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The importance and role of the estrogen receptor (ER) pathway has been

well-documented in both breast cancer (BC) development and progression. The

treatment of choice in women with metastatic breast cancer (MBC) is classically divided

into a variety of endocrine therapies, 3 of the most common being: selective estrogen

receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor

down-regulators (SERD). In a proportion of patients, resistance develops to endocrine

therapy due to a sophisticated and at times redundant interference, at the molecular level

between the ER and growth factor. The progression to endocrine resistance is considered

to be a gradual, step-wise process. Several mechanisms have been proposed but thus

far none of them can be defined as the complete explanation behind the phenomenon

of endocrine resistance. Although multiple cellular, molecular and immune mechanisms

have been and are being extensively studied, their individual roles are often poorly

understood. In this review, we summarize current progress in our understanding of

ER biology and the molecular mechanisms that predispose and determine endocrine

resistance in breast cancer patients.
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INTRODUCTION

The complex association of endocrine ablation and breast cancer (BC) was discovered in 1896
when Beatson revealed that oophorectomy on an advanced cancer patient led to a pronounced
and marked response (1). The estrogen receptor (ER) was first discovered in 1958 by EV Jensen
and subsequent studies showed that estrogen (E2) is implicated in BC pathogenesis and nurtures
the surge in ER expressing BC cells (2, 3). E2 modulates its activity through its two ERs: ERα (ERα)
and β (ERβ) (4, 5). ERα was cloned in 1985 by Pierre Chambon’s group and ERβ was cloned in
1996 by Jan-Ake Gustafsson’s group (6, 7).

However, it is the ERα which is expressed predominantly in breast tumors, and considered
the most suitable target for hormonal therapy (8). Consequently, most treatments are directed
at reducing the levels of E2 or inhibiting the E2-mediated signaling. Endocrine therapy has been
prevalent ever since the discovery of endocrine cancers and it is, to date, one of the most effective
treatments in ER-positive (ER+) BC. At least six distinct therapeutic modalities dictate endocrine
therapy, namely the selective ER modulators (SERMs), the selective ER down-regulators (SERDs),
aromatase inhibitors (AIs), mTORC1 inhibitors in combination with aromatase inhibitors, and
cyclin dependent kinases 4 and 6 (CDK4 and CDK6) inhibitors in combination with AIs and
CDK4/CDK6 inhibitors in combination with SERDs (9).
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Tamoxifen, a SERM that acts by blocking the ER, has been
ubiquitously used over the last four decades as the treatment of
choice in pre-menopausal BC patients, although in the adjuvant
setting, it was the drug of choice in post-menopausal women with
HR+ BC (10, 11). AIs have been shown to be effective in post-
menopausal women andmight be effective in patients resistant to
SERMs (12–14). With the discovery of endocrine therapies, the
population of BC cells have been evolving too and overcoming
endocrine resistance is a major cause of concern.

ER signaling is a complex cascade of events and the function
of ER activity is dependent on the microenvironment within
the cell at the molecular level, i.e., other signaling molecules,
coactivators, corepressors, and genomic sequence of consensus
binding sites. These are some of the determinants leading
to the inefficiency of endocrine therapy and are associated
with integral or assumed endocrine resistance. The cellular
and molecular milieu can determine the transformation from
an E2-dependent to E2-independent cluster of proteins, which
subsequently go on to regulate genes in the absence of the
E2-ER signaling.

In the Immediate Preoperative Anastrozole, Tamoxifen, or
Combined with Tamoxifen (IMPACT) neoadjuvant trial, BC
cell proliferation was measured by Ki67 immunohistochemistry
(IHC) and it was demonstrated that almost 40% of patients
presented with a high correlation of a 5-years recurrence free
survival (RFS) upon short term anti-E2 therapy (15). In this
study, the AI anastrozole was more effective in suppressing
Ki67 expression. The larger adjuvant Arimidex, Tamoxifen Alone
or in Combination (ATAC) and Breast International Group
(BIG) trials also reported that the set of patients exhibiting
significant inhibition of cell proliferation upon endocrine therapy
had a larger number of tumor cells that were hormone
sensitive/dependent (11, 16). Whole exome sequencing of
operable ER+ patient tumors after estrogen deprivation by an
AI, has the potential to identify useful biomarkers and suitable
therapy in a subset of BC patients (17). Large genomic datasets
have been generated from ER+ BC patients revealing a catalog
of somatic mutations within genes and each of these datasets
have provided a wealth of information (18, 19). A recent study
identified association with clinical variables and MAP3K1 and
TP53 mutations were predictors of good and poor response,
respectively (19). These findings were in line with observations
in the METABRIC dataset (20).

An in-depth characterization of tumors through large
integrated genomic landscape studies on metastatic breast cancer
(MBC) patients has provided valuable insights into a few of the
genomic drivers, the role of heterogenic genomic architecture of
cells within the tumor, the cellular and molecular determinants
that define response to endocrine therapy along with identified
novel biomarkers and therapies (9, 21, 22). These studies have
demonstrated a central clonal hub at the primary tumor site
and acquired mutations and drivers that promotes metastasis
(21). One such study identified the SWI-SNF and JAK2-STAT3
pathways as potential therapeutic targets (21). Another of the
recent studies identified at least four separate clusters of cells: 1. A
cluster of tumorous cells possessing ERα mutations 2. A cluster
of cells harboring mutations within the RAS/RAF/MEK/MAPK

pathway 3. A cluster of cells with mutations in a variety of
transcriptional factors and 4. A cluster of cells with unknown
mechanisms (9). Although ERα mutations are common in a small
proportion of endocrine resistant BC patients, the mechanistic
details of endocrine resistance in the remaining patients remains
elusive and has been discussed in further details below. Clinico-
genomic factors as well as the role of the immune system and
its associated tumor microenvironment (TME) provide a strong
rationale for stratifying therapeutic approaches in endocrine
resistant BC patients.

The immune system, both innate and adaptive play a pivotal
role in BC. The microenvironment and the soluble mediators
involved, including cytokines, dictate to a large extent, the
ability of immune cells to either subdue the proliferating cancer
cells or support the growth and metastatic capacity of BC
cells. Lymphocyte infiltration has been considered in a recent
study and this has reinforced the importance of the immune
system in ER+ BC (23). While the authors did not observe
any prognostic significance on the scores for immune cell
abundance accounting for tumor infiltrating lymphocytes (TILs)
in histology sections, they did observe prognostic significance
for the immune scores based on spatial heterogeneity of the
TILs and an increase in spatial clustering across late recurrent
ER+ cancer.

A thorough study of the molecular structure, components and
cascade of events leading to endocrine resistance will highlight
suitable schemes and strategies for therapeutic targeting.
Illustrated in Figure 1 are the various factors leading endocrine
sensitive cells toward reduced endocrine sensitivity/endocrine
resistance. This review discusses in detail the various intricate
and sophisticated web of pathways involved in ER signaling and
highlights schemes for treatment.

1. ESTROGEN RECEPTOR AND
SIGNALING

ER is a nuclear receptor and belongs to the steroid-thyroid-
retinoid receptor superfamily (6). The human ER is comprised of
two subdivisions: ERα and ERβ, located on chromosomes 6 and
14 at 6q21.5 and 14q23.2, respectively (7, 24). In some tissues, like
the uterus, mammary gland, testis, pituitary, liver, kidney, heart,
and skeletal muscle, ERα appears to dominate, whereas in the
ovary and prostate, ERβ is highly expressed. The role of ERα in
breast malignancy is well-documented, while the function of ERβ

remains ambiguous (8). It is understood that ERβ has contrasting
effects to ERα, and inhibits the stimulatory effects of E2 on cell
proliferation. Studies have shown that downregulation of ERβ

contributes to tumor progression and the chances of survival
increase with an increase in the expression of ERβ (25, 26).

Both receptor subtypes share similarity at the protein level
and are comprised of domains denoted as A to F (Figure 2)
(27, 28). However, there is only limited homology between the
two receptors, with 95% in the DNA binding domain (DBD),
50% in the ligand binding domain (LBD) and 15% in the N
terminal domain of the two receptors (29). The ERα and ERβ

contains two transactivation domains, the activation function 1
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FIGURE 1 | Mechanisms involved in endocrine resistance: Several proteins, soluble mediators and transcription factors are assimilated and function cohesively in a

complex network, with each entity playing a unique role through the regulation of its own cascade of events as mentioned in each section of this review. In the opinion

of the authors, the immune system and the stem cells are at the center of dysregulation observed in the proteins and pathways involved. The soluble mediators, like

hormones, cytokines, and chemokines all play a crucial role in BC cells becoming endocrine resistant. IL, interleukin; ROS, reactive oxygen species; mutER, mutations

in ERα.

(AF1) and activation function 2 (AF2), with the N-terminal AB
domain (containing the AF1), responsible for constitutive ER
activity (30). The DNA-binding domain (DBD) or C domain,
binds to the palindromic sequence, GGTCAnnnTGACC and
leads to dimerization of the ER (28). The D domain/hinge
domain leads to nuclear transport, while the E domain/Ligand-
Binding Domain (LBD), is responsible for ligand binding (31–
33). Located at the carboxy terminus is the F domain/AF2, which
is responsible for E2 dependent activation of the ER. This region
modulates the functions of the AF1 and AF2 domains (34).
Consistent with previous reports on the role of polymorphisms
in the ERα and ERβ genes on endocrine resistance, recent large
scale projects, like The Cancer Genome Atlas (TCGA), have
indicated similar results, in that ERα mutations were present
in only 0.5% of BC patient samples and ERα amplification in
2.6% (35).

