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Ever since the discovery of thyroid hormone deficiency as the primary cause of

cretinism in the second half of the 19th century, the crucial role of thyroid hormone

(TH) signaling in embryonic brain development has been established. However, the

biological understanding of TH function in brain formation is far from complete, despite

advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH

action makes it difficult to identify and study discrete roles of TH in various aspect

of embryogenesis, including neurogenesis and brain maturation. These challenges

notwithstanding, enormous progress has been achieved in understanding TH production

and its regulation, their conversions and routes of entry into the developing mammalian

brain. The endocrine environment has to adjust when an embryo ceases to rely solely on

maternal source of hormones as its own thyroid gland develops and starts to produce

endogenous TH. A number of mechanisms are in place to secure the proper delivery

and action of TH with placenta, blood-brain interface, and choroid plexus as barriers

of entry that need to selectively transport and modify these hormones thus controlling

their active levels. Additionally, target cells also possess mechanisms to import, modify

and bind TH to further fine-tune their action. A complex picture of a tightly regulated

network of transport proteins, modifying enzymes, and receptors has emerged from the

past studies. TH have been implicated in multiple processes related to brain formation in

mammals—neuronal progenitor proliferation, neuronal migration, functional maturation,

and survival—with their exact roles changing over developmental time. Given the plethora

of effects thyroid hormones exert on various cell types at different developmental periods,

the precise spatiotemporal regulation of their action is of crucial importance. In this review

we summarize the current knowledge about TH delivery, conversions, and function in

the developing mammalian brain. We also discuss their potential role in vertebrate brain

evolution and offer future directions for research aimed at elucidating TH signaling in

nervous system development.

Keywords: thyroid hormones, neocortex, prenatal development, embryonic brain development, mammalian brain

development, mammalian brain evolution, hypothyroidism

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2019.00209
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2019.00209&domain=pdf&date_stamp=2019-04-03
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:stepien@mpi-cbg.de
mailto:huttner@mpi-cbg.de
https://doi.org/10.3389/fendo.2019.00209
https://www.frontiersin.org/articles/10.3389/fendo.2019.00209/full
http://loop.frontiersin.org/people/707882/overview
http://loop.frontiersin.org/people/6210/overview


Stepien and Huttner Thyroid Hormones in Brain Development

INTRODUCTION

Thyroid hormone (TH) signaling is an ancient regulatory
mechanism dating back to early eukaryotes. The use of iodinated
amino acids and bona fide THs to control development and
trigger major life transitions precedes the ability to produce
these molecules internally (1–4). Endogenous TH production
within a specialized gland of animals appears in the evolution
of basal chordates ∼550 million years ago (1, 2, 4–6). In
vertebrates THs are crucial for both development and adult life as
they regulate tissue differentiation, maturation and whole body
metabolic function (7). They also trigger major life transitions
and metamorphosis in multiple chordate species (6, 8).

Although attempts to treat goiter with iodine-rich foods were
made already in antiquity (9), the importance of thyroid gland
secretions in human health was scientifically recognized only
at the end of 19th century. In that time thyroid deficiency
was linked to myxedematous cretinism with the first successful
treatment by thyroid extract injection published by the end of
the century (10, 11). THs were subsequently identified as active
components, chemically characterized and synthesized in the
early 20th century (12–14). Specific functions of TH signaling
in brain development were also recognized with the systematic
observations of the neurological cretinism prevalent in regions
with iodine deficiency (15, 16). Since then our knowledge
about the many roles of THs in the regulation of fetal brain
development has grown exponentially. This review focuses on the
functions of THs in early development of the mammalian central
nervous system (CNS), with an emphasis on cerebral cortex
development and evolution. Functions of THs in the postnatal
development and brain function, including as regulators of adult
neurogenesis, have been reviewed elsewhere (17–20).

PRODUCTION AND METABOLISM OF
THs—MATERNAL AND FETAL SOURCES

Mammalian THs are produced in two forms – 3,3′,5-
triiodothyronine (T3) and 3′,5′,3,5-tetraiodo-L-thyronine (T4 or
thyroxine). T4, the main product of thyroid gland secretion,
has a low affinity for nuclear TH receptors (TRs) and therefore
is thought to act largely as a prohormone in the classical TH
signaling pathway (8). In contrast, biologically active T3 has a
high affinity for nuclear TRs (21, 22) and is produced by either
the thyroid gland or locally from T4 by target tissues and cells
(23–25). Additionally, multiple TH-derivatives arise as products
of TH metabolism, some of which have biological activity while
others are degradation byproducts and storage forms (26).

