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Phosphate is essential for skeletal mineralization, and its chronic deficiency leads

to rickets and osteomalacia. Skeletal mineralization starts in matrix vesicles (MVs)

derived from the plasma membrane of osteoblasts and chondrocytes. MVs contain

high activity of tissue non-specific alkaline phosphatase (TNSALP), which hydrolyzes

phosphoric esters such as pyrophosphates (PPi) to produce inorganic orthophosphates

(Pi). Extracellular Pi in the skeleton is taken up by MVs through type III sodium/phosphate

(Na+/Pi) cotransporters and forms hydroxyapatite. In addition to its roles in MV-mediated

skeletal mineralization, accumulating evidence has revealed that extracellular Pi evokes

signal transduction and regulates cellular function. Pi induces apoptosis of hypertrophic

chondrocytes, which is a critical step for endochondral ossification. Extracellular Pi

also regulates the expression of various genes including those related to proliferation,

differentiation, andmineralization. In vitro cell studies have demonstrated that an elevation

in extracellular Pi level leads to the activation of fibroblast growth factor receptor

(FGFR), Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular

signal-regulated kinase) pathway, where the type III Na+/Pi cotransporter PiT-1 may

be involved. Responsiveness of skeletal cells to extracellular Pi suggests their ability

to sense and adapt to an alteration in Pi availability in their environment. Involvement

of FGFR in the Pi-evoked signal transduction is interesting because enhanced FGFR

signaling in osteoblasts/osteocytes might be responsible for the overproduction of

FGF23, a key molecule in phosphate homeostasis, in a mouse model for human X-linked

hypophosphatemic rickets (XLH). Impaired Pi sensing may be a pathogenesis of XLH,

which needs to be clarified in future.
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INTRODUCTION

Phosphorus mediates almost all biological processes including composition of cell membrane,
maintenance and inheritance of genetic materials as nucleic acids, energy metabolism, and
regulation of proteins by phosphorylation/dephosphorylation, as well as skeletal mineralization
in vertebrates (1). In human adult body, about 90% of total phosphorus is stored in bone as
hydroxyapatite (calcium-phosphate) crystals (2). Most of the remaining phosphorus is distributed
in soft tissues, and phosphate is predominantly an intracellular ion. Less than 1% of phosphorus
exists in extracellular fluid (2), and phosphorus in serum mostly occurs as inorganic phosphate
(Pi) such as HPO2−

4 and H2PO
−

4 , and the former corresponds to 80% at physiological pH (3).
Although serum Pi level is influenced by age, diet, and pH (1), its abnormality may lead to
undesirable consequences.
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Since phosphate is an essential constituent of hydroxyapatite,
its chronic deficiency or wasting leads to impaired skeletal
mineralization characteristic to rickets, and osteomalacia. In
addition to its role in hydroxyapatite formation, Pi also induces
apoptosis of hypertrophic chondrocytes as a direct effect on cells
(4–8). Moreover, extracellular Pi triggers signal transduction to
regulate gene expression (9–13).

In this article, after overviewing the mechanism of phosphate
homeostasis and hyperphosphatemic and hypophosphatemic
disorders, we will describe the versatile roles of phosphate in
the skeleton.

PHOSPHATE HOMEOSTASIS IN
MAMMALS

Phosphate Balance
In mammals, phosphate homeostasis as a total body is
maintained by influx and efflux via the intestines, kidneys, bone,
and soft tissue. In growing children, the phosphate balance
should be positive to allow accrual of phosphate in the skeletons
and soft tissues. To meet the needs of Pi for the growing
skeleton and soft tissues, serum Pi levels are maintained higher
in children than in adults (14). This is contrast to serum calcium,
which is kept constant. Since intracellular concentrations of
Pi are higher than its extracellular concentrations, Pi is taken
up into cells by active transport through sodium/phosphate
(Na+/Pi) co-transporters (15). Although the mechanism for the
age-dependent change in serum Pi levels remains unclear, we
speculate that the sensing of Pi and the set point of optimal Pi
levels might be influenced by skeletal growth and maturation.

