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Adaptation of reproductive activity to environmental changes is essential for breeding

success and offspring survival. In mammals, the reproductive system displays regular

cycles of activation and inactivation which are synchronized with seasonal and/or

daily rhythms in environmental factors, notably light intensity and duration. Thus, most

species adapt their breeding activity along the year to ensure that birth and weaning

of the offspring occur at a time when resources are optimal. Additionally, female

reproductive activity is highest at the beginning of the active phase during the period of

full oocyte maturation, in order to improve breeding success. In reproductive physiology,

it is therefore fundamental to delineate how geophysical signals are integrated in the

hypothalamo-pituitary-gonadal axis, notably by the neurons expressing gonadotropin

releasing hormone (GnRH). Several neurochemicals have been reported to regulate

GnRH neuronal activity, but recently two hypothalamic neuropeptides belonging to the

superfamily of (Arg)(Phe)-amide peptides, RFRP-3 and kisspeptin, have emerged as

critical for the integration of environmental cues within the reproductive axis. The goal

of this review is to survey the current understanding of the role played by RFRP-3 in the

temporal regulation of reproduction, and consider how its effect might combine with that

of kisspeptin to improve the synchronization of reproduction to environmental challenges.

Keywords: daily rhythm, seasonal rhythm, clock, melatonin, vasopressin, vasoactive intestinal peptide,

kisspeptin, LH

RFRP-3 NEURONS AS REGULATORS OF THE
HYPOTHALAMO-PITUITARY GONADAL AXIS

Functional Organization of the Hypothalamo-Pituitary-Gonadal
(HPG) Axis
Mammalian reproduction is tightly controlled by a small set of neurons producing the
neuropeptide gonadotropin-releasing hormone (GnRH). These cell bodies are concentrated in
specific hypothalamic areas [the preoptic area (POA), the vascular organ of the lamina terminalis
and, in non-rodent species, the mediobasal hypothalamus] and project principally to the median
eminence where they release GnRH into the anterior pituitary portal blood supply in a pulsatile
manner (1). In turn, GnRH stimulates the secretion of the gonadotropins, follicle-stimulating
(FSH) and luteinizing (LH) hormones. FSH and LH enter the general circulation to regulate
gameto- and steroidogenesis, respectively, in the gonads.
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Mechanisms regulating GnRH neurons are thought to involve
upstream neuronal inputs. Glutamate and γ -aminobutyric acid
fibers, located close to GnRH perikarya and axons, have
been shown to stimulate and/or inhibit GnRH release (2–4)
Neuropeptide Y-containing fibers also contact a majority of
GnRH neurons where they predominantly exert an inhibitory
effect on GnRH release (5, 6). Recent studies, however,
have highlighted an important role of two hypothalamic
neuropeptides, kisspeptin and (Arg)(Phe) related peptide-3
(RFRP-3), in the regulation of GnRH neurons. Kisspeptin
expressing neurons are located in two hypothalamic areas:
the preoptic area, where they project to GnRH cell bodies to
drive the GnRH surge in female mammals, and the arcuate
nucleus, where they project principally to GnRH fiber terminals
at the median eminence to drive pulsatile GnRH (7). RFRP-
3 expressing neurons, mostly located in the dorsomedial
hypothalamus (DMH), project to various neuronal populations
including GnRH and kisspeptin neurons, yet the effects of RFRP-
3 on reproduction seem to vary according to species, sex, and
environmental conditions [(8–10) for reviews].

To maintain the reproductive axis within proper functioning
limits, sex steroids produced by the gonads feed back to
the pituitary and hypothalamus. In males, testosterone acts
to suppress GnRH and the gonadotropins through negative
feedback whereas, in females, the feedback is more complex
with estradiol (E2) having positive or negative feedback effects
depending on the stage of the ovarian cycle and its circulating
concentration. Specifically, during the follicular phase of the
ovulatory cycle, low concentrations of E2 exert negative feedback,
whereas upon oocyte maturation, higher concentrations of E2
exert positive feedback, triggering a large release of GnRH
in the anterior pituitary portal blood supply which, in turn,
induces a surge of LH that initiates ovulation (11). Contrary
to early expectation, GnRH neurons do not appear to be the
directly responsive to E2 feedback as these cells do not express
E2 receptors (ER)α and only express low levels of ERβ (10,
11). Likewise, mice with GnRH neuron-specific deletion of
ERβ do not exhibit any gross reproductive dysfunction (12).
Therefore, the central structures integrating sex steroid feedback
are upstream of GnRH neurons and evidence now indicates that
kisspeptin neurons (13, 14) and, to a less and unclear extent,
RFRP-3 neurons (13, 14) are relaying gonadal hormone feedback
to the reproductive system.

Because reproduction is particularly energetically demanding,
it is critical that a number of intrinsic and extrinsic factors
contribute to optimizing breeding success and offspring survival.
Therefore, the reproductive axis is sensitive to various signals
such as metabolic activity, stress level, development stage,
hormonal milieu, and geophysical cues. Thus, in female
mammals, timing of the preovulatory LH surge is driven by
daily signals in addition to positive E2 feedback. Additionally,
in seasonal breeders, annual changes in daily light duration
(photoperiod) synchronize reproduction with the seasons.
Recent studies have highlighted the pivotal role of RFRP-3
neurons, as well as kisspeptin neurons, in relaying both daily
and seasonal cues to the HPG axis, particularly to GnRH
neurons. The following review will discuss how RFRP-3 regulates

mammalian reproduction and contributes to its synchronization
with the time of the day and the year.