There are two main periods in prenatal development of
placental mammals with regard to TH production and delivery
into the fetal nervous system. In early development an embryo
relies solely on the maternal source of THs as its thyroid gland
is not yet fully functional. The thyroid gland develops early
in pregnancy from an anterior region of the embryonic gut,
however, in humans it does not secrete significant TH levels
until mid-gestation (27). Therefore the 1st trimester of human
pregnancy proceeds with a full dependence on maternal TH

secretion, and afterwards fetal TH production raises gradually
(28, 29). In agreement with the fetal demand for THs in
pregnancy total maternal T4 and T3 levels rise through the 1st
trimester and stay elevated for the remainder of pregnancy. In
the same time, due to the increased binding to rising levels of
maternal serum thyroxine-binding globulin (TBG), free T4 and
T3 levels decrease after the initial peak at the onset of pregnancy
and remain comparable with non-pregnant women (30). During
pregnancy, high total TH levels are needed to meet the rising
demands of the fetus as well as the mother (29, 31, 32). In cases
of fetal TH production deficiencies caused by events like thyroid
gland agenesis, maternal THs are largely able to substitute for
fetal TH production (33, 34). Even after the onset of fetal TH
production the maternal source of THs seems to be important
for proper brain development, as can be deduced from the
developmental deficits seen in premature infants (35). Although
in the fetus total T4 and T3 concentrations are very low in early
pregnancy, free T4 concentrations in the amniotic fluid and fetal
serum increase to almost adult levels by mid-gestation, likely
due to a low presence of TH binding carrier proteins, and could
therefore exert biological function (29, 31). Free T4 is taken up by
fetal tissues and gets converted to T3 locally (36).

T3, T4 and some of their metabolites are subject to the activity
of three selenocysteine-containing iodothyronine deiodinases
(Dio1-3) that produce both active and inactive products, thereby
controlling the amount of biologically active THs and targeting
their metabolites for further degradation and clearance (37).
Type III iodothyronine deiodinase (thyroxine 5-deiodinase,
Dio3) robustly catalyzes inner ring deiodination (IRD) of T4
and T3 to rT3 (3,3′,5′-triiodothyronine) and 3,3′-T2 (3,3′-
diiodothyronine), respectively (38), resulting in inactivated forms
of these hormones that have little affinity for nuclear TRs
and undergo rapid removal (39). In contrast, Dio2 (type II
iodothyronine deiodinase) primarily activates T4 by converting it
to the active receptor-binding T3 form by outer ring deiodination
(ORD) (40). Dio1 (type I iodothyronine deiodinase) can catalyze
both IRD and ORD, which leads to T4 inactivation or activation,
respectively, but with lower activity toward T4 than Dio2 (41).
It is mainly expressed postnatally and outside of the placenta or
CNS, which make it less important for fetal brain development
(42, 43).

In addition, TH modifications, including decarboxylation,
deamination, ether-link cleavage, sulfation, and glucuronidation,
affect their bioactivity and downstream metabolism (Figure 1).
Most of them lead to deactivation and eventually degradation
of THs (26), however some of the generated compounds, such
as rT3 (44, 45), iodothyroacetic acids (tetrac and triac) and
thyronamines (46–50), have been shown to convey biological
effects in specific contexts. The conversions andmainmetabolites
of THs are shown in Figure 1.

Sulfation and glucuronidation of the phenolic 4′-hydroxyl
group of THs are considered phase II detoxification reactions
as they increase the solubility of the products (51, 52). Sulfation
is catalyzed by cytoplasmic sulfotransferases (SULTs) that
transfer a sulfate group from the donor 3′-phosphoadenosine-
5′-phosphosulfate (PAPS) to their substrates (53) and is utilized
to inactivate THs. T3 sulfate (T3S) does not bind TRs (54)
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and Dio1-mediated ORD of T4 sulfate (T4S) is blocked while
simultaneously IRD of both T4S and T3S is stimulated (55–58).
Normally levels of sulfated THs in circulation and in excretions
are low due to fast deiodination and clearance, but high levels
of these metabolites are present in fetal circulation, likely due to
the absence of Dio1 activity (59–62). Sulfotransferases producing
T4S and T3S are present in the placenta, and sulfated TH
metabolites can be transferred from the fetus into maternal
circulation, potentially playing a role in regulating TH levels (52).
Sulfated as well as glucuronidated THs may also serve as a pool
of inactive hormones that can be mobilized by bacterial sulfatase
or β-glucuronidase activity and reabsorption from the bile in the
intestine (63–69) or hydrolysis by tissue sulfatases in the brain,
kidneys and liver (70, 71).