Intestinal Absorption of Phosphate
Dietary phosphate is absorbed in the small intestine by a passive,
paracellular diffusion, and an active, transcellular transport of Pi
(16). The latter is mediated by type IIb Na+/Pi co-transporter
(NaPi-IIb) localized in the apical membrane of the small intestine
epithelial cells. The intestinal expression of NaPi-IIb is increased
by low dietary intake of phosphate and 1,25-dihydroxyvitamin D
(1,25(OH)2D), an active metabolite of vitamin D (17). Dietary
deficiency of calcium is common because calcium content is
relatively low in most foods (18). On the other hand, dietary
deficiency of phosphate is rare, because all foods are derived from
cells consisting of high amount of phosphate.

Renal Reabsorption of Phosphate
Pi is excreted from the kidneys. After filtered by the glomeruli,
majority of Pi is reabsorbed by type IIa and IIc Na+/Pi co-
transporters (NaPi-IIa and NaPi-IIc) predominantly expressed
in proximal tubules (19). Loss-of function mutations in
the SLC34A3 gene encoding NaPi-IIc cause hereditary
hypophosphatemic rickets with hypercalciuria, which is
characterized by hypophosphatemia due to an increased urinary
loss of phosphate (20). The Pi-transport activity of NaPi-IIa and
NaPi-IIc in the proximal tubules is determined by their protein
amounts in the brush border membrane (BBM).

Parathyroid Hormone (PTH) and Fibroblast
Growth Factor 23 (FGF23)
The amount of NaPi-IIa and NaPi-IIc in the BBM is regulated
both transcriptionally and post-transcriptionally through protein
synthesis, degradation and subcellular localization, and is
regulated by several hormones such as parathyroid hormone
(PTH) (21, 22) and fibroblast growth factor 23 (FGF23) (23–
26) as well as dietary phosphate intake (27). PTH causes a rapid
decrease of NaPi-IIa protein on the BBM (21, 22). The amount
of NaPi-IIc on the BBM is also reduced by PTH, although
it takes longer time (28, 29). FGF23 is mainly produced by
the osteoblasts and osteocytes and exerts its effects on distant
organs such as the kidneys in an endocrine manner (30). FGF23
requires αKlotho as a co-receptor to evoke signals through
FGF receptors (FGFRs) at physiological concentrations (31, 32).
In the kidneys, FGF23 decreases the expression of NaPi-IIa
and NaPi-IIc to increase the renal Pi excretion (23–26). In
addition, FGF23 reduces the production of 1,25(OH)2D by
suppressing the expression of vitamin D 1α-hydroxylase and
inducing that of 24-hydroxylase, which leads to the decreased Pi
absorption in the intestine (24, 33). Considering that FGF23 is
unable to normalize serum Pi levels in hyperparathyroidism and
that inactivating mutations of FGF23 cause hyperphosphatemia
despite the presence of PTH (34), both hormones appear to be
necessary to maintain Pi homeostasis.

Type III Na+/Pi Co-transporters
Type III Na+/Pi co-transporters include PiT-1 and PiT-2, which
are encoded by SLC20A1 and SLC20A2 genes, respectively,
in humans (35). They are expressed in a broad range of
tissues with different amounts, and PiT-2 is suggested to have
a role in renal Pi reabsorption. Inactivating mutations in
SLC20A2 are responsible for familial idiopathic basal ganglia
calcification (IBGC), a disease characterized by vascular deposits
of calcium/phosphate in the basal ganglia of the brain (36, 37).
Thus, PiT-2 is likely to be involved in the maintenance of the
physiological Pi level in cerebrospinal fluid. Recently, xenotropic
and polytropic retrovirus receptor 1 (XPR1) has been shown to
mediate Na+-independent Pi export from cells in mammals, and
its inactivating mutations also cause IBGC (38). Regarding the
type I Na+/Pi co-transporters, their physiological role has been
shown to be the transport of organic anions rather than the Pi
transport (39–41).