Upon binding of E2 to ER, a series of successive triggers,
results in the translocation of chaperone proteins from the
ERα, receptor dimerization, phosphorylation and subsequent
binding of ER as a dimer to consensus binding sites on the
DNA, known as E2 response elements (EREs). The EREs are
located in the 5′ untranslated region (UTR) of genes, although
it is well-known that ER can bind to intronic as well as distal
regions of the transcription start site of a gene and that ERα

binds within the enhancer rather than the promoter regions and
also facilitates transcription through long distance interactions
by DNA looping (36–38). ER signaling can be triggered by
nuclear and non-nuclear mechanisms. At the molecular level,

ER regulates the expression of genes by both canonical and
non-canonical pathways, also known as “nuclear-initiated steroid
signaling (NISS)” pathways (15). The consensus palindromic
ERE was initially defined as 5′-GGTCAnnnTGACC-3′, from
the X. laevis vitellogenin gene, although the ERE in humans
ranges from 3 to 5 nucleotides between the penta half sites
(GGTCA(n)3−5TGACC (39, 40). When ER binds to the ERE
on the DNA, it leads to gene transcription of target genes,
regulated by synergistic activity of AF2 and AF1. Additional
co-activator (Co-A), specificity protein 1 (SP1) and activator
protein 1 (AP1) are recruited to the ER/DNA complex and can
regulate cellular function by upregulating or downregulating
gene transcription (41, 42) (Figure 2). Essentially, the activity
of the ER is modulated by post-translational modifications
which include, phosphory/acety/palmitoy/sumoy-lations and
ubiquitination (Table 1). ERα is phosphorylated at Ser118, 104,
106, and Tyr537, acetylated at Lys266, 268, 299, 302, and
303, palmitoylated at Cys447, sumoylated at Lys 299, 302,
and 303 and ubiquitinated at Leu 429 and Ala 430 among
few others. In the last decade, studies have shown that a
proportion of target genes are regulated using a more complex
machinery, where more than one ERE-consensus sequence
and/or non-consensus ERE sites are present in the promoter
region (47).

Both the AF1 and AF2 domains are crucial, but the
AF2 activation serves as the binding region for coactivators
and corepressors (48, 49). The predominant steroid receptor
coactivator (SRC) are ERAP-160, RIP-140, SRC-1, CBP, p300,
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FIGURE 2 | Schematic figure of the structure of ERα and ERβ. The AF1 site is

located at the N-terminus A/B domain. The DBD and dimerization site is

present within the C domain. The nuclear localization signal is contained in the

D domain. The E/F domain contains the AF2 site as well as the ligand binding

domain along with a dimerization site. Notable mutations within ERα are

depicted for the ERα gene.

TIF2, and AIB1 (49), while the corepressor is SMRT (50). A
recent study identified Oct4 as a cofactor associated with ERα

to promote tamoxifen resistance (51). In this study, enhanced
expression of Oct4 led to a tamoxifen dependent increase in
the proliferative potential of the tumor. This is important in
the context of endocrine resistance, since the array of molecules
mobilized by the ER is dependent on the organization of the E2
mediated ER-ERE complex (52).

In contrast, the AF1 domain is not dependent on a ligand
and regulates gene transcription even in an ERα deletion
mutant (53). In the ligand independent mechanism, activation
of AF1 by phosphorylated ER at Ser104, Ser106, Ser118, Ser167,
and Ser305 is mediated by crosslink and crosstalk between
MAPK, PKA, PI3K/AKT and cyclin-dependent protein kinase
2/7 (Cdk2/7) pathways (54–58) (Figure 3A). The two prominent
pathways mobilizing this cascade are those of the EGFR and
IGFR1 (59). In response to E2, activation of AF1 leads to
a concomitant action on the AF2 assisted by a complex of
transcription factors to bring about a concerted effect on the
ER mediated transcription (60, 61). These studies go on to
highlight how redundancy can play a crucial role between
signaling pathways and lead to an activation of the ER
followed by subsequent activation, transcription and translation
of ER regulated genes under conditions with inadequate E2
(62). This mechanism might lead to resistance against various
endocrine therapies.

In the non-classical nuclear mechanism of ER signaling,
the functions are mediated by activation of membrane bound
ER, that occurs within minutes by activating protein kinase
cascades. This rapid non-nuclear mechanism is also referred to
as membrane-initiated steroid signaling (MISS) pathway (63).
The responses are mediated via ER associated with caveolar rafts,

which collaborate as dimers precisely with signaling adaptor
proteins (64, 65).

E2 mediated responses are also conducted through a
novel ER GPR30 (renamed GPER), a G protein-coupled
receptor (66, 67). Since one in four ER+ patients do not
respond to antioestrogens, GPER provides another possible
mechanism of signaling, bypassing the E2-ER signaling mode
(68, 69). Recent evidence suggests an association of GPER
expression with resistance to endocrine therapy (70–72).
GPER is unique in that it activates a whole new cascade
of pathways distinct from those activated by the classical
E2-ERα pathway (72). A fine crosstalk between GPER and
HER-2 is considered to be an important pathway in the
progression of breast cancer upon activation via E2 (73, 74).
The GPER serves as an alternative E2 receptor since this
pathway may be used by ER negative BC patients to drive
HER-2 dependent proliferation (75). Thus, the interactions
between classical ER and GPER is important to reveal the
complex crosstalk and activation of non-nuclear mechanisms of
E2 (76, 77).

Ligand-independent pathways are activated upon
phosphorylation of ER by MAPK/ERK or PI3K/AKT (55, 78).
Recent studies have shown a role for isoforms of ERα in the non-
nuclear E2 signaling pathways (79, 80). The various pathways are
an interplay of events and act in tandem. Thus, inhibition of one
pathway or mode of E2 signaling does not completely abolish
oestrogenic or ER regulatory actions. There is crosstalk between
both nuclear and non-nuclear pathways and these effects are
coactive and interdependent.

1a. Loss of ERα

Downregulation of ER is hypothesized as a cause of acquired
resistance to tamoxifen, although it is not downregulated in
approximately a quarter of tumors with acquired resistance to
tamoxifen and a fifth of the tamoxifen resistant cancers will go
on to be responsive to treatment with an AI or a SERM (e.g.,
Fulvestrant) (81, 82). Endocrine therapy is effective in ER +

BCs where they are dependent on ER activation to exert their
effects on growth and differentiation. Thus, it is the expression
of ER, which determines response to endocrine therapy, and a
lack of the ER is the principal cause of de novo resistance to
endocrine therapy.

Cyclical and continuous methylation/demethylation of CpG
dinucleotides is a prominent characteristic of ER and its target
genes (83). A small proportion of BCs presenting with non-
existent ERα gene expression have an intrinsic gain in CpG site
methylation (84, 85). Another theory suggests that an increase
in the deacetylation of histones, which limits transcription by
condensing the nucleosome structure, could be a cause of
non-existent ER transcription (85). Inhibition of the histone
deacetylase, HDAC, revives ER transcription in BC cell lines
which do not express the receptor (86). It is understood that
a combination treatment with histone deacetylase inhibitor
(HDACi) and DNAmethyltransferase-1 (DNMT1) inhibitor will
re-establish sensitivity to SERMs in BC cells not expressing
the receptor (87). Thus, inhibitors to HDAC and DNMT1,
by interfering with the epigenetic changes, could prove to
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TABLE 1 | Post-translational modifications in ERα.

Site of

modification

Modification Protein association Function

Ser46/47 Phosphorylation PKC Activates: transcription

Tyr52 Phosphorylation c-Abl Activates: protein stability, transcription, cell growth/invasion

Ser102 Phosphorylation GSK3 Activates: transcription

Ser104/106 Phosphorylation GSK3, Cyclin A-Cdk2, MAPK/ERK Activates: transcription, coactivator binding

Ser118 Phosphorylation MAPK/ERK, Cdk7, GSK3, IKKα,

ILK, EGFR, IGF-IR, DNA-PK, RET

Down-regulates: transcription, Activates: RNA splicing, Dimerization,

transcription, coactivator binding, protein stability, cell growth/invasion

Ser154 Phosphorylation AKT Unknown

Ser167 Phosphorylation AKT, p90 RSK, S6K1, IKKα, CK2,

RET

Down-regulation: transcription, Activates: transcription, DNA binding, stability

Ser212 Phosphorylation Activates: DNA binding, transcription

Tyr219 Phosphorylation c-Abl Activates: dimerization, DNA binding, protein stability, transcription, cell

growth/invasion

Ser236 Phosphorylation PKA Activates: dimerization, transcription, DNA binding

Arg260 Methylation PRMT1 Non-genomic signaling

Lys266 Acetylation

Sumoylation

p300, SUMO-1 Activates: DNA binding, transcription

Lys268 Acetylation

Sumoylation

p300, SUMO-1 Activates: DNA binding, transcription

Ser282 Phosphorylation CK2 Activates: transcription

Inhibits transcription

Ser294 Phosphorylation Proline directed kinase Activates: transcription

Lys299 Acetylation

Sumoylation

p300, SUMO-1, Ubiquitin, SET7 Inhibits transcription

Activates: DNA binding, transcription

Lys302 Acetylation

Methylation

Ubiquitylation

Sumoylation

p300, SUMO-1, Ubiquitin, SET7 Inhibits transcription

Activates: DNA binding, transcription, Proteasomal degradation

Lys303 Acetylation

Ubiquitylation

Sumoylation

p300, SUMO-1, Ubiquitin Inhibits transcription

Activates: DNA binding, transcription, Proteasomal degradation

Ser305 Phosphorylation PAK1, PKA, Akt Activates: transcription, DNA binding, coactivator binding, cell growth/invasion