TH DELIVERY INTO THE DEVELOPING
BRAIN—TRANSPORT ACROSS
BIOLOGICAL BARRIERS

TH delivery into the fetal brain requires passage through
multiple barriers at the feto-maternal interface and between fetal
circulation and the CNS. THs are actively transported across
tissue barriers, including placenta, and brain blood barrier (BBB),
and into target cells. In circulation free THs are present only in
minute amounts and mostly are bound to carrier-proteins. The
main TH binding proteins in human plasma are mammalian-
specific TBG, albumin and transthyretin (prealbumin, TTR) (72),
the latter being also an exclusive TH carrier in the cerebrospinal
fluid (CSF), where it makes up to 20% of total protein (73–
75). A minor portion of THs is bound to ApoB100 and other
lipoproteins (76). Carrier binding determines the amount of
free vs. total THs in circulation, from which only the free
fraction is readily available for uptake by cells, whereas protein
bound THs are considered to be biologically inert (77, 78).
TH entry and exit from cells are mediated by membrane
transporters. A number of proteins capable of TH transport
have been identified, including monocarboxylate transporters
MCT 8 and 10, organic anion carrier transporter polypeptides
(OATPs), Na+/taurocholate co-transporting polypeptide NTCP,
and heterodimeric amino acid transporter (HAT) members/L-
type aromatic and large branched-chain amino acid transporters
LAT1 and 2. They differ in expression pattern and affinity for
THs and their metabolites as well as ability to transport other
compounds. Multiple TH transporters are expressed already
during fetal nervous system development, the most important
being MCT8 and OATP1C1 (79–101).

Before the onset of fetal TH production THs enter fetal tissues
by passing through the placenta, which serves as an active filter
allowing only limited amounts of the active hormone to enter
the fetus (31, 34). The main deiodinase expressed in the placenta
is Dio3 (102), the ability of which to inactivate THs is thought
to protect the developing fetus from toxic levels of the maternal
hormones, especially in the brain, which is uniquely vulnerable
(103–105). Notably, Dio3 has a preference for T3 as substrate,
which contributes to T4 being the main TH passing through the
placenta (106). Dio2 is also present in the placenta, albeit at lower

levels than Dio3 (107, 108), and is thought to act as a provider of
bioactive T3 for local use. Total fetal T4 is kept lower than the
adult level for the entire gestation in both human and rodents
until birth or at 2 weeks postnatally, respectively (32, 109).
An additional mechanism balancing active TH levels involving
sulfation was postulated (52), although only low activity toward
THs by the placental sulfotransferases was detected (110).

In the 1st trimester of pregnancy most of the THs are thought
to be taken up by the fetus from the coelomic and/or amniotic
fluid, while from the 2nd trimester onwards direct transfer to the
fetal circulation starts to play a more important role (29). Prior to
neural tube closure THs can access the developing CNS directly
from the amniotic fluid. Afterwards THs get delivered into the
brain either through the BBB of the developing vasculature or
the choroid plexus (CP) and cerebrospinal fluid (CSF) system.
Endothelial cells of both the brain capillaries and the CP express
transporters and TH modifying enzymes controlling TH levels
entering the brain (111).

CELLULAR SIGNALING OF THs AND ITS
FUNCTIONS IN MAMMALIAN FETAL
BRAIN DEVELOPMENT

Expression and Signaling Pathways of TH
Receptors in the Early Nervous System
THs versatile functions are dependent on cellular responses
mediated by their interaction with various receptors expressed
in cell- and tissue-specific manner. In target cells THs trigger
either genomic responses mediated by DNA-binding nuclear TRs
or non-genomic responses by alternative non-nuclear receptors.
Genomic effects on gene transcription require members of the
nuclear hormone receptor superfamily type II, in mammals
encoded by two related genes arising from whole genome
duplication in vertebrates: THRA/NR1A1 and THRB/NR1A2,
which produce TR α and β, respectively (112–114). Each of these
genes can undergo alternative splicing and harbors alternative
promoters, resulting in a number of distinct isoforms differing
in their ability to bind target DNA sites, ligand binding, and co-
factor recruitment (114, 115). The isoforms that possess both
DNA and ligand binding capacity and localize to the nucleus
are TRα1 and β1-3 (with TRβ3 being rat-specific), and these are
the ones that mediate the genomic effects of THs (116, 117).
Other isoforms act as dominant-negative regulators or have non-
genomic functions (118–120). TRβ1 and 2 possess the same DNA
binding domain, but their N-termini differ in the activation
domain, which in β2 favors coactivator recruitment (121, 122).
TRα1 and TRβ1 differ in DNA-binding affinity and selectivity
(123), T3 affinity (124), and the ability to form dimers (125). T3
is the active form of the hormone capable of binding to these
receptors as T4 has about 10 times lower affinity for TRs (21, 22).
However, direct T4 binding with biologically significant effects
has also been shown recently (126, 127).