The RFRP-3 System
The ortholog of RFRP-3 was originally discovered in birds, with
Tsutsui et al. identifying a novel (Arg)(Phe) hypothalamic peptide
that inhibited pituitary gonadotropin secretion from cultured
quail pituitary (15). Because this peptide selectively inhibited
the gonadotropins, without altering other pituitary hormones,
the authors named it gonadotropin-inhibitory hormone (GnIH).
Subsequent findings indicated that GnIH receptor is expressed
in quail pituitary (16, 17) and in vivo GnIH administration
decreases common α, LHβ, and FSHβ subunit expression
(16, 18). In birds, the GnIH precursor cDNA encodes one
GnIH and two GnIH-related peptides (GnIH-RP1 and GnIH-
RP2) (15, 19). In mammals, the homologous gene encodes
three peptides [RFamide-related peptides (RFRP)], with RFRP-
1 and−3 both being RFamide peptides, while RFRP-2 is
not (20). Since the initial discovery of these RFamide-related
peptides in mammals, most findings in reproductive biology
have focused on RFRP-3 as the mammalian ortholog of GnIH.
As described further below, studies across mammalian species
indicate a pronounced role for this neuropeptide in regulating
reproductive function.

The receptor for GnIH/RFRP-3 is a G-protein coupled
receptor (GPR), originally named OT7T022 (21), but now more
commonly referred to by name of the receptor for which it was
found to be identical, the formerly-orphaned GPR147. Around
the same time as this discovery, two receptors for another
RFamide-peptide, neuropeptide FF, were identified and called
NPFFR1 and NPFFR2 (22). NPFFR1 was found to be identical to
GPR147, whereas NPFFR2 was identical to another GPR, GPR74.
GPR147 has a high affinity for GnIH/RFRP-3 whereas NPFF
exhibits potent agonistic activity at GPR74 (16, 22–24). Together,
these findings revealed GPR147/NPFFR1 as the GnIH/RFRP-3
receptor. GPR147 most-commonly couples to an inhibitory G
protein (Gαi), with GnIH/RFRP-3 suppressing cAMP activity
(21, 25). However, in some instances, GPR147 is coupled to
Gαs or Gαq proteins (26), where this differential coupling may
account for disparity in the effects of RFRP-3.

As indicated previously, in most rodents, RFRP-3 perikarya
are restricted to the DMH (8, 9, 27), although, in rats, a
significant number of cells are observed in the region between
the DMH and ventromedial nucleus of the hypothalamus
(VMH) (21, 28). In mammals, RFRP-3-immunoreactive (-ir)
fiber projections are extensively scattered throughout the
diencephalon, mesencephalon and limbic structures (29–32),
providing divergent neural pathways to broadly influence
neurophysiology and behavior.

Evidence for a Role of RFRP-3
in Reproduction
As suggested previously, RFRP-3 generally inhibits
gonadotrophin synthesis and/or secretion across mammals,
including humans (27, 30, 33–35). RFRP-3 acts directly and
indirectly to influence GnRH cell function. For example, RFRP-3
cell fibers form close contacts with GnRH cells and around
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a third of GnRH cells express GPR147, pointing to direct
actions of RFRP-3 on the GnRH system (17, 36–38). Likewise,
RFRP-3 inhibits cellular activity in about 40% of GnRH cells
in vitro (39, 40). RFRP-3 may also act to suppress GnRH cellular
activity via kisspeptin cells, as RFRP-3 cell projections form
close connections with kisspeptin neurons in mice, sheep and
monkeys (37, 41, 42), with a small percentage of kisspeptin cells
in the anteroventral periventricular nucleus (AVPV), and ∼25%
of kisspeptin cells in the arcuate nucleus, expressing GPR147 in
mice (36, 42).

In some cases, however, RFRP-3 stimulates gonadotropin
secretion, with differences observed based on sex, season or
reproductive status. For example, in male Syrian hamsters
(Mesocricetus auratus), RFRP-3 increases GnRH neuronal
activity (i.e., increases c-Fos expression) and increases
gonadotropin and testosterone release (43). This pattern
differs from that observed in female Syrian hamsters where
RFRP-3 suppresses LH if administered around the time of the
LH surge (30, 44). Similarly, in male mice, RFRP-3 stimulates
LH secretion, at least in part, via actions on kisspeptin as
the stimulatory effect of RFRP-3 is diminished in kisspeptin
receptor knockout mice (45). In female mice, as in Syrian
hamsters, RFRP-3 inhibits LH when estradiol concentrations
are high around the time of the LH surge, but is without effect
during diestrus or in ovariectomized females with low estradiol
concentrations provided exogenously (45). Finally, in male
Siberian hamsters (Phodopus sungorus), RFRP-3 stimulates LH
secretion in short-day, reproductively-inhibited hamsters, but
inhibits LH secretion in long-day, reproductively-competent
animals (17). Together, these findings confirm a role of RFRP-3 in
the central control of reproduction, but its effects are dependent
on species, sex, reproductive status and hormone concentrations,
which all likely affect the specific G-protein to which GPR147
is coupled. Surprisingly, however, GPR147/NPFFR1 female null
mice exhibit moderate reproductive phenotypes with larger litter,
and increased arcuate kisspeptin synthesis, higher serum FSH
concentrations, and augmented LH responses to GnRH (46). The
disparate results in the effects of GPR147/NPFFR1 inactivation
and exogenous administration of RFRP-3 may be explained by
compensatory mechanisms by other RF-amide systems.