Thr311 Phosphorylation p38-MAPK Activates: nuclear/subcellular localization, transcription, coactivator binding

Leu429 Ubiquitylation Activates: transcription

Inhibits transcription

Ala 430 Ubiquitylation Activates: transcription

Inhibits transcription

Cys447 Palmitoylation PAT Plasma membrane localization

Tyr537 Phosphorylation Src, EGFR Activates: E2 binding, dimerization, DNA binding, transcription, coactivator

binding, Proliferation

Ser554 Phosphorylation

Ser559 Phosphorylation CK2 Activates: transcription

Inhibits transcription

Adapted from Murphy et al. and Le Romancer et al. (43–46).

be promising anticancer drugs in a small proportion of BCs
presenting with a loss of the ER.

Epigenetic mechanisms play an important role in DNA
methylation, chromatin modification and miRNA regulation.
Recently, reports suggest that despite dysregulated signaling
through the ER by SERMs and inadequate expression of the
receptor, the target genes affected promote specific phenotypic
changes in BC subtypes (88). Unsurprisingly, epigenetic
mechanisms in the form of histone deacetylase inhibitors
or demethylation agents are now being used in anti-cancer
therapy (89–91). The ER and HDAC pathway crosstalk lead to
changes in the activity and expression of ER and p21Waf1/Cip1,

affecting cell proliferation, differentiation and survival (92).
Hanahan and Weinberg have reviewed the importance of
the loss of genomic methylation as well as hyper/hypo
methylation of genes, which are involved in cell signaling,
proliferation, or apoptosis and are thought to favor cancer
progression (93).

Clinical studies have been done on endocrine resistant MBC
patients using HDACi in combination with an endocrine agent.
In one recent Phase II study done by Munster et al., an
HDACi (vorinostat) was used in combination with tamoxifen or
tamoxifen alone and it was noted that in the combination arm the
objective response rate (ORR) was 19% and the clinical benefit
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FIGURE 3 | (A) Post-translational modifications of the ER. Activation of the growth factor receptor tyrosine kinases leads to phosphorylation of the ER through the

RAS-MAPK and PI3K-AKT pathways. Several other pathways, including the CDK2 complex, CDK7/TFIIH complex can also phosphorylate the ER. Sensitivity to E2 is

modulated by acetylation of the ER by src (CREB-binding protein). Pictorially represented above are the domains of the ER with phosphorylation/acetylation sites and

the protein kinases mediating these modifications. (B) Regulation by E2 at the molecular level: A schematic representation of the pathways and the associated small

molecule inhibitors involved in endocrine resistance.

rate (CBR) was 40%, thereby demonstrating that the combination
is effective in overcoming endocrine resistance (94). Another
Phase II study was done in patients treated with an AI, who

had locally recurrent or ER+ metastatic breast cancer (MBC).
Here, they were given either exemestane, an AI, with or without
entinostat (a benzamide HDACi) and the combination arm
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again showed a benefit in terms of the progression-free survival
(PFS) and overall survival when compared with the patients on
exemestane alone (95). The HDAC inhibitor entinostat is being
studied in BC patients on an AI (ClinicalTrials.gov Identifier:
NCT02820961) (Figure 3B). Thus, HDACi’s appear to be have an
important role in reversing endocrine resistance.

1b. Mutated ERα

Mutations of the ER gene play a crucial role in the effectiveness
of anti BC drugs. Although such mutations have not been
detected in primary breast tumors, Fuqua et al. have detailed
on the occurrence of an ERα variant with an A-to-G bp
transition, which introduces a Lysine-to-Arginine substitution
at residue 303 in almost a third of hyperplastic breast lesions
(96). Although mutations in tamoxifen treated metastatic ER
+ BC patients present as ERα mutations, the majority are
in the ERα LBD region, leading to constitutive activation of
the ER (97–100). A point mutation, leading to a defective
ER-ERE complex due to an alteration in the LBD was
observed in tamoxifen resistant MCF7 cells (101, 102). A
recent study identified hot spot mutations, like the Tyr537Ser,
Tyr537Asn, and Asp538Gly (Y537S, Y537N, D538G) mutants
within the LBD which favored the agonist structure of the ERα

receptor, driving E2 independent transcriptional activity and
proliferation of cancerous cells, leading to endocrine resistance
(97). Whole genome RNA profiling in ER+/HER-2 negative
BC patients revealed mutations/aberrations within the LBD
domain of the ERα gene (17). The Y537S, D538G mutants
had been previously identified and defined, while the V422del
aberration is consistently observed in ER+ MBC (17). Thus,
ERα mutations are more prevalent in MBC patients treated
with AIs and occur in ∼25–30% of these patients (103). The
most prevalent mutations present in these patients are the
D538G, Y537S, Y537N, Y537C, and E380Q. A recent study
has indicated that constitutive transcriptional activity of the
D538G mutation in ER, leads to overexpression which in turn
leads to enhanced proliferation, thereby conferring resistance to
tamoxifen (99).

Another point mutation in ER (nucleotide A908G), leads
to an enhanced response upon activation by E2 and has been
associated with invasive BCs (96). Such loss of regulation could
contribute to the development of endocrine resistance as has
been reported by Ellis et al., where they identified an ERα/YAP1
fusion gene and defined its association with endocrine-resistant
BCs (104). In the last few years several studies have been done
to provide a complete set of mutations that could cause BC
although in primary tumors, no mutation has been identified
in the ER (97, 98, 105). In the metastatic scenario, several ER
mutations have been identified by at least three other studies (97–
99). Basically, several studies using next generation sequencing
and liquid biopsies in cohorts of clinical trials since 2013, led to
an interest in the high prevalence of ERα mutations in ER+MBC
patients with prior AI treatment (100, 106, 107). Mutations at
the D538G and/or the Y537S, E380Q, Y537N, and Y537C sites
on the ERα gene, have been studied as part of the BOLERO-2,
SoFEA as well as the PALOMA-3 trial and a few others (106,
108). The results from these studies demonstrate the possible

use of mutations at these Y537S, Y537N, Y537C, D538G, and
E380Q sites on the ERα gene as marker to screen for endocrine
therapy resistant BC (109). The Y537S and D538G mutant
forms of ERα have distinct cistromes when compared to the E2-
stimulated WT ER (ERαWT) form and have been demonstrated
to drive endocrine resistance and metastasis (110). A recent
study on a small molecule SERD, AZD9496, demonstrated that
it binds to and downregulates the D538G/Y537S/Y537N/Y537C
containing ERα proteins in vitro, leading to an appreciable
inhibition in the rate of tumor progression (111). AZD9496
was more effective than fulvestrant in suppressing the growth
of tumors driven by ERαWT and ERαMUT (Y537S) (112). The
drug is also well-tolerated in ER+/HER2 negative advanced BC
as demonstrated in a phase I clinical trial (113). Some recent
SERDs are being developed to target ER in both their wild-
type (ERαWT) and mutant forms (ERαMUT). The purpose of this
study was to evaluate the efficacy of a novel orally bioavailable
SERD, elacestrant (RAD1901), in preclinical models of ER+
BC. Elacestrant (RAD1901) is one such SERD that inhibits cell
proliferation in ER+ BC cell lines and is being studied as part of
clinical trials in ER+/HER-2 negative advanced BC where partial
response as an effective SERD was demonstrated in heavily pre-
treated ER+/ER mutant MBC and patients (ClinicalTrials.gov
Identifier: NCT03778931 and NCT02338349) (114, 115). A
structurally and chemically unique SERD, GDC-0927, induces
tumor regression in ER+MBCpatients including those with ERα

mutations (ClinicalTrials.gov Identifier: NCT02316509) (116,
117). Essentially, a range of SERDs are being developed with
differential activities as ER antagonists to combat the clinical
effectiveness of fulvestrant due to poor bioavailability. A recent
study evaluated three recently developed ER ligands, GDC-0810,
AZD9496 and GDC-0927 along with fulvestrant and it was
GDC-0927 and fulvestrant that showed enhanced transcriptional
suppression of the ER (118). A new class of drug, the selective
estrogen receptor covalent antagonist (SERCA) with H3B-5942
being identified as an ERα antagonists that inactivates both the
ERαWT and ERαMUT forms (119).