To affect transcription of target genes TRs bind DNA as
either homodimers or heterodimers with retinoid-X-receptors
and recognize TH response elements (TREs) in promoter
regions of regulated genes (114). TRs lacking bound THs
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FIGURE 1 | THs and major products of their metabolism. T4, 3′,5′,3,5-tetraiodo-L-thyronine (thyroxine); T3, 3,3′,5-triiodothyronine; T2, 3,3′-diiodothyronine; rT3, 3,

5′,3′,-triiodothyronine; , diiodotyrosine; MIT, monoiodotyrosine; T3G, triiodothyronine glucuronidate; T4G, thyroxine glucuronidate; T3S, triiodothyronine sulfate; T4S,

thyroxine sulfate; TRIAC, triiodothyroacetic acid; TETRAC, tetraiodothyroacetic acid; T1AM, 3-iodothyronamine; T0AM, thyronamine.

can bind DNA as aporeceptors, which represses target gene
transcription by recruiting corepressor complexes with histone
deacetylase activity (128, 129). T3 binding lifts this repression
and leads to target gene transcription, which is necessary
for normal nervous system development (130–132). While
T3/TR interaction results in coactivator recruitment, chromatin
restructuring, and transcriptional activation for most targets,
some genes can also be repressed by TRs with bound
THs (133, 134). Accordingly, a meta-analysis study of genes
transcriptionally regulated by THs in the nervous system
identified over 700 curated targets, however the extent and
mode of their regulation is likely to differ during development
and in specific cell types (135). More targeted studies are
needed to explain the differential cellular responses to THs in
various contexts. The interplay between various TR isoforms,
chromatin re-modeling and transcriptional machinery leads to
complex tissue and cell-specific responses in various contexts
and comprehensive reviews on the mechanistic aspects of the
genomic pathway are available (136–138).

Tissues differ in TR isoform expression patterns and cell-
specific functions. TR isoforms share many common targets,
however, there is marked spatiotemporal variation in the degree

and mode of regulation and target overlap. Frequently cells
express multiple isoforms with distinct roles arising due to
differences in the respective protein levels or intrinsic activity
(117). Nuclear TRs are expressed in the developing brain of
humans and rodents (22, 139, 140), and T3 binding in the
human brain occurs even before fetal thyroid gland maturation
(22, 141, 142). TRα1 is the major isoform expressed in neurons
from early fetal development in humans and rodents onwards,
while TRβ increases perinatally and is more abundant in specific
neuronal types such as hippocampal pyramidal and granule
cells, paraventricular hypothalamic neurons and cerebellar
Purkinje cells (143–145). Interestingly, TRβ1 is also expressed
in the germinal zones of cerebral cortex (145). During early
postnatal development in rodents TRβ is specifically required
for enhancing the expression of the striatum-enriched gene Rhes
(146). Rhes functions in multiple signaling pathways and has
been implicated in the regulation of dopamine-mediated synaptic
plasticity of striatal neurons, in striatum-related behaviors, and
in neurodegeneration in the course of Huntington disease
(147). Moreover, TRβ1 and 2 are required for the cochlear
and retina development, and TRβ null mice have defects in
auditory and visual development (148). TRβ2 also plays a
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role in establishment and maintenance of the hypothalamus-
pituitary-thyroid gland axis (114). Most neurons express both
TRα and TRβ receptors, however, the relative expression levels
differ, which can have important functional consequences such
as in the hippocampus, where TRα but not β is necessary
for proper GABAergic interneuron innervation and behavior
(145, 149). The relative abundance of both receptors was
also proposed to control proliferation/differentiation balance
in the developing brain (145). In addition, certain specific
cell types express exclusively either TRα or TRβ form. For
instance, parvalbumin (PV) positive cells in the CA1 of
the hippocampus express preferentially TRα while the PV+

interneurons in the somatosensory cortex produce mostly
TRβ (149). Also developing cerebellar granule cells express
TRα1 but not TRβ while Purkinje cells produce mostly
TRβ (144, 145, 150).