Potential Roles of RFRP-3 on the Pituitary
and Gonads
In addition to actions on GnRH neurons, RFRP-3 may alter
gonadotropin synthesis and secretion via the pituitary, although
findings are disparate across studies and species. For example,
RFRP-3 projections have been shown to project to the outer layer
of the median eminence [hamsters (47), sheep (33), macaque
(37), and humans (38)]. In contrast, using peripheral injections
of fluorogold to label hypophysiotropic cells, RFRP-3 cells were
not labeled in rats (48). In other studies, RFRP-3 terminal
fibers in the median eminence are sparse or absent [mice
(49); brushtail possum (50); macaque (51)]. Although results
are equivocal regarding projections to the median eminence
across species, GPR147 is expressed in the pituitary of hamsters
(47) and humans (38) and RFRP-3 inhibits gonadotropins

in cultured pituitaries from sheep (52), cattle (53), and rat
(54). In ewes, RFRP-3 is detected in hypophyseal portal blood
and exogenous RFRP-3 has been reported to significantly
reduce the GnRH-induced LH response (55). In another study,
however, peripheral administration of RFRP-3 in ewes was
unable to inhibit pulsatile LH secretion or the E2-induced
LH surge (56), raising the question of whether or not RFRP-
3 acts on pituitary gonadotropes despite being detectable in
portal blood.

In addition to potential actions at the level of the
pituitary, RFRP-3 is produced, and appears to act locally,
to regulate gonadal function. Early work discovered that
GnIH is synthesized in ovarian granulosa cells and in the
testicular interstitial layer and seminiferous tubules of birds
(57). Moreover, in birds, GnIH application decreases testosterone
release from gonadotropin-stimulated testes in vitro, pointing
to a functional role for gonadal GnIH (58). Later, it was shown
that RFRP-3 is synthesized in the gonads of all mammals studied
to date (59), including humans (60), non-human primates (61),
Syrian hamsters (62), mice (60, 63), rats (64), ewe (65), and
pigs (66). Across species, the gonads synthesize RFRP-3 and
GPR147 (57, 59–61, 63). In mice, testicular RFRP-3 synthesis
increases during reproductive senescence possibly contributing
to aging-related decrements in testicular functioning (67). In
human granulosa cell cultures, RFRP-3 inhibits gonadotropin-
induced intracellular cAMP accumulation and progesterone
secretion (60). Finally, RFRP-3 and GPR147 are synthesized
in ovarian granulosa cells and antral follicles during proestrus
and estrus and in luteal cells during diestrus in mice (63),
suggesting participation in follicular development and atresia.
Together, these findings suggest that GnIH/RFRP-3 is commonly
synthesized in the gonads across species and may act locally to
fine-tune gonadotropin-regulated gonadal functioning.

RFRP-3 CONTRIBUTES TO THE DAILY
RHYTHM OF REPRODUCTION IN
FEMALE RODENTS

Daily and Ovarian Rhythms in
Female Reproduction
Successful female reproduction requires the activation of specific
neuronal and hormonal pathways in order to synchronize
ovulation with maximal locomotor activity and optimal arousal
state. Female mammals display rhythms of different, recurrent
time scales that range from minutes (pulsatile GnRH release)
to hours/days (LH surge), days/weeks (ovarian cycle) or even
months (seasonal reproduction).

Ovarian activity displays regular cycles (∼28 days in women
and 4–5 days in rodents) driven by changes in circulating
levels of the pituitary gonadotropins LH and FSH. During
the first stage of the ovulatory cycle (follicular phase in
humans, metestrus-diestrus in rodents), FSH secretion gradually
increases, promoting ovarian follicular development. In turn,
maturing follicles secrete increasing concentrations of E2. The
second stage of the reproductive cycle (luteal phase in women;
proestrus-estrous in rodents) is immediately preceded by a
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pronounced and transient rise in LH secretion (surge) that
initiates the release of mature oocyte(s) from ovarian follicles.
The generation of the LH surge requires high circulating levels
of E2, indicative of follicle maturation, as well as a daily signal,
ensuring that ovulation occurs at the right arousal time to
optimize breeding success. Indeed, the LH surge occurs at a
specific time of day, corresponding to the end of the inactive
phase, thus in late afternoon in nocturnal rodents (e.g., mice, rats,
hamsters) and early morning in diurnal species (e.g., Nile grass
rat, humans) (68).

Most biological functions exhibit daily rhythms that are
coordinated by a complex network of endogenous central and
peripheral circadian clocks synchronized to the 24 h light-dark
cycle (69). In mammals, the suprachiasmatic nucleus (SCN) is
themain pacemaker that orchestrates the circadian timing system
as it drives central and peripheral oscillators and ultimately
coordinates daily rhythms in physiology and behavior. Exploring
the pathways by which the circadian clock synchronizes GnRH
neuronal activity and upstream modulatory systems is essential
to fully understand the mechanisms of female reproduction.
Indeed, circadian disruption has been associated with various
abnormalities in fertility and reproduction. Early studies in the
50’s demonstrated that chemical blocking of neural clock output
alters the LH surge in female rats (70, 71) and hamsters (72).
Furthermore, SCN lesions cause anovulation in female rats,
presumably resulting from the loss of diurnal variation in the
sensitivity of the reproductive axis to E2 positive feedback (73).
Finally, female mice deficient for the clock gene, Clock, exhibit
abnormal estrous cycles, do not have a detectable LH surge on the
day of proestrus, and generally fail to carry pregnancies to term
(74). Similarly, women with single-nucleotide polymorphisms in
the circadian clock gene ARNTL exhibit more miscarriages than
those without such mutation (75).

It appears that the circadian signal is sent to the reproductive
system each day, but its impact is masked by low circulating
E2. Thus, in female rodents provided with chronic, proestrus-
like concentrations of E2, daily LH surges are observed for
several consecutive days, revealing the circadian mechanism
underlying surge generation (76–78). Altogether, these findings,
largely obtained in female rodents, indicate that the timing of the
preovulatory LH surge is strictly time-gated by a combination
of daily and ovarian signals. Although the daily signal is
communicated each day by the SCN to the GnRH/LH pathway,
E2 secretion from mature oocytes needs to reach a certain
threshold in order to exert positive feedback on the hypothalamo-
pituitary-gonadal axis and allow the generation of the LH surge.