Thus, present studies to-date demonstrate that ER mutations
are rare in primary tumors but appear to be reasonably frequent
in the progression to endocrine resistance and can be used as
biomarkers for prognosis/prediction of response to endocrine
therapy along with promoting the development of therapeutic
strategies. Evaluating and studying a variety of potent ER
antagonists will promote the development of clinically effective
SERDs (118).

2. PROGESTERONE RECEPTOR (PR) AND
SIGNALING

In BC, the Progesterone Receptor (PR) also plays an important
role and its signaling has been at the center of various
targeted therapies, including the selective progesterone receptor
modulators (SPRM) (120). The PR is regulated by the ER and is
required for mammary gland development. Progesterone binds
to the PR, which is followed by receptor dimerization and
translocation to the nucleus where it binds to the progesterone
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response elements (PRE) within the promoter/enhancer regions
of PR target genes, thereby leading to either the upregulation or
downregulation of those genes. Apart from binding to the PRE
in its target genes, it also binds as a complex of transcription
factors (PR in complex with AP1 and SP1) to regulate genes
devoid of canonical PRE binding sites (121, 122). Indeed, a
study of PR mediated regulation of oncogenic genes in PR
regulated BC models has yielded information on its varied
actions (123).

The PR exists as two isoforms, the PR-A and PR-B with the PR
gene regulated by a complex of ERα-AP1-SP1 at an ERE motif
half site on the PR gene (124, 125). Although normal mammary
epithelial cells express separate receptors (ER and PR) on
designated cells, the receptors are co-expressed in oncogenic cells
(126). A dominant pathway takes over the functions of another
during targeted therapy, in one such instance, a loss of the PR
during endocrine therapy leads to the cancer becoming more
aggressive. These patients have a poor survival outcome (127).
Evidence from various studies, reflect the importance of the PR,
in that, ER+ BC tumors presenting with PR-negative status have
a poorer outcome than those with PR-positive (PR+) ones (128).
A loss in PR leads to activation and upregulation of the PI3K
pathway (129). A recent study demonstrated that the PR-B in
a complex with ER and PELP1 promoted the regulation of E2
dependent ERα target genes associated with BC cell proliferation
and tamoxifen resistance (130). In another study by Mohammed
et al., PR was shown to be complexed with the known ERα

co-factors, NRIP1, GATA3, and TLE3, upon stimulation with
progesterone. They also concluded that activation of the PR led
to the formation of an ERα-PR complex (131).

3. RECEPTOR TYROSINE KINASES (RTK)

Receptor Tyrosine Kinases (RTK) are a family of receptors
that are activated upon binding their respective ligands, which
are mainly the growth factors, hormones or cytokines. The
most prominent RTK’s are the family of epidermal growth
factor receptors (EGFR), Insulin-like growth factor-I receptor
(IGF-IR), hepatocyte growth factor receptor (HGFR), vascular
endothelial growth factor receptor (VEGFR), platelet-derived
growth factor receptor (PDGFR), fibroblast growth factor
receptor (FGFR), anaplastic lymphoma kinase (ALK), ROS
protooncogene 1 (ROS1) and receptor like tyrosine kinase (RYK).
An upregulation of RTKs is observed in breast cancer and
is indicative of poor prognosis (132, 133). Upon binding to
their respective ligands, the prominent pathways activated are
the mitogen activated protein kinase (MAPK), janus kinase
(JAK)/signal transducer and activator of transcription (STAT)
and phosphoinositide (PI3K)/AKT pathways. A multitude of
evidence suggests that inhibitors of RTK’s can reverse therapeutic
resistance in metastatic breast cancers (134) (Figure 3B).

3a. EGF/EGFR/HER2 Signaling
The ErbB family of growth factor receptors includes epidermal
growth factor receptor (EGFR) (also called ErbB1/HER1,
ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4). Upon activation
by ligands, such as EGF, which induces dimerization and

autophosphorylation, signaling proceeds through various
pathways including the MAPK-ERK and PI3K-AKT pathways
(Figure 3B) (135). EGFR, HER2, HER3, and HER4 are
all implicated to varying degrees in BC with their relative
involvement in the order HER2-EGFR-HER3-HER4. HER2
expression is reported in 20–30% of BCs and HER3 is up-
regulated in 10% of BCs, and its common association with HER2
makes its specific role difficult to determine (136).

With the ever increasing evidence for a role of ERα in
signaling via EGFR, an association with DNA-synthesis has been
observed in MCF7 cells, whereby an E2 antagonist led to a
reduction in the phosphorylation of the EGFR, followed by
reduced DNA synthesis and cytoskeleton formation through a
Src mediated pathway (137). The presence of alternative forms
of ERα (66-KD): ERα36 (36-KD) and ERα46 (46-KD), which
are mainly located in the cytoplasm and plasma membrane,
play additional roles and ERα36 has also been associated with
tamoxifen resistance (138).

GPER is activated by E2 and it represents a transmembrane
receptor that modulates E2 actions (139). The activation of
EGFRs by E2 mainly occurs via the membrane- bound GPER1
(76). E2 increases phosphorylated MAPK in SKBR3 cells which
express the membrane bound GPER1, while phosphorylation
remains unchanged in the MDA-MB-231 which do not express
GPER1. However, transfecting the protein into MDA-MB-231
leads to activation by E2 (140). These studies show that ER
works in concert with the ErbB family of proteins to foster and
assist cancer cell proliferation. With GPR30 being a hindrance
in the EGFR signaling pathway and attenuating the inhibition
of MAP kinases, combination therapy with tamoxifen and GPER
inhibitors could lead to novel therapeutic options (70).

Several retrospective clinical studies have shown the
significance of growth factor signaling in both de novo as
well as assumed endocrine resistance. While it was previously
hypothesized that a loss in the expression of ER could lead to
tamoxifen resistance, evidence suggests that only three quarter
of tumors express the ER (82). Upregulation of growth factor
signaling in MCF7 cells, as well as HER2 in patients treated
with tamoxifen, suggests a redundancy in the operation and
thus the use of combination therapy may be beneficial (82).
Data from studies imply that tumors switch from HER2 to
ER and vice versa as the preferred signaling pathway, with
therapy toward HER2 leading to an activation of the ER
pathway and vice-versa (82, 141). The dependence of the two
pathways on each other is highlighted in MBC patients who
have been treated with an AI or the ER downregulated with
fulvestrant and have progressed with trastuzumab or lapatinib.
Thus, combination therapy with inhibition of the ER and
HER2 axis has proven to show a benefit in dual ER-HER2
positive (HER2+) patients as demonstrated in a phase III study
(TAnDEM: trastuzumab in dual HER2+/ER+ MBC). Here,
patients treated with trastuzumab plus anastrozole, an AI,
showed a benefit in terms of the PFS when compared with the
women on anastrozole alone (142). Recently, a study targeted
the extracellular domain of HER2, which is responsible for
HER2 homo- and heterodimerization. Consequently, disrupting
the 16aa sequence within the extracellular domain of HER2
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(HER2-ECD-1451-466), led to a reduction in the activity of
HER2, and switched off signal transduction mediators, such as
ERK1/2 and PI3K/AKT (143).

Signal transduction inhibitors are crucial mediators in
overcoming endocrine resistant BC. It was reported in 2000
that inhibition of HER2 and MAPK in HER2 overexpressing
tamoxifen resistant MCF7 cells reinstated the interdependence
of ER with nuclear receptor corepressor (N-CoR), thereby
enhancing the action of tamoxifen and abrogating the
antioestrogen resistance (144). The findings above are supported
by clinical studies where tumors over expressing HER2 and AIB1
had a worse outcome with tamoxifen (145). In a recent study
done on AI treated patients, it was evidenced that AIB1 played an
important role in regulating selective ER transcriptional activity
and promoting tumor recurrence (146).

Lapatinib, a dual inhibitor of EGFR and HER2 was used to
study its role in prototypes of HER2+ BC cell lines with assumed
endocrine resistance, where it restores endocrine sensitivity
(147). In a phase III study, a combined treatment with letrozole,
an aromatase inhibitor, and lapatinib or letrozole alone, showed
a benefit in the combination arm of the study with a significantly
higher PFS in MBC with ER-negative/HER2+ tumors (148).

Clinical studies are being done using EGFR inhibitors in
isolation or a combination therapy in order to address endocrine
resistance. A phase II study using tamoxifen and the EGFR
inhibitor gefitinib or gefitinib alone, showed no significant
enhancement in PFS in the endocrine naïve or group treated
with an AI (149). In a separate Phase II study on ER+ MBC,
the combination treatment of anastrozole and gefitinib showed
an increase in the PFS over patients treated with anastrozole
alone (150).

Acquired HER2 mutations lead to endocrine resistance in
a proportion of patients with ER+ MBC. Tumors driven by
a HER2 amplified mechanism are known to be resistant to
endocrine therapy (142, 148, 151). A whole genome landscape
study identified hotspot mutations in HER2 (D769Y, L755S,
and S310Y) which were more common in acquired endocrine
resistant tumors (9). Mutations within the HER2 gene lead
to E2 independence and resistance to the first line therapy,
which includes tamoxifen, fulvestrant and palbociclib, a CDK4/6
inhibitor in BC patients. In these patients an ER-directed drug in
combination with neratinib [a pan-HER tyrosine kinase inhibitor
(TKI)] was an effective therapy (152).Mutations within theHER2
gene are more common in the ER+ MBC setting and HER2
mutations favor dimerization with HER3 (ERBB3) (153). This
study also noted that inhibition of HER2 and the ER pathways is
required for therapy in ER+/HER2mutant BCs (153). Neratinib
has been approved by the FDA for treatment in the adjuvant
setting of BC patients with early stage HER2 amplified disease,
based on the ExteNET trial (154, 155). In the phase III ExteNET
study, the neratinib arm of treatment showed a benefit in the
disease-free survival (DFS) when compared to the placebo arm
in early stage HER2+ BC (156).

