive system may limit anti-FSHR-tTF treatment. This
approach still needs extensive investigation in the future and
provokes extensive discussion on the development of a cancer
therapies based on agents tethered to anti-FSHR antibodies (19).

CONCLUSION

In the transitional phase of a women’s reproductive life to
menopause, the risk for osteoporosis, obesity and CVDs increase
concurrently. Along with declining estrogen levels, sharply rising
FSH levels have now been implicated in the pathogenesis of these
diseases. It is now well-known that bone loss begins even before
estrogen levels are altered in the perimenopause (150).

Several key findings have emerged relating serum FSH
to bone loss, obesity, and perhaps even cardiovascular risk
and cancer. First, it is clear that FSH directly impacts bone
cells—osteoclasts and osteoblast precursors. The underlying
mechanisms include a direct action on osteoclasts through
the enhancement of RANKL signaling, and indirect actions

to increase the expression of RANK in osteoclasts (151) and
stimulate the synthesis of pro-resorptive cytokines, including
TNFα, IL1β, and IL-6. Studies also conclusively demonstrate the
expression of functional FSHRs on adipose tissue (97), which,
when blocked by an FSH antibody, result in a profound reduction
of body fat and generation of thermogenic “beige” adipose tissue
(152). Together, the studies form the framework for using a
humanized FSH antibody for the simultaneous treatment of two
public health hazards—obesity and osteoporosis—with a single
agent. Admittedly speculative at this stage, an increased risk of
cardiovascular event(s) among postmenopausal women may also
be in part attributable to subclinical atherosclerosis promoted
by sharply rising FSH levels (153). Finally, certain cancers,
prominently ovarian tumors in which oncogenic signaling
through the FSHR can be proven may be amenable to novel
FSH-based therapeutic agents.

Thus, positive correlations between rising FSH levels and a
plethora of illnesses like obesity, osteoporosis, cardiovascular
pathology, and cancer changes our view of FSH from
monogamously associated with fertility to a much broader view
of the role of this “gonadotropin” in other medical conditions
and in human physiology. It is therefore now conceivable that we
question whether FSH is a true aging hormone. By developing
new treatment approaches that target this gonadotropin, we may
in the future be able to treat multiple age-related diseases perhaps
even with a single drug.
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