Mechanisms Regulating the
Circadian-Estrogen Sensitive Preovulatory
LH Surge
Two principal SCN neurotransmitters, vasoactive intestinal
peptide (VIP), and arginine-vasopressin (AVP), are thought to be
implicated in relaying daily cues to GnRH neurons and therefore
controlling the timing of the preovulatory LH surge.

VIP content in the rat SCN displays daily variation which
is abolished under constant darkness, suggesting that VIP is

implicated in the transmission of photic information (79).
Furthermore, the daily rhythm in SCN VIP appears sex-
dependent since VIP mRNA levels peak during the light phase
in female rats but during the dark phase in male rats (80). The
observation that a central blockade of VIP signaling decreases
the LH surge in female rats indicates a role of this peptide in
female reproduction (81, 82). Indeed, ∼45% of the GnRH cells
are innervated by VIP-containing fiber terminals and unilateral
thermal lesions of the majority of SCN VIP cells results in a
50% decrease of VIP nerve contacts on GnRH cell bodies on
the lesioned side, compared to the intact side, of the brain (83).
Furthermore, the use of anterograde tracing demonstrated a
direct connection between the SCN and GnRH neurons (84).
Interestingly, there is a sex-dependent difference in the VIP-
GnRH pathway, with the number of VIP terminals onto GnRH
neurons, and the percentage of GnRH neurons contacted by VIP
fibers, being higher in females compared to males (85). About
40% of GnRHneurons express VIP2 receptor (86) and exogenous
VIP application to brain slices increases GnRH neuron action
potential firing and intracellular calcium (87, 88), supporting the
idea that VIPmay provide a direct excitatory signal from the SCN
to the GnRH system.

AVP expression exhibits both circadian and daily variation
in the SCN (89). AVP release in the SCN vicinity has been
found to peak during midday while minimum release occurs
at midnight (90). Unlike VIP, no sex-dependent differences in
AVP gene expression are found in the SCN (80). Increasing
evidence indicates that the rhythm in SCN AVP release is
critical for the daily timing of the preovulatory LH surge.
Indeed, central administration of AVP in OVX, E2-treated rats,
bearing complete SCN lesions, is sufficient to trigger a LH surge
(91). However, the ability of AVP to trigger the surge is time-
dependent, with administration during the latter half of the light
period, but not the first half, being effective (92). Moreover,
central administration of a V1a receptor antagonist decreases
LH surge amplitude in rats (93). Finally, in Clock mutant female
mice, central injections of AVP can restore a preovulatory-
like LH surge (74). Unlike VIP, SCN AVP neurons appear to
regulate the GnRH/LH surge indirectly via kisspeptin neurons
located in the preoptic area (AVPV in rodents), a highly sex-
dimorphic brain area (94, 95). Thus, in female rodents, AVPV
kisspeptin neurons receive direct SCN-derived AVP inputs and
express V1a receptors (96, 97), and direct application of AVP to
brain slices increases neuronal firing and intracellular calcium
concentrations in AVPV kisspeptin cells (98). Importantly,
AVPV kisspeptin neurons display ERα, and E2 not only potently
stimulates kisspeptin synthesis (13, 94, 95), but is also required
for the AVP-induced activation of kisspeptin cells (98). Finally,
activation of AVPV kisspeptin neurons coincides with the time
of LH surge, during the sleep/wake transition in proestrus or
in OVX E2-treated female rodents, but does not display daily
rhythms during diestrus or in OVX animals (97, 99, 100).

Therefore, data primarily obtained in female rodents indicate
that both SCN-derived VIP fibers acting directly on GnRH
neurons, and AVP fibers acting indirectly via preoptic kisspeptin
neurons, are involved in the timing of the preovulatory LH surge.
In addition to this mechanism of surge control, as described

Frontiers in Endocrinology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 183

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Angelopoulou et al. RFRP-3 and the Rhythms of Reproduction

further below, RFRP-3 neurons may also be part of the pathway
relaying daily time cues from the SCN to GnRH neurons in order
to time the preovulatory LH surge.

Evidence for a Role of RFRP-3 Neurons in
the Daily Timing of the LH Surge
Earlier work in female Syrian hamster reported a monosynaptic
connection between the SCN and RFRP-3 neurons, suggesting
that RFRP-3 neurons are regulated by the SCN clock (47). In
accordance with this hypothesis, a daily rhythm in RFRP-3
neuronal activity has been reported, with a lower number of
RFRP-3 neurons expressing c-FOS coincident with the timing
of the LH surge in female Syrian hamsters (44, 47) and mice
(101). Equivocal findings are reported regarding the association
between RFRP-3 cell activation state and the number of Rfrp
expressing neurons, with daily variation in RFRP-3 neuronal
activity being associated (47) or not (44, 101), with corresponding
changes in the number of Rfrp expressing cells. As in Syrian
hamsters, Rfrp expression is decreased during the preovulatory
period in ewes (102). The role of RFRP-3 neurons in relaying
circadian information to GnRH neurons is further supported
by an experimental protocol where female hamsters kept under
constant light conditions split their locomotor activity and
exhibit two daily LH surges. In these conditions, the two halves
of SCN oscillate in antiphase and RFRP-3 neurons are active
asymmetrically in opposition to GnRH neuron activation (47).

A recent study in female Syrian hamster demonstrated that
AVP- and VIP-ergic fibers from the SCN form close appositions
with RFRP-3 neurons and that central injection of VIP decreases
RFRP-3 neuronal activity in a time-dependent manner, being
effective in the afternoon, but not in the morning, while central
AVP has no significant effect (103). It is yet unclear, however,
whether the action of VIP on RFRP-3 neurons is direct or not
since <10% of RFRP-3 neurons appear to express the VPAC1
and VPAC2 receptors (103). Altogether, these findings suggest a
SCN-derived VIP daily regulation of RFRP-3 neuronal activity, at
least in Syrian hamsters. Additionally, there is evidence in female
rodents that RFRP-3 neurons, similar to kisspeptin neurons
(100), are able to keep track of time intrinsically, expressing the
clock protein PER1 with a peak at ZT12 (103).