3b. IGF-IR
Insulin-like growth factor-I receptor (IGF-IR) is a protein
expressed as a trans-membrane tyrosine kinase and is activated
by the stimulatory hormone/ligands insulin-like growth factor-I

and -II (IGF-I, IGF-II), resulting in proliferation as well as
anti-apoptosis (157). The IGF-I system is implicated in the
pathogenesis of BC (158). There are also several lines of evidence
that dysregulation of the IGF-I system and enhanced IGF-IR
activation are involved in resistance to endocrine therapy and
that IGFs play a paracrine/autocrine role in promoting tumor
growth in situ during tumor progression, depending on the tissue
of origin (159).

Upon binding of ligand to its receptor, the IGF-IR, it
leads to phosphorylation of insulin receptor substrate-1 and−2
(IRS1, IRS2), which promotes growth by signaling through
the MAPK/ERK, PI3K/AKT, and JAK/STAT pathways. Elevated
plasma concentrations of IGF-I have been linked to a higher risk
for BC (160). Genetic polymorphisms in genes encoding IGF-
I have been reported, and may contribute to an increased risk
for BC (161, 162). IGF-IR activation leads to phosphorylation
of the MAPK-AKT and subsequent activation/phosphorylation
ERα (56).

Interdependence between IGF-IR and ERα in BC prototypes is
well-studied, and is implicated as a mechanism of antioestrogen
resistance (163, 164). A study in EGFR-positive tamoxifen-
resistant variants of MCF7 (TAMR) cells, demonstrated reduced
expression of IGF-IR protein levels when compared to their
wild-type MCF7 cells. However, the phosphorylated IGF-IR
protein levels were equivalent in the two cell lines under
basal growth conditions, this was due to an increase in the
IGF2 expression, which activated both IGF-IR and EGFR (158).
A study by Creighton et al., identified a set of genes that
were either upregulated or downregulated by IGF-I which
represent hyperactive pathways and hormone independence
(165). Basically, the IGF-I signature obtained from MCF7 cells
presented with a similar observation in clinical BC patients.
The profiled tumors exhibiting the IGF-I signature correlated
with poor prognosis and was indicative of a poor outcome. In
another study, patients with tamoxifen-resistant tumors with
higher IGF1 and ERα expression developed tamoxifen resistance
after a longer period of time, and tamoxifen-resistant tumors
had lower IGF1 and ERα expression compared to tamoxifen-
sensitive tumors (166). A separate study using a kinome wide
siRNA screen demonstrated a role for the combined inhibition of
IGF-IR and the insulin receptor (InsR), where the dual tyrosine
kinase inhibitor OSI-906 (inhibitor of InsR and IGF-IR) in
combination with fulvestrant inhibited the growth of hormone
independent tumors when compared to either drug alone (167).
The IGF-IR-specific inhibitors (like AG1024 and AEW541) or
an IGF2 neutralizing antibody inhibited basal IGF-IR, c-SRC,
AKT and EGFR phosphorylation, and significantly reduced
tamoxifen-resistant basal cell growth. Interestingly, AEW541
also inhibited insulin and IGF2-stimulated effects in tamoxifen-
resistant cells (168).

3c. FGFR Signaling
Binding of FGF ligands to the FGFR receptor promotes receptor
dimerization followed by activation of the kinase domain and
subsequent activation of the PI3K/AKT, RAS/RAF/MEK1/2-
ERK, phospholipase Cγ (PLCγ), and STATs (169). Amplification
of the genes located at the 11q12-14 chromosomal loci, which
includes FGFR1 and FGF ligands 3, 4, and 19 occurs in more
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than 10% of BC patients, depending on the specific type of BC
(170, 171). A third of patients with FRFR1 amplified tumors also
exhibit amplification of oncogenes like CCND1, FGF3, FGF4,
and FGF19 (172, 173). FRGR1 expression and signaling via
FGFR1 is essential to survival of FGFR1 amplified BC cell lines
(174). Apart from gene amplifications, enhanced expression of
its ligand and mutations have been verified in the FGFRs from
BC patients, which points to multifactorial mechanisms involved
in the FGF/FGFR pathway (175). Dysregulated regulation of
FGF/FGFR signaling and its control in oncogenic processes is
poorly understood, although evidence suggests that aberrant
FGFR1 signaling mediates endocrine resistance through the
PI3K and MAPK pathways (176). A small molecule inhibitor
dovitinib (TKI258) led to antitumor activity in FRFR1 amplified
MDA-MB-134 and FGFR2 amplified SUM52 BC cell lines (177).
Interestingly, the FGFR1 amplified cell lines MDA-MB-134
and SUM44 were resistant to treatment with tamoxifen (176).
Activating mutations of the FGFR gene have been shown to have
oncogenic potential and driving resistance to endocrine therapy
(178, 179).

Amplification of FGFR1 correlated with short overall
survival rates (OSR) in HR+ BC (180). Consistent with
these findings, FGFR amplifications are associated with poor
prognosis and endocrine resistance in HR+ BC (180–182).
Resistance to endocrine therapy upon aberrant FGF/FGFR
pathway amplifications/signaling, offers a strong rationale to
study the role of FGFR inhibitors. FGFR TKIs offer one the best
approaches in targeting tumors with ER+/HER2 negative/FGFR
amplified status and some of these are in initial phase clinical
trials. Some of the selective pan-FGFR inhibitors are BGJ398
(infigratinib), JNJ-42756493, Debio1347, TAS-120, AZD4547,
ARQ087, and BAY1163877 (183). The role of BGJ398 was
evaluated and initial reports suggest a promising role in breast
cancer progression and metastasis to the lung (184). AZD4547
has shown promise as an anti-tumor drug in combination
with an AI (anastrozole/letrozole) in the RADICAL trial
(ClinicalTrials.gov Identifier: NCT01791985) (185).

Dovitinib, a non-selective TKI (TKI258) was assessed in
a phase II study (ClinicalTrials.gov Identifier: NCT01528345)
in combination with fulvestrant in HR+/HER2-negative MBC
patients (186). The study was terminated due to low numbers
of enrolled patients, although the combination arm of treatment
showed promising clinical activity in the FGF pathway-
amplified subgroup. Another non-selective TKI, lucitanib (E-
3810) is in a phase II trial (FINESSE: ClinicalTrials.gov
Identifier: NCT02053636) as monotherapy in ER+, FGFR1-
amplified/FGFR1-non-amplified MBC (187). Whole exome
sequencing revealed amplification of FGFR1, CCND1, and
FGF3/4/19, all being associated with resistance to letrozole (17).
The same study also noted that combined treatment of ER+
FGFR1/CCND1 co-amplified CAMA1 BC cells with palbociclib,
and/or the FGFR1 inhibitor, lucitanib, lead to a reversal in
antioestrogen resistance (17). A recent study demonstrated
amplification of the FGFR gene which led to aberrant FGFR
signaling and thus resistance to therapy with an anti-ER drug
and a CDK4/6 inhibitor (188). In line with these findings, a
phase Ib trial (ClinicalTrials.gov Identifier: NCT03238196) with

erdafitinib in combination with palbociclib and fulvestrant is
ongoing in ER+/HER2 negative/FGFR amplified MBC.

With regard to mutational studies, FGFR mutations are
infrequent in BC, although mutations in the FGFR gene have
been identified in BC with unknown functional roles (178, 189).
Genome wide association studies have identified FGFR2 as one
of the loci associated with BC (190). According to another
GWAS study, the four genomic locations associated with BC
were rs1219648, rs2420946, rs11200014, and rs2981579, all of
which were located on intron 2 of the FGFR2 gene (191). Genetic
fusions of the FGFR1-3 gene also represent a small proportion of
aberrations and a causative agent in BC (178, 192, 193). These
studies suggest a prominent role for FGFR1 amplifications and
that all future studies and trials could focus their therapeutic
strategy at targeting and inhibiting FGFR1.

3d. SYK
The spleen tyrosine kinase (SYK) protein tyrosine kinases
are comprised of SYK and ZAP-70, which contain two SH2
domains and C-terminal kinase domains interrupted by two
interdomains A and B (194, 195). SYK is primarily expressed
by a variety of hematopoietic cells ranging from B cells,
mast cells, neutrophils to macrophages and functions in
proliferation, differentiation and adhesion (196, 197). Here,
activation of the specific receptor (B cell receptor) promotes
phosphorylation of immune-receptor tyrosine-based activation
motifs (ITAMs) and recruitment, autophosphorylation of SYK
(198). SYK subsequently modulates its actions by activating
several downstream effectors like RAS-RAF-MEK-ERK (199).
SYK functions as a tumor suppressor in BC with a reduction
in SYK expression being associated with poor prognosis and
metastasis (200, 201). In samples from patients, SYK expression
is lost as the tumor progresses from ductal carcinoma in situ
(DCIS) to invasive breast cancer (202, 203). However, in various
other solid cancers it has tumor promoting activity depending
on the association of the cancer with inflammation (204). With
quite a few SYK inhibitors in clinical trials for other cancers,
its role in ER+ BC associated with inflammation could be
studied (205–208).