TR mutations in both rodents and humans have been linked
to a range of behavioral and cognitive phenotypes, including
changes in sensory, attention, emotion and memory functions,
but their effects are complex and usually more benign than
those of hypothyroidism (149, 151–155). Detrimental effects
of hypothyroidism are thought to occur largely due to the
repressive activity of TRs lacking bound THs, as mice completely
lacking both TR receptor types are viable and without major
defects (153). Moreover, TRα1 KO rescues the viability of
Pax8 KO mice, which present with thyroid agenesis and lethal
congenital hypothyroidism during the early postnatal period
(156), and partly rescues the Dio3 KO phenotype (157). TRs
lacking bound THs are generally implicated in maintaining the
proliferative, undifferentiated state of neural progenitors, while
T3-bound receptors promote transcription of genes triggering
cell differentiation and maturation (129, 158–160).

In addition to the classical pathwaymediated by nuclear TRs, a
growing list of TH effects have been linked to their non-genomic
actions, including regulation of actin polymerization (161), Dio2
activity (162), ion transport (163), Akt/PKB and mTOR pathway
activation (164), and fatty acid metabolism (165). Non-genomic
effects of THs can also influence cell proliferation and survival
(166). Among receptors mediating the non-genomic functions
of THs is a cell surface TH receptor, integrin αvβ3 (167, 168),
which preferentially binds the T4 pro-hormone to activate the
MAPK signaling cascade. This interaction promotes angiogenesis
(167) and proliferation in osteoblasts and various cancer cell
types (169–171). Signaling through this receptor has also been
implicated in neocortical development as T4 binding to integrin
αvβ3 upregulates progenitor proliferation in this structure (172).
A detailed review of the non-genomic effects of THs in various
cell types can be found elsewhere (120).

THs also interact with other signaling pathways during
cortical development. In neural development sonic hedgehog
(Shh) signaling leads to an increase in Dio3 expression while
decreasing Dio2 by ubiquitination (108). In turn both fetal
and adult brain T3 upregulated Shh production (134, 173),
thus providing a negative feedback loop. TH and Shh pathways
interact also in cerebellar development to control granule cell
precursor proliferation (174). Brain morphogen retinoic acid
(RA) shares common carrier proteins with THs, and their nuclear

receptors dimerize. RA can also increase MCT8 expression to
increase TH import (175). Another transcription factor, COUP-
TF1 (Chicken Ovalbumin Upstream Transcription Factor 1), has
been shown to bind to DNA sites overlapping with TREs and to
block TR access and activation (176, 177) therebymodulating TH
signaling. Genes that show the presence of both TR and COUP-
TF1 binding elements include calcium calmodulin-dependent
kinase IV (CamKIV) (177, 178), which is important for both
GABAergic and glutamatergic neuron production (179, 180).
Emx1 and Tbr1 genes are also controlled by both THs and
COUP-TF1, with the latter factor modulating the timing and
magnitude of the T3 response (180). Similarly, nuclear liver X
receptor β interacts with TH signaling in regulating cortical
layering, likely by influencing the expression of their common
target, the reelin receptor ApoER2 (181).

Developmental Hypothyroidism and Its
Impact on Brain Development
The complexity of TH production, delivery, and metabolism
contributes to varying clinical presentations of different TH
signaling deficiencies during gestation, with the most severe
being iodine deficiency which impairs both maternal and fetal
TH supply (15, 182). Maternal iodine deficiency or severe
hypothyroxinemia alters embryonic brain development even
before the fetal thyroid gland becomes functional (183, 184),
and leads to profound neurological cretinism with defects in
sensory, motor and cognitive functions (15, 28, 185, 186). TH
deficiencies, even when limited to the 1st trimester of gestation,
are linked to cognitive deficits and neurodevelopmental delay
(183, 187, 188). In contrast, fetal TH production defects, such
as congenital hypothyroidism caused by thyroid agenesis, can
largely be compensated by maternal THs (33, 34, 189), with most
deficiencies in development arising postnatally if these defects are
not treated (109, 190).

