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Low-grade inflammation and insulin resistance are among the clinical features of

obesity that are thought to promote the progressive onset of type 2 diabetes.

However, the underlying mechanisms linking these disorders remain not fully understood.

Recent reports pointed out hypothalamic inflammation as a major step in the

onset of obesity-induced insulin resistance. In light of the increasing prevalence of

obesity and T2D, two worldwide public health concerns, deciphering mechanisms

implicated in hypothalamic inflammation constitutes a major challenge in the field

of insulin-resistance/obesity. Several clinical and experimental studies have identified

resistin as a key hormone linking insulin-resistance to obesity, notably through

the activation of Toll Like Receptor (TLR) 4 signaling pathways. In this review,

we present an overview of the molecular mechanisms underlying obesity-induced

hypothalamic inflammation and insulin resistance with peculiar focus on the role of

resistin/TLR4 signaling pathway.
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INTRODUCTION

Obesity is a global epidemic triggering significant morbidity and mortality rate, through mainly
interactions between genetic and environmental factors, notably sedentary lifestyle and unhealthy
eating habits (1–3). Obesity is directly or indirectly associated to myriad of metabolic disorders
and dysfunctions including chronic low-grade inflammation and insulin resistance, which are
causally related to the development and progression of type 2 diabetes (T2D) (4–6). Numerous
studies have been dedicated to understand the relationship between obesity, inflammation, and
insulin resistance. In rodents, the consumption of High Fat Diet (HFD) predisposes to obesity,
insulin resistance, and low-grade inflammation (7–9). HFD consumption altered both leptin
and insulin hypothalamic responsiveness leading to the deregulation of energy homeostasis
control. Indeed, these two hormones are anorexigenic and considered as key regulators of energy
homeostasis (10, 11). Additionally, HFD deregulates hypothalamic neuronal circuitries, known to
finely adapt hypothalamic response to body energy needs, leading to body weight gain, obesity,
and T2D (12–14). More recently, hypothalamic inflammation has been identified as a critical
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event initiating the onset of obesity-induced insulin resistance
and inflammation (4, 7, 15). Indeed, in contrast to HFD-
induced peripheral inflammation, that is considered as a
long-term consequence, hypothalamic inflammation acutely
develops within few days of HFD consumption especially in
the hypothalamic arcuate nucleus (ARC) in association with
both insulin/leptin resistance and the upregulation of neuronal
injury markers (8, 15, 16). These data suggest that hypothalamic
inflammation is a major step in the early onset of the deregulation
of energy homeostasis control and insulin resistance induced
by HFD. However, the mediators and the signaling pathways
triggering the onset of hypothalamic inflammation and insulin
resistance are not fully characterized.

In rodents, it is largely documented that obesity alters
secretory adipose tissue functions mainly adipokines and
pro-inflammatory cytokines secretions (6, 17). Among these
adipokines, Resistin is described as a determinant factor
in obesity-mediated inflammation and insulin resistance at
both central and peripheral levels (18, 19). Resistin initiates
its effects through the binding to TLR4 activating pro-
inflammatory signaling pathways (19–24). Moreover, TLR4
known as a component of immune system Pattern-recognition
receptors (PRRs), plays a crucial role as a trigger of metabolic
inflammation and insulin resistance during obesity (25–
27). This review highlights molecular mechanisms underlying
obesity associated hypothalamic inflammation and insulin
resistance with particular focus on the role of resistin/TLR4
signaling pathway.

HYPOTHALAMIC CONTROL OF ENERGY
HOMEOSTASIS: KEY ROLE OF INSULIN
AND LEPTIN

The hypothalamus is the main brain area controlling feeding
behavior and energy homeostasis implicating complex neuronal
circuits that project toward several brain regions and brainstem
(28, 29). Hypothalamic arcuate nucleus (ARC), ventromedial
(VMH), dorsomedial (DMH), and paraventricular (PVN) nuclei
are critical for energy homeostasis control. The ARC, which
sits abutting the median eminence and the third ventricle
in the mediobasal hypothalamus (MBH), constitutes the key
hypothalamic area that integrates peripheral hormonal and
nutritional metabolic signals (10, 11, 28–32). The ARC contains
two distinct functionally antagonistic neuronal populations, the
orexigenic neurons expressing the agouti-related peptide (AgRP)
and the neuropeptide Y (NPY) and the anorexic neurons that
include cocaine-and amphetamine-regulated transcript (CART)
neurons and pro-opiomelanocortin (POMC) neurons. These
ARC neurons coordinate neuronal networks involved in feeding
behavior and energy expenditure control (31, 32).