4. CELL CYCLE REGULATORS

BC sensitivity to endocrine treatment is impacted by the
activity of both positive and negative cell cycle regulators (209).
Studies have shown that overexpression of positive cell cycle
regulators like c-MYC, cyclins E1 and D, contribute to the
development of endocrine resistance by activating CDKs (210,
211). Investigators have also demonstrated that aberrant c-MYC
expression can contribute to endocrine resistance by altering
the regulation of p21WAF1/Cip1 (210, 212). Consistent with
the activity of CDK, downregulation or loss of function of the
two G1 checkpoint CDK inhibitors, p21 and p27 (CDKN1A and
CDKN1B), is associated with endocrine resistance (213, 214).
A separate study surmised a central role for E2F proteins, in
that unliganded ER plays a role in the E2 deprived growth of
long term E2 deprived BC cells by regulating a transcriptional
machinery (215). The same study also identified CDK4, an
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activator of E2F transcription as a modulator for E2 independent
BC cell proliferation and inhibition of CDK4 led to an
inhibition in the growth of fulvestrant-sensitive and -insensitive
ER+ cell lines in the absence of E2 (215). These findings
supported the development of CDK4 inhibitors as possible
therapeutics for BC.

The cyclin D-CDK4/6-INK4-retinoblastoma (Rb) pathway
plays a pivotal role in the proliferation of normal breast epithelial
and cancer cells. The CDKs are crucial cyclin dependent drivers
in cell cycle, cell division and thus cancer. Their importance
in the cycle is well-known, with the most common being:
G0 (quiescence), G1-phase (pre-DNA synthesis), G1/S-phase, S-
phase(DNA synthesis), and M-phase (cell division) cyclins (216).
There are typically four different CDK’s (CDK1, 2, 4, and 6),
dependent on the cyclins D (D1, D2, D3) (217–219). Nascent
DNA synthesis occurs during the S phase of the cell cycle at
which the cyclin D1-CDK4/6 complex serves as the enzyme that
catalyzes the phosphorylation of Rb (retinoblastoma) protein and
dictates DNA replication. Coupling of cyclin D to CDK4/6 is
regulated by the INK4, Cip, and Kip group of proteins. CYCLIN
D1 activates the CDK4/6 essential for mediating RB-induced cell
cycle progression at the G1/S checkpoint (220, 221). In the TCGA
network studies, CYCLIN D1 is amplified in 58% of luminal B
BCs with 25% showing a gain in CDK4. However, CYCLIN D1
was amplified in only 29% of luminal A tumors with only 14%
showing a CDK4 gain (35). In another study, luminal B-type
BCs resistant to endocrine therapy were identified by a unique
gene signature indicating a loss of RB protein (222). The E2F4
transcriptional cascade is suppressed upon CD4/6 inhibition in
hormone independent ER+ BC cells and ER+ BC patients,
thereby supporting the benefit of adjuvant CDK4/6 inhibition in
ER+ patients (223).

Thus, Cyclin D1 and CDK4/6 inhibitors represent strategies to
overcome endocrine resistant BCs and potent CDK4/6 inhibitors
have become extensively available in the last decade. A recent
study revealed aberrant FGFR signaling as the mechanism
causing resistance to combinatorial therapy by anti-ER’s with
CDK4/6 inhibitors (188).

Preclinical studies have confirmed the usefulness of CDK4/6
inhibitors specific to a particular molecular subtype of BC
(224, 225). Three FDA approved, novel CDK4/6 inhibitors
used in treatment of ER+ MBC are palbociclib (PD0332991,
Pfizer), ribociclib (LEE011, Novartis and Astex), and abemaciclib
(LY835219, Eli Lilly) (226–228). In BC cell lines exhibiting
the luminal ER+ BC subtype, proliferation was inhibited by
palbociclib and ribociclib (225). The BC cell lines exhibiting
non-luminal or the basal subtypes, presented with resistance
to palbociclib (225). The clinical trials involving the three
prominent CDK4/6 inhibitors: PALOMA for palbociclib,
MONALEESA for ribociclib and MONARCH for abemaciclib;
were studied for efficacy in MBC patients. CDK4/6 inhibitors
are used both as a single agent and as a combination therapy.
With endocrine resistance being an obstacle toward effective
therapy, the addition of a CDK4/6 inhibitor to endocrine therapy
as a combination therapy presents with prolonged PFS and has
recently been included as a first line therapy in advanced HR+
BC (226, 228–230) (Figure 3B).

4a. Palbociclib (PD0332991)
In the largest clinical validation of a CD4/6 inhibitor, palbociclib
was seen as a breakthrough therapeutic drug. In the phase II
PALOMA-1 trial on ER+/HER2 negative advanced BC patients,
significant prolongation of median PFS was demonstrated in the
combination arm (palbociclib with letrozole) when compared
to letrozole alone (231, 232). Again, the PALOMA-2 phase
III study, validated on ER+/HER2 negative MBC patients
reported significant benefit in PFS in the combination arm when
compared to letrozole alone (226). In the PALOMA-3 phase III
trial, a benefit in the PFS was demonstrated for women with ER
+ MBC in the combination arm (palbociclib with fulvestrant)
when compared to fulvestrant alone (233, 234). The PALOMA-
4 trial (ClinicalTrials.gov Identifier: NCT02297438) is ongoing
as a first line treatment. A summary of the three PALOMA
studies, pointed to palbociclib plus letrozole as the therapeutic
first choice in ER+MBC, followed by palbociclib plus fulvestrant
as another therapy of choice in ER + MBC, previously on an
aromatase inhibitor. The Food and Drug Administration (FDA)
granted approval for palbociclib to be used as a first line therapy
in combination with an AI or letrozole in post-menopausal
women with HR+/HER2 negative advanced or MBC. It has also
been approved as a combination therapy with fulvestrant in the
treatment of HR+/HER2-negative advanced or MBC in women
with disease progression following endocrine therapy.

4b. Ribociclib (LEE011)
Ribociclib is another selective and reversible CDK4/6 inhibitor
approved by the FDA. In the phase II MONALEESA-1 study on
HR+/HER2-negative BC patients, a decrease in the expression
of the cell proliferation marker Ki-67 was observed in the
combination arm (letrozole with ribociclib) and single agent
arm (letrozole alone) (235). The phase III MONALEESA-2 trial
was a crucial trial focused as a first line treatment in untreated
post-menopausal women with HR+/HER2-negative recurrent or
MBC. The results from this trial presented with an extension
in the PFS for the cohort of patients treated with ribociclib
plus letrozole when compared with the placebo group of
letrozole alone (228). In the subsequent phase III MONALEESA-
7 trial, appreciable benefits were observed in HR+/HER2-
negative advanced BC patients. Here too, the combination arm
(ribociclib with tamoxifen/AI and goserelin) showed a 2-fold
enhancement in the PFS when compared with the placebo
arm (236, 237). Based on the results from the MONALEESA
trials, the FDA approved ribociclib in combination with an
AI as a first line therapy in pre/perimenopausal women with
HR+/HER2-negative advanced or MBC. It was previously
approved as a first line therapy or following disease progression
on endocrine therapy in combination with fulvestrant or an AI
in post-menopausal women with HR+/HER2-negative advanced
or MBC.

4c. Abemaciclib (LY2835219)
Abemaciclib is another CD4/6 inhibitor, although it has higher
selectivity and inhibitory effect for CDK4 than for CDK6
(238–240). In the phase II MONARCH-1 trial, abemaciclib
showed enhanced clinical benefit as a single agent in refractory
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HR+/HER2-negative MBC following multiple prior therapies
(241). The phase III MONARCH-2 study conducted on advanced
BC patients, demonstrated an extension in the PFS in the
combination arm (abemaciclib with fulvestrant) over the placebo
arm (fulvestrant alone) (242). Again, the phase III MONARCH-3
study, of abemaciclib (CDK4/6 inhibitor) plus an AI (letrozole
or anastrozole) compared to letrozole/anastrozole alone on
HR+/HER2-negative MBC has shown promise as an initial
therapy with significantly improved PFS (227, 243). Based on
the results from the MONARCH trials, the FDA approved
abemaciclib as a combination therapy with an AI in post-
menopausal women with HR+/HER2-negative advanced or
MBC, as a combination therapy with fulvestrant in women
with HR+, HER2-negative advanced or MBC with disease
progression following endocrine therapy and as a monotherapy
for women and men with HR+/HER2-negative advanced
or MBC with progression following endocrine therapy and
prior chemotherapy.