Clinical Symptoms of Hyperphosphatemia
and Hypophosphatemia
Hyperphosphatemia is associated with reduced renal Pi excretion
or an excessive phosphate load. It causes ectopic calcification,
which may lead to organ failure, gastroenteral bleeding, skin
itchiness, keratitis, and tumoral calcinosis (42).

Hypophosphatemia is caused by insufficient intestinal Pi
absorption, renal Pi wasting, or shift of Pi into cells (43).
Chronic hypophosphatemia is often associated with renal
Pi wasting diseases and leads to rickets/osteomalacia (43).
Acute hypophosphatemia is associated with respiratory alkalosis,
refeeding, diabetic ketoacidosis, malnutrition, and alcoholism
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(43). Since hypophosphatemia can be caused by transcellular shift
of Pi into cells, low serum Pi levels do not always reflect the
insufficient storage of Pi within cells. Extra-skeletal symptoms
of hypophosphatemia include muscle dysfunction, arrhythmia,
low cardiac contractility, hemolysis, white blood cell dysfunction,
platelet dysfunction, myopathy, seizures, and fatigue (43).
Systemic and extra-skeletal symptoms of hypophosphatemia are
not so common as those of hypocalcemia, probably because Pi
stored in the skeleton and the cells may prevent acute, severe
hypophosphatemia. Hypocalcemia causes an increase in the
permeability of plasma membrane of muscle and nerve cells to
sodium ions, leading to tetany, cramps, and seizures. Since the
intracellular level of calcium is much lower than its extracellular
level, intracellular calcium signaling is easily influenced by
an alteration in extracellular calcium level. Therefore, serum
calcium levels should be more strictly controlled than serum Pi
levels (44).

FGF23-RELATED HYPERPHOSPHATEMIC
AND HYPOPHOSPHATEMIC DISORDERS

Hyperphosphatemic Familial Tumoral
Calcinosis
Since the FGF23/FGFR/αKlotho signaling is central in
maintaining phosphate homeostasis, a disrupted or excessive
signaling of this pathway will cause diseases with abnormal
phosphate metabolism. Inactivating mutations in FGF23,
KLOTHO, and GALNT3 encoding GalNAc-T3, an enzyme
required for O-glycosylation of FGF23, are responsible for
hyperphosphatemic familial tumoral calcinosis (HFTC)
associated with hyperphosphatemia, normal to elevated serum
1,25(OH)2D levels, and massive ectopic calcification (34, 45, 46).

Autosomal Dominant Hypophosphatemic
Rickets
An excessive action of FGF23 results in hypophosphatemic
diseases with increased renal Pi wasting, an inappropriately low
levels of serum 1,25(OH)2D and impaired skeletal mineralization
(47). Autosomal dominant hypophosphatemic rickets (ADHR)
is caused by missense mutations in the FGF23 gene at Arg176

or Arg179, which make the protein resistant to inactivation
by cleavage (48). Iron deficiency triggers the accumulation of
uncleaved FGF23 in ADHR patients, leading to the manifestation
of the hypophosphatemia and rickets/osteomalacia (49).

X-Linked Hypophosphatemic Rickets and
Autosomal Recessive Hypophosphatemic
Rickets
Hypophosphatemic rickets/osteomalacia related to an excessive
action of FGF23 is also caused by inactivating mutations in the
phosphate-regulating gene with homologies to endopeptidases, on
the X chromosome (PHEX), dentin matrix protein 1 (DMP1),
ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1),
and family with sequence similarity 20 C (FAM20C) genes (48, 50–
55). PHEX is responsible for X-linked hypophosphatemic rickets
(XLH), the most common form of hereditary hypophosphatemic