Among the peripheral signals, the anorexigenic effect of
insulin in the hypothalamus is largely documented where insulin
modulates food intake and glucose homeostasis (10, 11). Insulin
crosses blood-brain barrier (BBB) in a receptor-dependent
manner to reach the hypothalamus (32). In the hypothalamus,
insulin receptors (IR) are highly expressed in POMC/CART

and NPY/AgRP neurons (30, 31), and central delivery of
insulin increases hypothalamic expression of CART and αMSH
(α-melanocyte stimulating hormone), and inhibits NPY and
AgRP gene expression (33, 34) reducing then food intake and
body weight (35). Moreover, insulin regulates electrical activity
of both POMC/CART and NPY/AgRP neurons through the
stimulation of ATP-sensitive potassium (KATP) channel leading
to membrane hyperpolarization and decreased firing of these
neurons in a PI3K/Akt-dependent manner (35, 36). It has been
also reported that insulin, through its action on hypothalamic
ARC neurons, regulates hepatic glucose production (37, 38),
glycogen synthesis (39), and fat metabolism (40, 41) via
autonomous nervous system connections. Insulin action on
AgRP/NPY neurons, suppresses hepatic glucose production (37),
whereas it action on POMC neurons inhibits adipose-tissue
lipolysis (41). Beside insulin, the adipose tissue-derived hormone
Leptin also plays a critical role in the hypothalamic control
of energy and glucose homeostasis. Leptin acts through its
hypothalamic long isoform receptor (ObRb) to reduce food
intake and increase energy expenditure by upregulating the
expression of POMC and reducing the expression of NPY and
AgRP (42–44). Leptin action within the hypothalamus also
improved glucose utilization and insulin sensitivity in adipose
tissue, muscle and liver (45, 46). Of note, leptin and insulin
share several signaling pathways in the hypothalamus and act
synergistically to modulate the central regulation of feeding and
whole body energy homeostasis (47, 48).

IMPAIRED HYPOTHALAMIC INSULIN
SIGNALING IN OBESITY

In rodents, HFD consumption is considered as an important
nutritional factors predisposing to obesity-induced insulin
resistance. HFD consumption alters hypothalamic insulin
responsiveness deregulating energy homeostasis control (7–9).
Several mechanisms have been proposed to explain the loss of
hypothalamic insulin action induced by HFD. Indeed, it has been
shown that the impairment of hypothalamic insulin action could
result from impaired transport across the BBB reducing then
hypothalamic insulin uptake (49–51). Nonetheless, the direct
delivery of insulin in the brain did not reverse the obesity-
induced metabolic disorders (52–55) suggesting that the defect
in insulin uptake into the brain is not the only mechanism. In
obese animals, hypothalamic insulin resistance might be also a
consequence of impaired hypothalamic insulin signaling. This
could be attributed to HFD-induced hypothalamic upregulation
of suppressor of cytokine signaling (SOCS3), protein tyrosine
phosphatase-1B (PTP-1B) and protein kinase C, shown to blunt
hypothalamic insulin signaling pathways (56–58). It is also
suggested that inhibitory interplay between leptin and insulin
signaling in the hypothalamus could have a causal role in the
onset and the progression of hypothalamic insulin resistance.
Interestingly, numerous studies clearly reported that chronic
exposure to high leptin levels, which mimics obesity-associated
hyperleptinemia, promotes hypothalamic insulin resistance
through the impairment of neuronal insulin signaling (48, 59,
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60). Furthermore, obesity-induced hypothalamic inflammation
may also contribute to the development of hypothalamic insulin
resistance. Indeed recent studies reported that HFD activates
hypothalamic inflammatory pathways, notably NF-kB and c-
jun N-terminal kinase (JNK), and increases proinflammatory
cytokines leading to hypothalamic insulin resistance (4, 7, 15). In
humans, increasing evidence has corroborated findings obtained
from rodent models that link hypothalamic inflammation and
insulin resistance to the deregulation of energy homeostasis
promoting obesity onset in humans (7, 16, 61).