Given the selective placental permeability for T4, even
mildly hypothyroid or asymptomatic cases of maternal iodine
deficiency, lowering T4 but not T3 levels, can reduce fetal
THs enough to cause developmental defects (182, 186, 189).
Moreover, maternal T4 but not T3 supplementation protects
the brain from hypothyroid injury until birth (34, 189, 191). As
in the placenta, the main TH form transported into the CNS
is T4, and the majority of the cerebral cortex T3 comes from
local tissue production by Dio2 (192, 193), rendering the brain
dependent mostly on circulating fetal T4 levels (28). The brain
seems to be privileged in taking up T4 from the fetal circulation
compared to other tissues, while the opposite is true for T3 (34).
TH transporters facilitate entry from the circulation into the
developing brain. Postnatally T4 is mainly taken up by astrocytic
OATP1C1 and converted to bioactive T3 by the action of Dio2
(94, 194), which is expressed almost exclusively in glial cells (195,
196). Generated bioactive T3 is then provided to neurons, which
lack Dio2 activity but express high levels of Dio3, allowing them
to deactivate glia-derived excess THs (43, 196, 197). Neurons take
up T3 preferentially over T4 via the MCT8 transporter either
from astrocytes or directly from the interstitial fluid (198–200).
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The Dio2/Dio3 activity balance provides an important
mechanism for regulating active T3 levels in the brain to protect
against excess THs (201). Both Dio2 and Dio3 activities are
present in the fetal brain already from the 1st trimester onwards
but show opposing trends with Dio3 being more active early and
Dio2 toward the end of gestation (202–204). Dio3 KO in mouse,
in contrast to other deiodinases, causes widespread abnormalities
in brain and sensory organs, but it is unclear to which degree
this phenotype is generated prenatally and arises due to placental
or CNS deficiency (104, 105, 205). Similarly, human mutations
affecting Dio3 imprinting result in Temple or Kagami-Ogata
syndromes that impair brain function; however, whether this
phenotype can be fully attributed to the altered dosage from the
Dio3 locus is unclear (206). Additional mechanisms controlling
active TH levels may also be present as TH sulfotransferases were
shown to be expressed and active in the developing human brain
(207, 208).

Fetal and perinatal TH deficiency, due to congenital
hypothyroidism or iodine deficiency, has a dramatic negative
impact on cerebral development, affecting multiple regions
including cerebral cortex, hippocampus, amygdala, and
basal ganglia as well as motor neurons, cochlea, retina and
interregional connectivity (15, 183, 184). Most of the early
brain developmental events (proliferation of neural progenitors
and neuronal migration in the neocortex, hippocampus,
and medial ganglionic eminence) occur before fetal TH
production, and thus are predominantly under the control
of maternally-derived TH signaling. However, later stage
processes (ongoing neurogenesis and migration, axon
growth, dendritic arborization, synaptogenesis, and early
myelination) occur after the onset of fetal TH production and
proceed under the control of both fetal and maternal THs.
Further brain developmental events (cortex pyramidal cell,
hippocampal granule cell and cerebellar granule and Purkinje
cell migration, gliogenesis, and myelination) occur postnatally
and are therefore controlled entirely by neonatal THs. TH
signaling has an effect on all of these processes (158, 209).
The diverse actions of TH in early brain are summarized
in Figure 2.

Functions of TH Signaling During
Development of Mammalian CNS
Human cretinism has been extensively modeled in rodents.
In human, cortical neurogenesis occurs between week 5 and
20 of gestation, which is the period when the fetus depends
primarily on the maternal source of THs, corresponding roughly
to rat E12-18 (27, 209). In cortical development neurons are
generated from progenitor cells residing in the subventricular
zone and migrate basally along radial glia fibers to form an
ordered 6-layered cortical plate, a process controlled largely
by pioneer Cajal-Retzius and subplate neurons (210, 211).
Perturbations of this migratory process lead to defects in
cortical morphology and function (212). Even mild or transient
maternal hypothyroxinemia during neurogenesis retards fetal
glutamatergic neuron migration along the radial glia scaffold
in the rat sensory cortex and hippocampus, without affecting

tangentially migrating GABAergic neurons. This deficiency
results in reduced neocortical thickness, blurred cortical layering
and subcortical band heterotopia, likely responsible for increased
seizure susceptibility and altered behavior (184, 190, 213–
216). Improper neuronal migration also leads to alterations
in callosal connectivity (213, 217). These migration defects
can be at least partly attributed to a direct effect of the
lack of THs on guiding cues as THs regulate Reelin, Dab1,
and Vldlr expression in rat neocortex and cerebellum (218–
220). T3 signaling also controls the expression of lipocalin-
type prostaglandin D2 in Cajal-Retzius cells and hippocampal
neurons during development (221), a protein known to
affect glial cell migration (222). Moreover, a large subset
of subplate neuron-enriched genes were shown to be under
TH regulation (160). Maternal hypothyroidism alters gene
expression in the brain by midgestation, and while it can be
corrected by T4 application (223), the morphological changes
persist if hormones are replaced after the critical window has
closed (36).