Unlike kisspeptin cells, it is likely that high circulating levels
of E2 are not required for the daily rhythm in RFRP-3 neurons as
daily rhythms in RFRP-3/c-FOS are similar during diestrus and
proestrus in one study in Syrian hamsters (44). Although another
report indicates that daily variation is abolished in OVX hamsters
and restored in OXV+E2 animals (47), this study investigated
different time points and used a different protocol that might
account for the disparity between findings.

A number of studies are consistent with an inhibitory action
of RFRP-3 on LH secretion in female mammals (30, 104). In
Syrian hamsters (44) and mice (45), central RFRP administration
decreases LH secretion when given around the time of the
preovulatory LH surge, whereas it has no effect when given
at other time points where LH secretion is low (early day of
proestrus or diestrus). Therefore, the inhibitory effect of RFRP-
3 on LH secretion, associated with decreased activity of RFRP-3

neurons in late afternoon, possibly mediated by a SCN VIPergic
signal, indicates that tonic RFRP-3 inhibitory input is lifted at the
time of the preovulatory LH surge (Figure 1).

The Controversy of E2 Feedback on
RFRP-3 Neurons
The possibility that RFRP-3 neurons, similar to kisspeptin
neurons (68), may be a central site for the E2 feedback has been
widely studied. However, the results obtained in different species,
sex and conditions are conflicting.

ERα are found in 40 and 25% of RFRP-3 neurons in female
Syrian hamsters (30) and mice (19, 106), respectively. Studies
have reported that E2 treatment in OVX Syrian hamsters
increases c-FOS expression in RFRP-3 neurons (30) while others,
in contrast, show that E2 treatment decreases the amount of Rfrp
mRNA per cell and the total amount of Rfrp mRNA in both
male and female mice (106). In female rats, RFRP-3 neuronal

FIGURE 1 | Working model illustrating the contribution of RFRP-3 neurons in

the central control of the daily gating of the preovulatory LH surge in female

rodents. Neurons of the suprachiasmatic nuclei (SCN) synthesizing

vasopressin (AVP) and vasoactive interstinal peptide (VIP) exhibit daily variation

controlled by an intrinsic circadian clock and the daily change in light input.

The SCN VIP output time GnRH neurons activity either directly or via the

RFRP3 neurons located in the dorsomedial hypothalamus (DMH) which further

inhibit GnRH neurons at the light/dark transition. The SCN AVP output

activates GnRH neurons through the stimulation of neurons located in the

anteroventral periventricular nuclei (AVPV) and releasing the potent stimulatory

peptide kisspeptin. Additionally kisspeptin neurons receive a positive estradiol

(E2) feedback on the day of proestrus while the effect of E2 on RFRP3 neurons

is still unclear. This coordinated pathway is proposed to trigger a preovulatory

GnRH/LH surge at the light/dark transition of the proestrus stage [LH data

adapted from (105)].
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activity is reported to be higher during diestrus compared to
proestrus and estrous (107), suggesting a role for E2 in RFRP-3
cell activational state across the ovulatory cycle in this species.
Finally in female rats (108) in male (109) and female (44) Syrian
hamsters, and in male Djungarian hamsters (110), gonadectomy
with/without sex steroid replacement does not have a significant
effect on RFRP-3 synthesis.

Other experimental paradigms indirectly suggest a possible
influence of E2 on RFRP-3 neurons. For example, E2 treatment
increases RFRP-3 synthesis in the hypothalamic mHypoA-55
rat cell line (111). In Syrian hamsters, food-restriction increases
the percentage of RFRP-3 cells expressing c-Fos, with increased
ovarian steroids at the time of estrus abolishing the impact of food
restriction on RFRP-3 cellular activation (112). Finally, in female
rats, RFRP-3 synthesis varies according to reproductive stage,
with increased levels at the time of puberty when the endogenous
sex steroid levels are highest (108).

Concluding Remarks on the Role of
RFRP-3 in the Daily Timing of the LH Surge
in Female
Female reproduction is cyclic and in female mammals, possibly
including women although this is still controversial, daily time
cues are integrated within the reproductive system to coordinate
the LH surge and consequential ovulation with the best period
of the day. The hypothalamic SCN clock plays a key role in
conveying daily information to the reproductive system, and
increasing evidence indicates that RFRP-3 neurons, in addition
to kisspeptin neurons, are a key relay between the SCN clock
and GnRH neurons. Recent data indicate that the SCN-derived
VIP output drives RFRP-3 neuronal activity, but the mechanisms
involved are still unclear. Furthermore, while numerous studies
now agree on the critical role of kisspeptin in the timing of LH
surge, the specific significance of RFRP-3 on the occurrence of
the LH surge requires further investigation.

RFRP-3 PLAYS A ROLE IN
SEASONAL REPRODUCTION

Seasonal Rhythms in Reproduction, the
Role of Melatonin and Thyroid Hormones
The marked changes in environmental factors throughout
seasonal cycles require species to display predictive adaptation
of their behavior and physiology to survive. Notably, many
mammalian species synchronize their reproductive activity with
one particular time of the year so that depending on the duration
of female gestation, offspring are born at the most favorable
period of the year, usually in spring when temperature, humidity
and food availability are optimal (113). Thus, two categories of
breeders are described depending on the mating period: long-
day (LD) breeders like rodents with a few weeks of gestation
and short-day (SD) breeders like sheep, goats, or deer, with a few
month of gestation (114).