HYPOTHALAMIC INFLAMMATION AND
INSULIN RESISTANCE IN OBESITY

Epidemiological studies in obese and insulin resistant subjects
have revealed a causal link between increased pro-inflammatory
markers and decreased insulin sensitivity (7, 62). In rodents it
is now recognized that HFD-induced metabolic inflammation
contributes to metabolic disorders including insulin resistance
(7, 63). This inflammatory state occurs particularly in adipose
tissue, implicating the recruitment of immune cells and the
activation of resident macrophages exacerbating adipose tissue
inflammation and production of proinflammatory cytokines (6).
These events alter insulin responsiveness of liver, skeletal muscle
and adipose tissue exacerbating whole body insulin resistance
(62, 63). Inflammatory processes have also been described in
the brain in the context of diet induced obesity. HFD triggers
local immune responses in the MBH resulting in the production
of proinflammatory cytokines and neuronal injury affecting
energy homeostasis control and hypothalamic insulin sensitivity
(4, 4, 15, 16, 61, 64, 65). Accordingly, recent studies reported
that genetic disruption of key inflammatory pathways in the
hypothalamus, such as TLR4/MyD88 or IKKb/NF-kB pathways,
is protective against the metabolic complications induced by
HFD including hypothalamic insulin resistance (64, 66, 67).
This brings further arguments for the role of hypothalamic
inflammation as an important contributor of HFD-associated
hypothalamic insulin resistance.

MOLECULAR BASIS OF HYPOTHALAMIC
INFLAMMATION AND
INSULIN RESISTANCE

At the molecular levels, IKKβ/NF-kB inflammatory pathways
have been described to be critical in the development
and progression of hypothalamic insulin resistance. Indeed,
inactivation of IKKβ/NF-kB signaling in neurons, astrocytes
or microglia of the MBH protects against HFD-induced
obesity, glucose intolerance and hypothalamic insulin resistance
(66, 68–70). Moreover, elevated NF-kB signaling in the
hypothalamus of HFD rodents, triggers endoplasmic reticulum
(RE) stress which promotes hypothalamic insulin resistance
leading to the acceleration of obesity and T2D disease
progression (66, 71–75). The activation of NF-kB signaling
also induces hypothalamic expression of SOCS3 which impairs
insulin-dependent phosphorylation of Insulin receptor and

its downstream signaling (66, 68, 76). SOCS3 also targets
IRS1/2 for proteasomal degradation (76). Hence, NF-kB-
dependent upregulation of SOCS3 could thus link hypothalamic
inflammation to insulin resistance. Like SOCS3, the PTP-1B is
another signaling protein involved in the negative regulation
of insulin signaling. HFD up-regulates hypothalamic PTP-1B
inhibiting then insulin-mediated anorexigenic effects by insulin
receptor dephosphorylation (56, 77–80). Interestingly, neuron-
specific deletion of PTP-1B in mice enhanced hypothalamic
insulin sensitivity and prevents HFD-induced obesity and
related metabolic dysfunctions (81–83). PTP-1B deficiency also
attenuates HFD-induced hypothalamic inflammation suggesting
a functional link between inflammatory pathways and PTP-1B
activation at the neuronal level (56, 80).

JNK signaling is another pathway proposed to be critical
for the development of obesity associated hypothalamic insulin
resistance. Obesity-dependent activation of JNK signaling was
shown to impair insulin signaling (84). JNK promotes the
serine phosphorylation of IRS-1 that inhibits insulin-dependent
IRS-1 tyrosine phosphorylation and downstream signaling (85,
86). JNK deficiency in the brain protects against HFD-induced
insulin resistance (87). Moreover, central administration of JNK
inhibitors restores hypothalamic insulin signaling and improves
impaired glucose homeostasis under HFD conditions (88).

ER stress and the unfolded protein response (UPR) also
contribute to HFD-induced hypothalamic inflammation and
insulin resistance (89–92). ER stress results from the deficit
in protein folding capacity, and increased accumulation of
unfolded protein in the ER lumen (91, 92). Prolonged ER stress
leads to the activation of UPR signaling pathways in order to
restore ER homeostasis (91, 92). The deleterious effects of ER
stress and UPR on metabolic regulation in peripheral tissues
(75, 89, 93–95) as well as in the hypothalamus (66, 90, 96)
are well-documented. Recent evidence reported that IKKβ/NF-
κB and JNK pathway link UPR/ER stress to obesity-induced
inflammation and insulin resistance (7, 64, 95). Accordingly, the
activation of IKKβ/NF-κB in the MBH was reported to increase
ER stress and related metabolic disorders including insulin
resistance (89, 90, 94). Conversely, neuron-specific deletion of
IKKb in mice is associated with reduced UPR signaling (66).
These observations support the critical role of the ER stress and
UPR pathway in the onset of metabolic inflammation and insulin
resistance notably in the hypothalamus.