The impressive and exceptional results from the CDK4/6
inhibitor trials have led researchers to study its efficacy and
suitability in several other trials using the CDK4/6 inhibitor
as a single agent and in early stage BC (244, 245). The
essence of a role for CDK4/6 inhibitors stems from the
need for novel agents to supplement endocrine therapy in
high risk ER+ disease. Several other trials like the PEARL,
NeoPalAna, neoMONARCH, FELINE, CORALLEEN, PELOPS,
KENDO (ClinicalTrials.gov Identifier: NCT03227328), and
SONIA (ClinicalTrials.gov Identifier: NCT03425838) trials, all
are focused toward evaluating the efficacy of CDK4/6 in the
advanced ER+ BC and in other BC subtypes (245).

4d. Combination of CDK4/6 With
PI3K/AKT/mTOR
The remarkable results observed with CDK4/6 inhibitors has
been very well-received and approved by the FDA. However,
a large number of ER+ BC patients continue to experience
relapse and recurrence (246). There is a complex crosstalk
between ER+ BC, constitutive PI3K activation and the CDK4/6
pathway. This provides a strong rationale for the combined
targeting of both the CDK4/6 and PI3K pathways in effective
control of the tumor progression (247–249). Studies have
suggested that inhibition of the either the CDK4/6 or the
PI3K/AKT pathway, delays the onset of endocrine resistance
(248, 250). Combinatorial inhibition of both the PI3K and
CDK4/6 pathways overcomes the resistance due to single agent
inhibition by CDK4/6 by downregulating cyclin D1 and arresting
cell cycle progression (248, 249). Several combination therapy
trials are underway to identify the best strategy to overcome
endocrine resistance in ER+ BC. Trials that combine the
CDK4/6 inhibitors with various PI3K/AKT/mTOR inhibitors
(ClinicalTrials.gov Identifiers: NCT03128619, NCT03006172,
NCT02684032, NCT02732119, NCT02871791, NCT02599714)
are ongoing, with the aim to inhibit tumor growth and
prevent relapse. The triplet inhibitor trial (ClinicalTrials.gov
Identifier: NCT02088684) with ribociclib, fulvestrant and BKM
120 (buparlisib, PI3K-pan class I-inhibitor) or BYL719 (alpelisib,
PI3K-alpha specific class I inhibitor) in HR+/HER2-negative

advanced or MBC is one study aimed to study its efficacy and
suitability as a mode of treatment in these patients.

4e. Combination of CDK4/6 With Immune
Checkpoint Inhibitors
CDK4/6 inhibitors act as cell cycle checkpoint inhibitors and
induce cell cycle arrest, senescence and immunogenicity in the
TME. Studies have demonstrated an enhancement in the anti-
tumor response upon treatment with CDK4/6 inhibitors due
to an enhancement in interferon production, reduced T-regs
and enhanced T cell activation (251, 252). Addition of immune
checkpoint inhibitors (PD-1and CTLA-4) to CDK4/6 inhibitors
holds promise by inhibiting the growth and proliferation of
cancerous cells and, with this study as the background, a clinical
trial (JPCE) has focused on studying the suitability and efficacy
of using abemaciclib in combination with pembrolizumab in
HR+/HER-2 negative metastatic BC patients (253). Another
study is recruiting to study the response of fulvestrant and
pembrolizumab as a combination therapy (ClinicalTrials.gov
Identifier: NCT03393845) in HR+/HER-2 negative advanced or
metastatic BC patients.

4f. CDK4/6 Associated Response and
Fusion Genes
Although CDK4/6 inhibitor are effective in controlling tumor
growth, a fraction of the cells acquire resistance to CDK4/6
inhibitors. Upon mechanistic dissection, a role for the FAT1 and
RB1 proteins were identified, wherein, a loss of function in FAT1
was observed with a concomitant increase in CDK6 which was
attributed to enhanced binding of YAP and TAZ on the CDK6
promoter and regulation of the Hippo pathway and associated
factors within the pathway (254).

High throughput RNA sequencing (RNA-seq) methods have
led to the identification of ERα gene fusions with some instances
of more than four ERα coding exons fused in frame or out
of frame (17, 104, 255). A number of ERα gene fusions have
been identified in endocrine resistant and ER+ MBC, some
of the common ones being the ERα-e6 > DAB2, ERα-e6 >

GYG1 and ERα-e6 > YAP1 structures (104, 256). Li et al. in
2013, identified an in-frame ERα fusion protein consisting of
ERα exons 1–6 and the c-terminal YAP1 sequence (ERα-e6 >

YAP1) that functioned as a driver of endocrine resistance and
E2 independent proliferation (104). A recent study by the same
group identified at least two fusion genes (ERα-e6 > YAP1 and
ERα–e6 > PCDH11X) in advanced ER+ BC and palbociclib was
observed to inhibit the fusion gene driven T47D growth under
hormone deprived conditions in a dose-dependent manner
(257). This observation was consistent with previous reports of
palbociclib being able to suppress the growth of pRb expressing
tumors with ERα mutations under E2-deprived conditions (258).

A genetic landscape sequencing study on circulating tumor
DNA of samples from the PALOMA-3 study demonstrated
that acquired mutations in the RB1, PIK3CA, and ERα genes
emerged in the treatment arm of fulvestrant and palbociclib
(259). In this study too, ERα Y537S was one of the driver
mutations that promoted resistance to fulvestrant and clonal
evolution is surmised as the principle behind resistance to
therapy (259).
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5. OTHER TRANSCRIPTION FACTORS

5a. PI3K/AKT/mTOR
The PI3K/AKT pathway is mainly activated downstream of
RTKs, which can phosphorylate several targets, including
NFκB, BAD, IKK, p27, FOXO1, GSK-3β, MDM2, and mTOR,
with the mTOR complex being the best described target of
AKT signaling (260). The tumor suppressor gene phosphatase
and tensin homolog (PTEN) is a negative regulator of
mTOR pathway (261). PTEN may be downregulated through
several mechanisms, including mutations, loss of heterozygosity,
methylation, aberrant expression of regulatory microRNA,
protein instability and activated mTOR signaling is also
associated with Cowden’s syndrome (PTEN mutations) (262).

PI3K is comprised of several isoforms of the regulatory

(p85) and a catalytic subunit (p110). Mutations are frequently
identified in BC within the PIK3CA gene, encoding the p110α

catalytic subunit (263). A large number of the PIK3CAmutations
occur within the kinase (H1047R) and helical domains (E542K
and E545K) of p110α subunit (264, 265).

The PI3K/AKT and E2 signaling crosstalk has been studied

extensively in BC. As previously mentioned, activated AKT
can phosphorylate ERα at serine-167 in the AF-1 domain and
increase ERα-dependent transcription (56). Activation of the

PI3K pathway in breast tumors is associated with reduced
ERα levels and endocrine resistance (266). Signaling via GPER
is another mode of signaling utilized by E2 activated PI3K

(p110α subunit) which leads to inactivation of FOXO3a,
thereby promoting progression of BC (74). GPER antagonists

in combination with a SERM/SERD therapy could serve as an

effective therapeutic strategy in GPER positive/ER+ BC (74).
The above studies have also shown the importance of a crosstalk
between the PI3K and ER pathway in antioestrogen resistance
and suggested that combining a PI3K inhibitor with an ER
down regulator is more effectual than either of them alone
(267). Thus, constitutive activation of GFR signaling pathways
leads to reduced ERα levels and subsequent endocrine resistance.
In contrast, inhibition of the pathways leads to sensitization
in response to antioestrogens and other oncogenic pathways
are activated upon E2 deprivation or inhibition of ER in the
endocrine resistant scenario (267).

Two other interdependent factors, mTORC1 and mTORC2
are part of a positive feedback mechanism belonging to the PI3K
pathway, which have independent regulatory mechanisms and
exert their effects through distinct targets and mechanisms (268).
Upon inhibition of mTORC1, the alternate complex mTORC2
leads to an activation of the PI3K pathway, which indicated
that inhibition of one arm of the pathway (via inhibitor), led to
activation of another arm and may not be sufficient to produce a
clinical benefit (269).

Clinical studies have validated the association between
activation of the PI3K and de novo/assumed resistance to
endocrine therapy. Several trials have been done where inhibitors
of PI3K pathway have been combined with endocrine therapy.
In a neoadjuvant study by Baselga et al., treatment with letrozole
and everolimus (mTOR inhibitor), a more pronounced reduction
in tumor cell proliferation and improved clinical response was

observed when compared with letrozole alone in patients with
early-stage ER+ BC (270). In another Phase III combination
study, also called the BOLERO-2, patients with ER+ advanced
or MBC, were either given everolimus and exemestane (an AI),
or exemestane and placebo. The combination of everolimus
and exemestane was found to have a median PFS that was
significantly much superior to the exemestane only arm (271).
Due to highly successful rates of PFS, this combination therapy
of exemestane and everolimus has been approved on selected
advanced patients of ER+ BC in the USA and Europe. A recent
study has produced a systematic approach and an effective
rationale behind the use of an mTORC1 inhibitor (RAD001) in
combination with neratinib and tamoxifen/fulvestrant to target
BC patients who relapse due to endocrine resistance, for example
patients treated with RAD001 and an AI (272). This study
demonstrated that triple blockade with RAD001, neratinib and
tamoxifen/fulvestrant was highly effective in the long term E2
deprived BC cell lines and was well-tolerated in a xenograft
model (272).