Since the 60’s, it has been known that the pineal hormone
melatonin is a major signal for the synchronization of
reproduction with the seasons. Indeed, melatonin synthesis and

release occurs only during the night and, therefore, the nocturnal
production of melatonin is longer in the autumn/winter
SD as compared to spring/summer LD (115). Hoffman and
Reiter were the first to demonstrate that the elimination of
this neuroendocrine calendar by pinealectomy abolishes the
reproductive response of Syrian hamsters to the photoperiod
signal (116). It was later established through timed melatonin-
infusion experiments that the duration of circulating melatonin,
and not its concentration or phase, is the crucial variable
triggering photoperiodic adaptations in all seasonal species
(114, 117). Intriguingly, although the mechanism is unknown,
the same photoperiodic melatonin signal has an opposite
reproductive effect on LD and SD breeders. Further, the exact
neuroendocrinemechanisms throughwhich themelatonin signal
reaches the hypothalamic-pituitary-gonadal (HPG) axis are yet
not fully understood.

Neuroanatomical approaches identifying melatonin binding
sites and studies performing melatonin infusions in lesioned
animals have identified hypothalamic areas as putative targets
and/or relays of melatonin signaling for the control of
seasonal reproduction. According to species, the mediobasal
hypothalamus (MBH), the SCN or the premammilary region
of the hypothalamus were proposed to be involved in this
process (118–121). Until now, however, the means by which
melatonin drives seasonal reproduction through actions at
these hypothalamic sites remained unknown. Importantly, in
numerous mammalian species, melatonin receptor mapping
revealed a high density of seasonally regulated receptors in the
pars tuberalis (PT), the rostral part of the adenohypophysis
extending below the median eminence (122–125). These
neuroanatomical observations indicated that melatonin does
not act directly on the hypothalamus but through a multistep
pathway involving the PT (126, 127).

Earlier studies also pointed to the role of the thyroid
hormones T3 (triiodothyronine) and T4 (thyroxine) in seasonal
reproduction. Notably, thyroidectomy in ewes during the
breeding season prevents seasonal LH decline and suppresses
reproductive functions (128). Furthermore, two enzymes
involved in the metabolism of thyroid hormones, the type 2
deiodinase (Dio2, responsible for converting inactive T4 into
bioactive T3) and type 3 (Dio3, responsible for the inactivation of
T4 and T3) are synthesized in tanycytes, ependymal cells lining
the basal part of third ventricle, with higher Dio2 and lower Dio3
expression in LD than in SD, leading to increased levels of T3 in
the hypothalamus of LD animals (129–132).

The link between the seasonal changes in melatonin and
thyroid hormone was revealed by neuroanatomical, physiological
and genome-wide analyses. These studies revealed that most
melatonin receptor-synthesizing PT cells also express thyroid
stimulating hormone (TSH) in a melatonin-dependent manner
with marked inhibition by the long SD peak of melatonin
(133–135). Additionally, in quail transferred from SD to LD
condition, PT TSHβ was identified as one of the first genes to be
increased, closely followed by a combined increase in Dio2 and
decrease in Dio3 expression in tanycytes (136). This study also
demonstrated that TSH receptors are located on tanycytes and
that their activation by TSH increases Dio2 expression (136). In
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a contemporary study, a similar direct stimulatory effect of TSH
on tanycyticDio2 expression was also reported in the sheep (137).
In line with these findings, it was demonstrated in TSH receptor
knock-out mice that melatonin treatment no longer inhibitsDio2
and increases Dio3 expression in tanycytes (138). Further studies
have demonstrated that the photoperiod/melatonin-dependent
inhibition of PT TSH associated with a tanyctytic switch in
Dio2/Dio3 is highly conserved in seasonal vertebrates (126, 139).
Finally, the observation that intra-hypothalamic administration
of TSH or T3 can restore a LD seasonal phenotype in various
seasonal breeders (130, 140–143) led to the functional model
where melatonin communicates the seasonal message through
PT TSH-driven regulation of hypothalamic T3 which, in turn,
regulates seasonal physiology (127).

One of the current challenges is to identify the molecular
and cellular targets through which hypothalamic T3 synchronizes
biological functions, notably reproduction, with the seasons.
This issue requires analyzing if and how the central structures
known to regulate these functions are regulated by the
melatonin/T3 signal.

Evidence for a Role of RFRP-3 in the
Seasonal Rhythm of Reproduction
RFRP-3 Neurons Are Regulated by Photoperiod

Through the Melatonin Signal
In early studies, it was shown that GnIH (15) and RFRP-3 (30)
in seasonal quail and rodents, respectively, are synthesized in
hypothalamic neurons and are able to alter LH release, altogether
indicating that this peptide may be involved in the seasonal
regulation of reproduction.

The first studies on quail and sparrow reported seasonal
variation in GnIH synthesis which correlated with seasonal
changes in reproduction (144, 145). Additionally, melatonin
administration, in pinealectomized and enucleated (pineal gland
and eyes removed to eliminate all sources of melatonin) quail,
was shown to act directly on GnIH neurons to inhibit GnIH
synthesis in a dose-dependent manner (18).

Subsequently, it was found that, in seasonal rodents, the
number of RFRP-3 neurons in the dorso/ventromedial part of
the MBH displays marked photoperiodic changes (109). Indeed
RFRP-3 synthesis is higher in LD-adapted, sexually active animals
as compared to SD-adapted sexually inactive male Syrian and
Siberian hamsters (109, 146). Like in birds, although in an
opposite manner, seasonal variation in RFRP-3 synthesis depends
on melatonin since pinealectomy increases, and injection of
melatonin decreases, the number of RFRP-3 expressing neurons
in hamsters (17, 109). Additionally, expression of GPR147 in
various hypothalamic areas (31) and the number of GnRH cell
bodies receiving RFRP-3 fiber contacts (17, 32) are increased
in LD hamsters. Notably, manipulating testosterone levels by
castration with/without testosterone supplementation has no
significant effect on the photoperiodic regulation of RFRP-3
synthesis (109, 110, 146). Likewise, ovariectomy has no effect
on RFRP-3 synthesis in ewes (32), and Syrian hamsters (44)
thus demonstrating that these changes are driven by melatonin
independent of sex steroid feedback.