Inflammatory responses induced by HFD are also mediated
by TLRs known to be involved in innate immunity (25,
97). At the molecular levels, TLRs stimulation results in the
activation of several signaling pathways such as Ikkb/NFkB,
JNK/AP-1 signaling, and MAP kinases, including ERK1/2, JNK,
and p38, promoting then the expression of proinflammatory
cytokines notably IL1β, IL6, and TNFα (25, 97–99). Among
the different members of the TLR family, TLR4 is considered
as a major contributor of obesity-induced inflammation and
insulin resistance (26, 27, 100). TLR4 expression is increased in
obese mice and humans and positively correlates with insulin
resistance (26). In obesity, TLR4 is considered as the main target
for saturated fatty acids in the hypothalamus and peripheral
tissues that triggers inflammatory response and endoplasmic
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reticulum stress promoting whole body insulin resistance (15).
Recently, it has been shown that Fetuin A, a glycoprotein mainly
produced by liver and adipose tissue, is required for FFAs-
dependent activation of TLR4. It acts as an endogenous ligand for
TLR4 that bridges FFAs and TLR4 promoting inflammation and
insulin resistance (101). The implication of TLR4 in obesity was
further evidenced by studies reporting that TLR4 knockdown or
its pharmacological inhibition, protect mice from diet induced
inflammation and insulin resistance (102–105). Furthermore,
brain specific deletion of MyD88 (myeloid differentiation factor),
a downstream mediator of TLR4 signaling, in mice also prevent
HFD-induced obesity and associated leptin and insulin resistance
(67). Accordingly, recent evidence reported that the knockdown
of TLR4 in the arcuate nucleus protects rats from diet-
induced weight gain, glucose intolerance and peripheral insulin
resistance (106). Additionally, it has been shown that TLR4-
mediated microglia signaling pathway is critical for the control of
ARC neuronal activity and feeding behavior (107). Collectively,
these data strongly demonstrate the implication of brain TLR4
signaling in the pathogenesis of obesity, inflammation and
insulin resistance. Nevertheless, some reports do not support
such a role of TLR4 in obesity and associated metabolic
dysfunctions (108, 109). These discrepancies can arise from the
animal models and the composition of HFD used, as well as
from experimental conditions (i.e., animal age, time of exposure
to HFD etc...). These contradictory data also highlight that,
besides TLR4 signaling, other pathways are critically involved in
obesity-associated inflammation and insulin resistance.

ROLE OF CENTRAL RESISTIN TLR4
SIGNALING PATHWAY IN THE
DEVELOPMENT OF HYPOTHALAMIC
INFLAMMATION AND
INSULIN RESISTANCE

Even though the mechanisms underlying obesity-induced
hypothalamic inflammation are still not fully characterized,
it is now recognized that HFD promotes both central and
peripheral inflammation through the increase of circulating
levels of deleterious adipokines and proinflammatory cytokines
originated from the adipose tissue (4–6, 17). Among these
adipokines, resistin is described as a hormone linking obesity
to type 2 diabetes (110, 111). Resistin is mainly secreted from
adipose tissue in rodents and macrophages in humans (112,
113). Circulating levels of resistin positively correlate with
obesity in rodents, promoting both inflammation and insulin
resistance (114–117). In rodents, peripheral overexposure to
resistin impairs insulin responsiveness (118–120). Conversely,
loss of resistin or infusion of resistin antibodies improves
peripheral insulin sensitivity (17, 121–123). Although resistin
has been conclusively linked to the development of obesity and
insulin resistance in rodents, disagreement persists regarding the
pathogenic role of resistin in human obesity. Several studies
support the positive relationship between insulin resistance
and elevated plasma resistin levels in obese and type 2
diabetic individuals (124–126), whereas other studies have