rickets (56). Although PHEX protein is suggested to function as a
zinc-dependent protease based on its structure, its physiological
substrates remain to be identified. DMP1, which is responsible
for autosomal recessive hypophosphatemic rickets 1 (ARHR1),
is an extracellular matrix protein belonging to the SIBLING
(small integrin-binding ligand, N-linked glycoproteins) family.
ENPP1 encodes an enzyme which produces pyrophosphates
(PPi) and is responsible for ARHR2. FAM20C is a kinase that
phosphorylates various secreted proteins which include FGF23
and the SIBLING family such as DMP1. Inactivating mutations
of FAM20C have been identified in patients with FGF23-related
hypophosphatemia and dental abnormalities (54). Interestingly,
PHEX, DMP1, and FAM20C are highly expressed in the
osteocytes as well as FGF23 (57), suggesting that these molecules
function as local negative regulators of FGF23 production and
that osteocytes play a key role in phosphate homeostasis.

Enhanced FGFR Signaling Might be
Involved in FGF23 Overproduction in XLH
and ARHR1
The mechanisms underlying the FGF23 overproduction
are still largely unknown in most of the FGF23-related
hypophosphatemic disorders. However, recent studies have
suggested that an enhanced FGFR signaling might be a
pathogenesis for the overproduction of FGF23 in osteocytes of
XLH. In Phex-deficient Hyp mice (a murine model of human
XLH), the osteocytic expressions of Fgf1, Fgf2, Fgfr1–3, and
Egr-1, which is a target of activated FGFR signaling, were
markedly increased compared to in wild-type mice, as well as
that of Fgf23 (57). In addition, the conditional deletion of Fgfr1

FIGURE 1 | Role of Pi in the initiation of skeletal mineralization in matrix

vesicles (MVs). Tissue-non-specific alkaline phosphatase (TNSALP) on the

outer membrane of MVs hydrolyzes pyrophosphate(PPi), adenosine

triphosphate (ATP), and protein-bound phosphate to produce Pi. Type III

Na+/Pi co-transporters PiT-1 and PiT-2 mediate the Pi uptake into MVs.

PHOSPHO1 produces Pi from phosphocholine (PC) and

phosphoethanolamine (PEA) within MVs. Pi contributes to the formation of

hydroxyapatite (HA), which will be deposited on the collagen fibrils in the

extravesicular matrix.
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in osteocytes partially restored the FGF23 overproduction and
rescued the hypophosphatemia and mineralization defect in Hyp
mice (58). These findings indicate the possible involvement of
activated FGFR signaling in the FGF23 overproduction in Hyp
osteocytes. Overproduction of FGF23 in Dmp1-knockout mice,
a model for ARHR1, has also been attributed to enhancement of
FGFR signaling in the bones (59). There is yet no human data on
FGFR signaling in the osteoblasts/osteocytes of XLH and ARHR
patients. However, a human disease called osteoglophonic
dysplasia caused by activating mutations in FGFR1 is often
associated with hypophosphatemia due to increased FGF23
levels (60), which also suggests the regulation of FGF23
production by FGFR signaling.

ROLE OF PHOSPHATE IN THE SKELETON

Matrix-Vesicle Mediated Mineralization and
Pi
Although the underlying mechanism for skeletal mineralization
is not fully understood yet, involvement of matrix vesicles (MVs)
has been suggested. MVs are the extracellular, small membranous
structures produced by budding from the plasma membrane
of osteoblasts and chondrocytes (61). They serve as the initial
site of mineralization by rapidly taking up calcium and Pi ions
to form hydroxyapatite crystals. The hydroxyapatite formed in
MVs will then propagate on the collagen fibrils to mineralize the
extracellular matrix (61, 62). MVs possess high activity of tissue-
non-specific alkaline phosphatase (TNSALP), which functions as
an ectoenzyme on the outer surface of the vesicles to hydrolyze
PPi, adenosine triphosphate (ATP), and the protein-bound form
of phosphate to generate orthophosphates (61, 63). PPi acts
as an inhibitor against the formation of hydroxyapatite, and
TNSALP facilitates the mineralization through the hydrolysis of
PPi and the production of Pi. Inactivating mutations in TNSALP
cause hypophosphatasia characterized by impaired skeletal
mineralization (64). Another phosphatase called PHOSPHO1
has been identified to initiate mineralization by producing Pi
from phosphocholine and phosphoethanolamine within MVs
(65) (Figure 1).