Seasonal Variation in RFRP-3 Expression Is Highly

Conserved Among Seasonal Species
The seasonal pattern of RFRP-3 synthesis seems well conserved
in mammalian LD breeders, with higher RFRP-3 mRNA/protein
expression in LD than in SD observed in Syrian and Siberian
hamsters (109, 146), Turkish hamsters (147); European hamsters
(148) and Jerboa (149). Notably, melatonin proficient mice
such as Mus muculus mollosinus (unpublished results) and CBA
(unpublished results, Figure 2) exhibit photoperiodic variation
in RFRP-3 synthesis with higher values in LD conditions.
Interestingly, in SD breeders like sheep (32, 151), the brushtail
possum (50), goats (152), and camels (unpublished results),
RFRP-3 synthesis is also elevated in LD even though these
animals are sexually inhibited. Finally, in striped hamsters
(Cricetulus barabensis), the highest expression of Rfrp is observed
in breeding males, whereas breeding females exhibit lowest
mRNA expression, pointing to disparate seasonal roles of RFRP-3
between the sexes (153).

Altogether these data demonstrate that
seasonal/photoperiodic variation in RFRP-3 expression is
highly conserved among seasonal mammals with higher levels in
LD summer as compared to SD winter, whether animals are LD
or SD breeders (Figure 2). These findings indicate that melatonin
uses similar mechanisms to regulate RFRP-3 expression in all
seasonal species and that the switch driving LD or SD breeding
activity may be downstream of RFRP-3 neurons.

Species-Dependent Effect of RFRP-3 on

Seasonal Reproduction
Early studies in quail (15, 145) followed by those in female
Syrian hamsters (30) and ewe (33) all indicated an inhibitory
effect of GnIH/RFRP-3 on LH secretion. However, analogous to
the varying impact of RFRP-3 based on stage of the ovulatory
cycle, further studies reported that the role of RFRP-3 in seasonal
mammals is more complicated than expected.

Indeed, in male LD-adapted Syrian hamsters, acute injection
of RFRP-3 was found to increase LH, FSH and testosterone
secretion (43). Furthermore, chronic central infusion of RFRP-3
in SD-adapted, sexually inhibited male Syrian hamsters restores
gonadal activity to that of hamsters kept in LD conditions (43).
Intriguingly, despite an acute inhibitory effect of RFRP-3 on the
preovulatory LH surge in LD-adapted female Syrian hamsters, a
chronic central infusion in sexually inactive SD-adapted females
fully restores reproductive activity, as observed for male hamsters
(44). Even more complexity was revealed following studies of
closely-related male Siberian hamsters, where the effect of RFRP-
3 on LH secretion depended on photoperiod, with RFRP-3 being
stimulatory in SD-adapted and inhibitory in LD-adapted animals
(17). In ewes, the first studies reported that RFRP-3 inhibits
gonadotropin secretion (33, 52). However, a more recent study
using different protocols of RFRP-3 administration could not find
any effect on LH secretion in ewes (56).

Therefore, although the melatonin-dependent photoperiodic
regulation of RFRP-3 neurons is well conserved among seasonal
species, the role of RFRP-3 on the seasonal regulation of
reproduction is unclear and appears to be species dependent.
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FIGURE 2 | RFRP-3 synthesis in the mediobasal hypothalamus exhibits a conserved seasonal pattern. RFRP-3 expression, attested by the number of neurons or the

level of Rfrp mRNA, is higher in long-day (LD) condition as compared to the short-day condition (SD), in LD breeders (European hamster, Syrian hamster, Siberian

hamster, Jerboa, Turkish hasmter, and MSM mouse) as well as in SD breeders (sheep, dromadary). Adapted from (109) (Syrian hamster), (148) (European hamster),

(149) (Jerboa), (147) (Turkish hamster), (150) (sheep), with appropriate permissions obtained from the copyright holders; mouse and dromedary data are from

unpublished results.

Data so far, however, are insufficient to conclude that RFRP-
3 is responsible for the LD or SD breeding activity in seasonal
species. At this point there is no explanation as to why RFRP-
3 displays differential reproductive effects. One hypothesis is
that RFRP-3 may bind to different receptors, notably those of

the large family of RF-amide peptides known to have cross-
binding capacity (154) or interact with different G proteins.
Another hypothesis is that RFRP-3 uses intermediate neuronal
populations with different downstream effects on GnRH neuron
activity and gonadotropin secretion. Notably, RFRP-3 neurons
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have been reported to project to kisspeptin neurons (36) and
the stimulatory effect of chronic RFRP-3 infusion in SD-adapted
male (43) and female (44) Syrian hamsters is associated with
a marked increase in Kiss1 expression. Further studies are
needed to better understand the downstream effect of RFRP-3 on
GnRH neurons and gonadotropin secretion and reveal why this
neuropeptide displays opposite actions according to species, sex,
and photoperiod.