shown contradictory findings (127, 128). Beside its role in
obesity and insulin resistance, resistin is greatly implicated in
proinflammatory processes which are causally involved in the
development of insulin resistance in both rodents and humans
(110, 111, 129–131). Resistin regulates the production of key
pro-inflammatory cytokines, such as TNFα and IL6, through
the activation of NF-κB signaling pathways in macrophages
contributing to profound alterations of peripheral insulin
signaling pathways resulting in an insulin-resistant state (17,
110, 129, 130, 132, 133). Previous studies showed that resistin
is also expressed in the hypothalamus (134). Interestingly,
central resistin activates hypothalamic neurons, and modulates
food intake, glucose homeostasis and lipid metabolism in
addition to the alteration of liver insulin sensitivity (135–
138), suggesting an important role of hypothalamic resistin
on the control of energy homeostasis and peripheral insulin
sensitivity. Nevertheless, the role of resistin on the development
of brain inflammation and insulin resistance remains poorly
documented. At the molecular level, the resistin receptor remains
uncharacterized. However, recent investigations reported TLR4
as a potential candidate for human resistin. TLR4 was first
reported to mediate the proinflammatory effects of resistin
in human myeloid and epithelial cells (19). TLR4 was
also reported to mediate resistin effects on breast cancer
progression (139). Recently, it has been shown that resistin
competes with LPS for binding to TLR4 resulting in the
inhibition of LPS-induced proinflammatory responses and
the upregulation of anti-inflammatory pathways suggesting a
protective role for resistin/TLR4 pathway against endotoxic
shock (24). More recently, we reported that resistin acts within
the hypothalamus through the activation of TLR4 receptor
and its downstream signaling, promoting both hypothalamic
and peripheral inflammation, leading consequently to the
impairment of insulin, adiponectin and FGF21 signaling in the
hypothalamus and peripheral insulin-sensitive tissues (20, 21).

BY WHICH MECHANISMS RESISTIN
PROMOTES HYPOTHALAMIC INSULIN
RESISTANCE (FIGURE 1)?

Resistin directly binds to TLR4 in the hypothalamus, promoting
the recruitment of the adaptors proteins MyD88 and TIRAP and
the activation of downstream signaling pathways. The activation
of Resistin/TLR4 signaling impairs hypothalamic insulin
responsiveness through the alteration of the insulin-mediated
insulin receptor (IR), AKT, and ERK1/2 phosphorylations. This
could be attributed to the resistin-dependent downregulation of
IR as well as the upregulation of the hypothalamic expression
of SOCS-3 and PTP1B, known as key negative modulators of
insulin signaling (56, 76). Resistin-dependent upregulation
of the serine phosphorylation of IRS-1 may also contribute
to the impairment of hypothalamic insulin signaling through
the activation of the serine kinases JNK and p38 MAPK),
which are reported to promote the serine phosphorylation of
IRS-1 leading to insulin resistance (85, 86, 140). Moreover,
Resistin triggers hypothalamic inflammation as evidenced
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FIGURE 1 | Molecular basis of resistin-dependent neuronal insulin resistance. Obesity is associated with elevated circulating resistin which may reach the

hypothalamus leading to hypothalamic inflammation and insulin resistance. Resistin binding to TLR4 result in recruitment of two adaptor-associated proteins TIRAP

and MyD88 that leads to the activation of different downstream signaling pathways especially Akt, ERK1/2, JNK, and p38MAPK. Once triggered, Resistin/TLR4

signaling decreases both IR and IRS expression and activity by the downregulation in tyrosine phosphorylation. In agreement with that, resistin upregulates the

negative regulators of insulin signaling SOCS-3, and PTP-1B, and activates the MAP kinases JNK and p38 which promotes the phosphorylation of IRS1/2 on serine

307 resulting in the desensitization of insulin signaling. Resistin/TLR4 signaling also promotes neuronal inflammation, at least in part via the activation of the

transcription factors AP-1 and NF-kB leading to the upregulation of proinflammatory cytokines notably, IL-6, TNFα, and IL-1β, which interferes with insulin signaling

promoting neuronal insulin resistance. Resistin, via TLR4, also decreases neuronal autophagy, through to the inhibition of AMPK phosphorylation and the activation of

Akt/mTOR, which could promote neuronal ER stress and inflammation leading to an amplification loop. Besides, resistin-dependent neuronal insulin resistance could

also be attributed to the impairment of both adiponectin and FGF21 signaling known as insulin-sensitizing hormones. Resistin decreases the expression levels of

adiponectin receptors AdipoR1/R2 and promotes the downregulation of the adaptor protein APPL1, which is implicated in AdipoRs signaling contributing to the

insulin-sensitizing effect of adiponectin. Additionally, resistin reduces the expression of FGF21 and its receptor components FGFR1 and KLB that contribute to the

impairment of FGF21 signaling and its beneficial effects on insulin sensitivity.