TH signaling affects not only migration but also enhances
progenitor proliferation and cortical neurogenesis, which is
regulated by both genomic and non-genomic TH action
(172, 180, 224). Hypothyroidism causes cell cycle disruption,
increased apoptosis and reduction in both apical and basal
progenitor pools and defects in neuronal differentiation,
leading to cortical thickness reduction and decreased neuron
number, especially in upper cortical layers (224). THs were
shown to upregulate genes involved in cell cycle regulation
and sustained proliferation in the developing cortex, such
as POU2F1/Oct-1 or Nov (178, 223). Signaling through
various pathways could have opposing roles in regulating
proliferation/differentiation balance as T4 binding to integrin
αvβ3 upregulates progenitor proliferation in the developing
cortex (172), while T3 regulates gene expression in primary
cerebrocortical cells via a nuclear TR-dependent pathway
consistent with a role in promoting neuronal differentiation
(160). Even mild hypothyroxinemia induces shifts in gene
expression in developing hippocampus and neocortex (225).
Among TH-regulated targets are genes involved in neuronal
specification and function, such as Emx1 (Empty spiracles
homolog 1), Tbr1 and neurogranin (180, 226–228), as well as
cytoskeleton components and ECM molecules, which impact on
both proliferation and neuronal migration (134, 229). T3 also
regulates the expression of DNA methyltransferase Dnmt3a in
mouse brain, potentially extending the genomic effects of TH
action beyond directly regulated genes by affecting global DNA
methylation states (230). Seemingly contradictory functions
of THs in promoting progenitor proliferation and neuronal
differentiation may stem from specific spatiotemporal expression
of their transporters, metabolizing enzymes, and effectors that
mediate different actions in various cell types in the course
of development.

While progenitor proliferation, cortical neurogenesis
and early neuronal migration occur largely prenatally, THs
have a profound effect also on perinatal CNS developmental
events. During that period, the TH deficiency associated
with congenital hypothyroidism leads, in both rodent and
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FIGURE 2 | Sites of action of THs during CNS development. Processes affected by TH signaling prenatally and in early postnatal development are shown. CC,

cerebral cortex; HPT, hypothalamus-pituitary-thyroid gland; M, middle-wavelength sensitive. The figure was created using the mouse brain schematic available under

Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license.

humans, to defects in late neuron migration, cerebellar
neuron and glia arborization and maturation (231–233),
astrocyte and neuron differentiation in hippocampus
(234–236), inhibitory neuron development and function
(237, 238), oligodendrocyte differentiation and myelination
(129, 239, 240), and synaptogenesis (241, 242). TH
signaling also controls spinal motor neuron generation
in vertebrates (243) and establishment of corticospinal
projections (244).

The impact of perinatal TH deficiency on brain development
has been intensely studied in two vital regions associated
with hypothyroid injury, especially related to motor function
impairment—the striatum and the cerebellum (245). In
mammalian cerebellum the final TH-dependent stages of
development occur perinatally, when cells from the external
germinal layer proliferate and migrate to the inner granular
layer forming connections with maturing Purkinje cells (246).
TH signaling affects all of these processes. In cerebellum
migration of granular cells requires ligand bound TRα, while
maturation of Purkinje cells depends on the functions of
both TRα and β isoforms. Additionally, TRβ is required for

adequate granule cell proliferation (247). Interestingly, the
hypothyroid injury on the developing cerebellum can be largely
rescued by TRα1 deletion, in agreement with the function
of TH in relieving the receptor-mediated transcriptional
repression (248).

In the striatum a connection between TH-regulated gene
expression and brain-region specific function involves the
Ras-like GTP-binding protein Rhes/Rasd1. Despite being
expressed in multiple brain regions from midgestation
this gene shows a specific striatal upregulation in early
postnatal rodent development that is critically dependent
on THs (249–251). Developmental Rhes enrichment in
this structure is dependent on T3 binding to TRβ isoform
(146), however adult expression seems to rely primarily
on TRα (252). Interestingly, Rhes functions in G-protein
coupled receptor signaling as well as in PI3K/Akt/mTOR
pathways (253, 254) to modulate synaptic transmission
(255), and Rhes KO animals have deficits in striatum-
controlled behaviors (256), providing a potential functional
link between hypothyroidism and resulting motor and
affect dysfunctions.
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THs IN MAMMALIAN BRAIN EVOLUTION