Are RFRP Neurons the Site of Seasonal
Changes in Hypothalamic TH?
The conserved photoperiodic regulation of RFRP-3 leads to the
hypothesis that melatonin may use the PT TSH/hypothalamus
T3 pathway to regulate RFRP-3 synthesis (Figure 3). Indeed,
chronic central infusion of TSH in SD-adapted Syrian and
Siberian hamsters restores RFRP-3 expression similar to that
observed in LD animals, and this effect is associated with a
restoration of the LD-phenotype of kisspeptin expression and
gonadal activity (142). Furthermore, another study similarly
reported that exogenous T3 injection also results in a LD-
like restoration of the number of RFRP-3 and kisspeptin cells
as well as testis size (155). Altogether these data suggest that
seasonal changes in hypothalamic T3 could act directly on RFRP-
3 neurons. However, no data to date have demonstrated the
localization of T3 receptors in RFRP-3 neurons and a direct effect
of T3 on these neurons. Further, the possibility of an indirect
effect should not be excluded.

Even if the photoperiodic regulation of RFRP-3, together
with its reproductive effect, is consistent with the seasonal
pattern of reproductive function, the causal/temporal relation
between seasonal changes in RFRP-3 and reproduction is still
questionable. Indeed in photorefractory hamsters undergoing
spontaneous gonadal recrudescence after long SD exposure,
RFRP-3 expression stays low, reflecting photoperiod rather than
reproductive state (109). Further, in a recent study following
the coordinated dynamic changes in RFRP-3 and reproductive
parameters, it appears that the LD-induced activation of
gonadotropin production precedes an increase in RFRP-3 (156).
Thus, although exogenous RFRP-3 has been reported to restore
gonadal activity in SD-adapted hamsters (43, 44), its role in
initiating the neuroendocrine cascade leading to reactivation
of the reproductive axis at breeding season remains to be
fully understood.

Concluding Remarks on the Role of
RFRP-3 in Seasonal Reproduction
So far all studies have demonstrated that RFRP-3 expression in
the MBH is inhibited by the SD pattern of melatonin. Because
RFRP-3 has the capacity to differentially alter GnRH neuronal
activity and LH secretion, this neuronal population appears as a
key candidate to regulate the downstream reproductive pattern
of a LD- or a SD- type of breeder according to gestational
status. However, several aspects remain to be clarified to support
this hypothesis. First, in contrast to kisspeptin which exhibits
a well conserved stimulatory effect on GnRH neuronal activity,
RFRP-3 has photoperiod, sex- and species-specific effects making

FIGURE 3 | Proposed model by which melatonin influences RFRP-3 and the

reproductive axis in long-day-breeding rodents. Melatonin, coding for day

length, acts on melatonin receptors in the pars tuberalis to influence TSH

production (133–135). The long duration melatonin signal in short days

suppresses TSH production, whereas short duration melatonin during long

days is associated with robust TSH release. In long days, TSH stimulates

tanycytes to upregulate Dio2 and, consequently, increases T3 (129–132, 142).

Long days are associated with high RFRP-3 expression, with neuron numbers

markedly reduced in short-day animals. Although T3 increases expression of

RFRP-3 in short-day animals to resemble that of long-day rodents (142),

whether RFRP-3 cells are direct targets of T3 remains to be determined.

difficult to understand its exact role and contribution to seasonal
reproduction. Secondly, it is yet unclear whether RFRP-3 neurons
are the primary targets of melatonin-dependent changes in
hypothalamic T3 to relay seasonal cues to the GnRH neurons.

GENERAL CONCLUSIONS

The studies reviewed herein demonstrate that RPRP-3 neurons
display both daily and seasonal variations in numerous species,
thus supporting a role for this hypothalamic peptide in the
integration of geophysical cues.

Although RFRP-3 is consistently reported to regulate
reproductive axis function, the effect on GnRH neuronal activity
and gonadotropin secretion is highly dependent on species, sex
and environmental conditions. This complexity in the impact of
RFRP-3 has hampered the ability to determine the precise role
of this neuropeptide in the synchronization of the preovulatory
LH surge in females and long-term breeding in seasonal species.
Clearly, highly specific pharmacological tools [such as GJ14
(157) or RF313 (158)], new cellular models and novel genetically
modified rodent models are required to better understand the
physiological role of RFRP-3 in reproductive rhythms.

Determining the roles of RFRP-3 is further complicated
by increasing evidence indicating that RFRP-3 is a pleiotropic
peptide involved in functions other than reproduction, notably
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metabolic activity and stress regulation (8, 159, 160). Because
reproduction is modulated by energy state and by stress
conditions, it is possible that RFRP-3, at least in part, indirectly
regulates reproduction via metabolic- and stress-regulated
mechanisms. Food intake and metabolic activity, for example,
display major circadian and seasonal changes in mammals
which may interfere with reproductive cycles. Indeed, metabolic
alterations such as food restriction or obesity are known to
impair reproduction. As RFRP-3 increases food intake in various
species, possibly through actions on orexigenic NPY neurons
(34, 161), and food restriction decreases RFRP-3 synthesis in
rats and sheep (65, 162), it is possible that RFRP-3 may also
impact reproductive activity indirectly via metabolic pathways
(163). Likewise, a number of studies report that acute or
chronic stress increases RFRP-3 synthesis via increased levels
of glucocorticoids (164–166) and this stress-induced increase in
RFRP-3 is associated with an inhibition of LH secretion (164).
Finally, Rfrp gene silencing completely rescues stress-induced
infertility in female rats (167) strengthening the implication that
RFRP-3 can influence reproductive function via the stress axis.

In summary, although there is muchmore to learn, findings to
date suggest a role for RFRP-3 in the daily and seasonal regulation

of reproduction. Whether RFRP-3 mediates these events through
direct actions on the reproductive axis, or indirectly via actions
on intermediate systems (e.g., stress or metabolic systems),
requires further examination. The advent and application of
new experimental tools and animal models to more precisely
dissect the roles of this neuropeptide will help to further clarify
the specific role of RFRP-3 in the LH surge/ovulation and the
neural pathways by which melatonin inevitably influences RFRP-
3 cell activity.
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