by the upregulation of the hypothalamic expression of pro-
inflammatory cytokines such as IL6, and the activation of
JNK and p38 MAPK signaling pathways known to promote
inflammatory response (20). It is noteworthy that HFD-induced
activation of microglia and astrocytes is critically involved in
the development of hypothalamic inflammation and associated
metabolic dysfunctions including insulin resistance (16, 69, 141–
143). This leads to reactive gliosis evidenced by the proliferation
and recruitment of activated astrocytes and microglia in
the MBH amplifying hypothalamic inflammatory response
(16, 144–146). Since resistin has strong effect on hypothalamic
inflammation, similar mechanism might be suspected.

Another suggested mechanism is that central resistin might
induce hypothalamic insulin resistance through the impairment

of adiponectin and FGF21 signaling known as insulin-sensitizing
hormones (147–152). Central resistin treatment reduced the
expression levels of adiponectin receptors AdipoR1/R2 in the
hypothalamus of mice and rats and promotes the downregulation
of the adaptor protein APPL1 (21). Indeed, APPL1 is implicated
in AdipoRs signaling contributing to the insulin-sensitizing effect
of adiponectin (147, 153). Resistin-dependent downregulation
of APPL1 enhanced Akt association with its endogenous
inhibitors TRB3 inhibiting then insulin-mediated Akt signaling
(21). Additionally, central resistin treatment markedly reduced
hypothalamic expression of FGF21 and its receptors FGFR1
and KLB that could promote the impairment of hypothalamic
FGF21 signaling and its beneficial effects on insulin sensitivity.
Accordingly, resistin overexposure directly impairs both FGF21
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and adiponectin signaling in human and mouse neuronal
cells. Interestingly, the knockdown of TLR4 prevents resistin-
dependent impairment of adiponectin and FGF21 signaling in
mice and neuronal cells suggesting a critical role of TLR4 in
mediating resistin effects (21).

Other candidate for resistin downstream effects on
hypothalamic insulin sensitivity could be the alteration of
neuronal autophagy. In fact, the disruption of autophagy in
the hypothalamic neurons is critically involved in diet-induced
obesity and associated hypothalamic inflammation and insulin
resistance (16, 154–158). Interestingly, in neuronal cells, resistin
overexposure decreases neuronal autophagy through the
repression of several autophagy markers, especially LC3, ATG7,
and Beclin-1. At the molecular levels, resistin exerts its effects
via the activation of TLR4 signaling leading to the inhibition
of AMPK phosphorylation and the activation of Akt/mTOR
which regulate autophagy (22). These results were validated
in mice, where resistin treatment decreases hypothalamic
expression of key autophagy markers. In particular, resistin
strongly diminished LC3 labeling in the arcuate nucleus through
a mechanism involving TLR4 signaling (22). All together, these
data clearly reveal resistin/TLR4 as a new regulatory pathway
of neuronal autophagy, and suggest that resistin-dependent
neuronal autophagy could be a key contributor of hypothalamic
inflammation and insulin resistance.

CONCLUSION

Obesity is associated with low grade inflammation which
occurs in peripheral metabolic tissues, resulting in whole body
insulin resistance, but also in the hypothalamus causing local

impairment of insulin signaling and sensitivity. Our recent
findings evidenced that central Resistin/TLR4 signaling pathway
promotes the onset of hypothalamic inflammation and insulin
resistance. Despite these evidences, further studies are needed
to clarify the specific role of resistin produced within the
hypothalamic neurons as compared to that produced in the
periphery, and to identify the neural circuitries mediating
resistin effects within hypothalamic nuclei. Indeed, it is also
necessary to elucidate the role of resistin/TLR-4 signaling
pathway in hypothalamic astrocytes and microglia cells, which
are critically involved in the onset of hypothalamic inflammation.
Further investigations are needed to clearly decipher regulatory
mechanisms involved in hypothalamic resistin/TLR4 signaling
in the context of obesity. This will constitute a major step
to understand the molecular mechanisms underlying the onset
of obesity-induced neuroinflammation, and will identify new
potential therapeutic targets to overcome obesity-associated
hypothalamic inflammation and related metabolic disorders.
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