In addition to their relevance regarding neurodevelopmental
disorders, THs may have played a crucial role in human brain
evolution. Although mostly limited to comparison between
human and rodents, a number of important differences in TH
signaling have been characterized. Spatiotemporal expression
patterns of TH transporters are species-specific and can lead
to drastic differences in TH metabolism, evident especially
in disease states. Strikingly, the effects of MCT8/SLC16A2
mutations, which in human cause severe brain hypothyroidism
with concomitant hyperthyroidism in circulation and peripheral
organs, known as Allan-Herndon-Dudley syndrome (AHDS),
characterized by severe intellectual and motor disability (257–
259), are not fully recapitulated by mice, especially with
regard to the neurological phenotype (91, 260–262). In
rodents, only MCT8 and OATP1C1 double-inactivation causes
cerebral hypothyroidism and associated defects (263). Various
explanations, including the presence of compensatory alternative
transport or T3 production pathways in rodents (264, 265) or the
differential expression of the LAT2 transporter in neurons (91),
have been suggested.

A potential evolutionary difference in TH delivery between
rodents and human may exist, pertaining to the carrier protein
TTR. In human TTR is present in the CSF as early as from the
8th fetal week (75), and in contrast to TBG and albumin there
are no known individuals with TTR null mutations, suggesting
its vital role in development (72). However, TTR null mice are
viable and do not have overt symptoms of hypothyroidism in the
CNS (266). Interestingly, TTR evolution in vertebrates, leading
to its synthesis in the CP and a shift in specificity from T3 to
T4 in the mammalian protein, coincides with the emergence of
the cerebral cortex as a novel structure (72). It is tempting to
speculate that the evolutionary expansion of the neocortex in
the primate lineage may be linked to increased dependence on
the function of TTR during development. Subtle differences in
serum TTR abundance and posttranslational modifications were
detected between human and several other species of great apes,
but their functional and evolutionary importance remains to be
elucidated (267).

In rodent neocortex development increasing TH-mediated
integrin αvβ3 activation promotes basal progenitor proliferation
(172). In contrast, blocking integrin αvβ3 has the opposite
effect on ferret basal progenitors (268). Increased pool size and
proliferative capacity of basal progenitors are thought to have
contributed to the evolutionary expansion of the neocortex,
especially in the primate lineage (229). Interestingly, a number of
human genes implicated in TH metabolism are altered in human
basal progenitors compared to mouse (208), which may affect the
magnitude and timing of TH action during cortical neurogenesis.

One of the major concepts in human evolution is neoteny,
especially in relation to brain development and function
(269). Alterations is TH signaling are known to underlie
evolutionary heterochrony in various animal species (6),
including our closest living relatives, the chimpanzees and

bonobos (270). The global TH status in rodents is connected

to either accelerated or delayed development in hyperthyroid
and hypothyroid pups, respectively (271). Given that in
the CNS THs tend to accelerate cell type maturation (272,
273), one could speculate that prolonged or enhanced brain
protection from THs and spatiotemporal alterations in metabolic
enzyme and effector expression in the primate lineage could
have delayed differentiation, contributing to human neoteny.
Further studies investigating species-specific differences in TH
pathways in brain development, especially including other
model species, beyond human and rodent, could help to test
this hypothesis.

CONCLUSIONS

TH action with regard to mammalian brain development is
highly pleiotropic, and despite many advances the complexity
of their delivery, metabolism, and cell-specific responses make
it difficult to dissect specific functions in brain regions and
cell subtypes in the course of development. With the advent
of single-cell transcriptomics and the CRISPR/Cas9 technology,
the spatiotemporal dissection of TH signaling in various cell
types across the nervous system should become faster and more
precise. This is of crucial importance, as in addition to the long-
recognized role of TH deficiency in neurodevelopmental defects,
undiagnosed developmental hypothyroxinemia may be linked
to common neurological disorders such as ataxias and epilepsy
(274, 275). Elucidation of the mechanisms underlying these
pathologies down to the cellular and subcellular level could aid
better diagnostic and therapeutic interventions. Understanding
and expanding the existing catalog of the evolutionary differences
in TH signaling, whichmomentarily includesmostly genes linked
to human genetic diseases such as AHDS or Kagami-Ogata
syndrome, could also contribute to the generation of better
disease models. Of note, when reaching conclusions about the
role of THs in the human brain from rodent studies, it is
important to keep in mind the at times profound phenotypic
variation across species and its impact on disease presentation
and potential treatments.
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