Pi is transported into MVs by both Na+-dependent and Na+-
independent components (66). The Na+-dependent Pi uptake
into MVs appeared to be mediated by PiT-1 and PiT-2, similarly
to the Pi uptake by the cells from which the MVs budded (67).
Skeletal mineralization was normal in mice with hypomorphic
expression of PiT-1 probably because a compensatory increase in
the PiT-2 expression accounted for the sufficient Pi uptake (68).
Thus, the net influx of Pi into MVs rather than the expression of
each transporter seems to be more critical in the mineralization.
With regard to the uptake of calcium ions into MVs, annexins
which are calcium-binding proteins have been suggested to be
involved (69).

Sufficient Pi supply is critical in MV-mediated mineralization.
In rickets/osteomalacia, TNSALP is up-regulated compensatorily
to supply the needs of Pi. In chondrocytic cells in culture,
treatment with high Pi suppressed the expression of TNSALP
within 24 h, indicating its responsiveness to Pi availability (9).

Roles of Pi in Chondrocyte Apoptosis
In addition to its profound role in MV-mediated mineralization
which occurs extracellularly, Pi also exerts its effects directly on
the skeletal cells. In terminally differentiated chondrocytes, an
elevated Pi level induces apoptosis (4–8), a process critical in
endochondral ossification. Hypophosphatemia caused reduced
apoptosis of hypertrophic chondrocytes and led to rickets
in the XLH model mouse (Hyp) (70). Reduced apoptosis of
hypertrophic chondrocytes was also reported in vitamin D
receptor (VDR) knockout mice (71), and hypophosphatemia has
been suggested to be a common etiologic factor among all types
of rickets (72).

Role of Extracellular Pi as a Regulator of
Gene Expression in the Skeleton
Extracellular Pi also regulates gene expression. In 2000, Beck
et al. demonstrated that extracellular Pi induced the expression
of osteopontin (Opn) gene using a murine osteoblastic cell line
MC3T3-E1 (12). Since then, a number of molecules have been
identified to be responsive to the alteration in extracellular Pi
levels. The Pi-responsive genes identified in osteoblasts include
a cell-cycle related gene cyclin D1 (73), and Dmp1 (11). Since
Dmp1 is highly expressed in osteocytes, its up-regulation by
an elevated extracellular Pi may facilitate the differentiation
of osteoblastic cells into osteocytes. Extracellular Pi appears to
regulate PPi metabolism as well, since Enpp1 encoding a PPi-
generating enzyme and Ank encoding a PPi transporter were also
up-regulated by an elevated extracellular Pi (74).

The effects of extracellular Pi on the FGF23 expression in
osteoblast-lineage cells has also been extensively investigated,
but the results seem inconsistent both in vivo and in vitro
(57, 75–79). In a recent human study, plasma FGF23 levels were
transiently elevated 4 weeks after high phosphorus intake but

FIGURE 2 | Transduction of signal evoked by extracellular Pi. In various cell

types including osteoblasts and chondrocytes, an increased extracellular Pi

induces the activation of Raf/MEK/ERK pathway to regulate gene expression,

and this process is mediated by Na+/Pi cotransporter and FGFR.
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returned to the baseline after 8 weeks (80). Treatment of cultured
osteoblasts or osteocytes with elevated extracellular Pi increased
the FGF23 expression only in a context-dependent manner (57,
78, 79, 81). Considering that an elevation of extracellular Pi
induces the expression of Dmp1 (11), Pi may increase FGF23
expression rather indirectly through facilitating the osteoblastic
differentiation into osteocytes.

During endochondral skeletogenesis, phosphate content in
the extracellular milieu of chondrocytes gradually increases
(82). The effects of Pi on chondrocytes differ among the
differentiation stages. In early chondrocytes, an increased
extracellular Pi induced cyclin D1 expression to facilitate
proliferation, and down-regulated Alpl encoding TNSALP
(9). In more matured chondrocytes, high extracellular
Pi up-regulated Col10a1 encoding type X collagen
(83) which is a marker for hypertrophic chondrocytes,
and matrix Gla protein (Mgp1) (84) whose product
inhibits mineralization.

SIGNAL TRANSDUCTION EVOKED BY AN
INCREASED EXTRACELLULAR PI

Increased Extracellular Pi Induces the
Activation of Raf/MEK/ERK Pathway
Accumulating evidence has suggested the involvement of
Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK
(extracellular signal-regulated kinase) pathway in the gene
regulation by extracellular Pi. An increased extracellular Pi
rapidly activated Raf/MEK/ERK pathway but did not other
pathways such as p38MAPK pathway or JNK pathway (13).
The activation of Raf/MEK/ERK pathway mediated the Pi-
induced regulation of various genes including Opn (13), Dmp1
(11), and Mgp (85) in osteoblastic MC3T3-E1 cells and Mgp
(84), Cyclin D1 and Alpl (9) in chondrocytic ATDC5 cells. Pi-
induced activation of Raf/MEK/ERK pathway is also shared
in the cells derived from extraskeletal tissues such as HEK293
cells (10).

Increased Extracellular Pi Induces the
Activation of FGFR
Interestingly, an increased extracellular Pi also induces the
activation of FGFR, which is one of the upstream signaling
pathways of Raf/MEK/ERK cascade. In MC3T3-E1 cells, both
an FGFR inhibitor and an MEK inhibitor abolished the up-
regulation of Dmp1 by an increased extracellular Pi (11).
In HEK293 cells, knockdown of FGFR1 diminished the
phosphorylation of ERK1/2 induced by an increased extracellular
Pi (10). These results suggest that FGFR plays a critical role in the
transduction of the signaling evoked by an increased extracellular
Pi. Knockdown experiments have also implicated that PiT-1

might mediate the Pi-induced signal transduction upstream of
FGFR (Figure 2).

A Possible Relationship Between FGFR
and Pi-Sensing
Detection of Pi availability and adaptation are critical to
maintain phosphate homeostasis. In unicellular organisms such
as bacteria and yeast, the molecular mechanisms for Pi sensing
and adaptation are well-defined (1). They use some types of Pi
transporters and other molecules such as kinases to sense Pi
levels. Although mammalian Pi sensors have not been identified
yet, the responsiveness of mammalian cells to an alteration in
extracellular Pi suggests that they also might sense and adapt to
the Pi availability in their microenvironment. Considering the
involvement of FGFR in the transduction of Pi-induced signal
and the enhanced FGFR signaling in the osteoblasts/osteocytes
in Phex-deficient Hyp mice (57, 58), impaired Pi-sensing in
these cells might underlie the overproduction of FGF23 in XLH.
Further study is required to clarify the molecular mechanisms by
which mammals sense the Pi availability.

CONCLUSION

Phosphate plays multiple functions in the skeleton. Outside of
cells, it plays a pivotal role in the MV-mediated mineralization as
a constituent of hydroxyapatite. Moreover, Pi induces apoptosis
of hypertrophic chondrocytes. Extracellular Pi also triggers
signals within the cell to regulate gene expression, although
the role of intracellular Pi remains unclear. Hypophosphatemia
causes rickets by reducing hydroxyapatite formation, impairing
apoptosis of hypertrophic chondrocytes, and probably altering
gense expression in the skeletal cells. In vitro studies have
demonstrated the involvement of Na+/Pi cotransporter, FGFR,
and Raf/MEK/ERK pathway in the transduction of Pi-evoked
signal, and abnormalities in Pi-sensing might be the pathogenesis
of some hypophosphatemic diseases such as XLH. Clarification
of the mechanisms for Pi-sensing in human will contribute to
the development of better strategies to treat the conditions with
abnormal phosphate metabolism.
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