The BOLERO-2 study also demonstrated that patients who
has the D538G and Y537S mutation within the ERα gene
presented with aggressive disease and a shorter OS. When
considering the benefit based on mutation site, it was more
pronounced in the D538G group due to a larger number of
patients. In the TAMRAD phase II trial, patients with ER+
MBC becoming resistant to AI treatment were given tamoxifen
and everolimus or tamoxifen alone. Here too, patients in the
combination arm showed an improved clinical benefit rate, time
to progression, as well as an overall survival compared to patients
treated with tamoxifen alone. This study stratified the patients
based on primary and secondary endocrine therapy resistance
and interestingly, patients with relapse after 6 months of AI
treatment presented with an improvement in the PFS when
compared to those patients that relapsed during adjuvant AI
before 6 months on the treatment (273). Thus, further studies
are warranted where a proportion of patients could benefit from
the combined mTOR/ER targeting approach based on specific
mutations within the ERα gene.

In the phase 3 BELLE-2 trial, patients with ER+/HER2
negative, locally advanced or MBC who had progressed on
or after AI treatment and had received at least one line of
chemotherapy treatment, were given the pan-PI3K inhibitor
buparlisib plus fulvestrant or fulvestrant alone and it was
observed that the combination arm of the treatment showed
improvement in the PFS in these patients, although the toxicity
observed warrants the use of other more α specific PI3K
inhibitors (274). With the focus on PIK3CA, PIK3CB, and
PIK3CD mutant tumors, some of the more recent isozyme-
specific inhibitors target the p110α, p110β, and p110δ isoforms
of PI3K: BYL719 (alpelisib) and MLN1117 for p110α and GDC-
0032 (taselisib) for 110β-sparing inhibitors (275). In the phase
III SOLAR-1 study (ClinicalTrials.gov Identifier: NCT02437318),
post-menopausal women with HR+/HER-2 negative advanced
BC were given either alpelisib/placebo (a PI3Kα specific
inhibitor) in combination with fulvestrant and a significant
extension in the PFS was reported in patients with PIK3CA
mutations in the alpelisib arm of the study (276).
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5b. PARP
Poly (ADP-ribose) polymerase (PARP) is a family of nuclear
proteins which plays a vital role in the recognition and repair
of endogenously/exogenously induced DNA damage (277, 278).
PARP like BRCA1 and BRCA2 acts by repairing DNA and
PARP inhibitors act by disrupting the DNA repair mechanism
and increasing genomic instability (279, 280). Basically, it is
the synthetic cellular/DNA lethality caused due to BRCA1/2
mutation along with PARP inhibition that leads to a block in
the DNA repair pathway and subsequent death/apoptosis of
the BRCA mutated/deficient cells (281, 282). The two PARP
inhibitors approved by the FDA are olaparib and talazoparib,
with talazoparib having a higher potency than olaparib due
to a mechanism of action called DNA trapping (283, 284).
The PARP inhibitor olaparib has shown promise as a drug of
choice in germline BRCA-mutated, ER+/HER-2 negative MBC
patients who have been treated with a prior endocrine therapy
or been considered inappropriate for endocrine treatment (285).
The decision was based on the results from the OlympiAD
(ClinicalTrials.gov Identifier: NCT02000622) study conducted
on MBC patients with a germline BRCA1/2 mutation where
there was an OS benefit among patients who had not received
chemotherapy for MBC (285). Based on the EMBRACA study
(ClinicalTrials.gov Identifier: NCT01945775) on BRCA mutated
subjects with locally advanced and/orMBC, talazoparib provided
benefit in the PFS over physician’s choice of chemotherapy (286).
The use of PARP inhibitors holds promise in BRCA1/2 mutated
ER+ MBC patients in combination with other appropriate
therapies. Another viewpoint is that activation of CDK4/6 when
in complex with other cyclins leads to the phosphorylation of
RB1 which blocks binding the binding of RB1 and repressing
E2F regulated genes (287). PARP1 protein is reduced by the
recruitment of E2F1-RB1-HDAC1-EZH2-SWI/SNF complex in
hematopoietic stem cells and monocytes (288). Reduction/loss
of PARP1 leads to an impairment in the 8-oxoguanine
glycosylase (OGG1)-dependent DNA repair mechanism and an
arrest at the G1 phase in PARP1 overexpressing cells, leads
to the formation of a dense complex with OGG1 (PARP1-
OGG1 complex) (289). In oxidatively stressed cells, CDK4/6
inhibitors also act by repressing PARP and causing an aberrant
DNA repair mechanism (289). There is a functional complex
between CDK4/6, RB1, PARP1, and OGG1 (289). However,
with tumors eventually acquiring resistance to PARP inhibitors,
the therapeutic advantage/possibility of combining CDK4/6
inhibitors and PARP inhibitors offers hope(290).

5c. MAPK/ERK
Activation of the RAS/RAF/MEK1/2-ERK pathway leads to
phosphorylation of ERα at serine 118, resulting in cell
proliferation (291, 292). The RAS/MAPK/ERK pathway increases
sensitivity of ERα to low concentration of E2 leading to
endocrine resistance (144, 293, 294). Tamoxifen resistant
(TAMR) BC cells show increased levels of activated MAPK
and ERα (295). McGlynn et al., have shown an association
between increased expression of activated Raf-1, pRaf (ser338),
MAPK and a greater risk of relapse following treatment with
tamoxifen in clinical samples (296). ERα is activated following

phosphorylation by MAPK at serine 118 in the AF1 domain
(297) and previous studies have demonstrated that inhibiting
the MAPK/ERK pathway leads to an upregulation of ERα and
subsequent re-sensitization to tamoxifen (298). Another study
has shown that tamoxifen resistance is mediated through CDK10
suppression by activation of the MAPK/ERK1/2 pathway,
thereby overcoming the dependence upon ERα signaling (299).
The active RAS-GTP to converted to inactive RAS-GDP through
NF1, a large transcriptional protein, which acts as a tumor
suppressor (300).

A negative regulator of the RAS pathway, NF1 is associated
with an increased risk of BC (301, 302). Independent Component
Analysis (ICA) elucidated the association of NF1 and NFAT to
clinical outcomes in BC (303). A lack of NF1 type 1 expression
in the aggressive endocrine resistant MDA-MB-231 BC cell
line was associated with an increase in phosphorylated MAPK
and activated RAS (304). NF1 mutations have been identified
in luminal or ER+/HER2-negative, HER2-enriched and triple
negative BC (35, 300, 305). NF1 was one among the compendium
of genes whose silencing led to tamoxifen resistance in MCF7
cells (306). A recent report revealed mutually exclusive hotspot
mutations in NF1, ERBB2 and ERα that were acquired after
endocrine therapy and play a role in endocrine resistance (9).
Since the RAS/RAF pathway is induced by both ERBB2 (gain-
of function) and NF1 (loss-of function), an in-depth analysis
of the pathway alternations before and after endocrine therapy,
revealed hotspot mutations inKRAS,HRAS, BRAF, andMAP2K1
(MEK1). Oncogenic mutations were present in more than one
of the RAS/RAF pathway effectors that did not present with
an ERα mutation in the post-hormonal HR+/HER2-negative
tumors (254). Additionally, targeting the RAS/RAF pathway
with an ERK inhibitor SCH772984 re-sensitized MCF7-EGFR
cells to fulvestrant (9). Targeted sequencing was performed to
study the prognostic effects of somatic mutations and it was
reported that NF1 frame-shift nonsense (FS/NS) mutations has
adverse effects on prognosis (19). A recent study identified an
enrichment in NF1 alterations in metastatic Invasive Lobular
Carcinoma (mILC) and a role for NF1 in endocrine resistance
(307). The RAS/RAF pathway along with NF1 are therefore
involved in crosstalk between ERα and RTK’s, and are associated
with tamoxifen resistance (297).

5d. c-SRC/Kinase
c-SRC, a non-receptor tyrosine kinase is associated with the
progression of many human cancers, including BCs (308). Src-
1 (NCOA1) serves as a master regulator, a transcriptional
hub that complexes with AP1, NF-κB, p300/CBP and
other co-activators to activate the ER and PR (309, 310).
Basically, SRC-1 interacts with AIB1, ETS2 and HOX11
to define its association in BC progression and endocrine
resistance (311, 312).

Studies have shown an activation and upregulation of SRC
associated with acquiring tamoxifen resistance in ER+ cell lines
(313). SRC is involved in various signal transduction pathways
including ER and HER2/EGFR (314). Elevated levels of c-SRC
may be due to overexpression of growth factors (315, 316). c-SRC
is involved in various oncogenic signaling pathways including
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growth, invasion and metastases (317, 318). The interaction
between ER and SRC is well-established and they form complexes
with an array of proteins including PI3K, FAK, PELP, andMNAR
leading to the activation of pAKT and pMAPK demonstrating the
role that c-SRC has in endocrine resistance (318–323). A recent
study demonstrated the effect of TGF-β, where it promoted
epithelial mesenchymal transition (EMT) and expression of the
EGFR and IGF-IR. These RTKs (EGFR and IGF-IR) formed
complexes with ERα and SRC, thereby supporting endocrine
resistance in BC (324). Furthermore, c-SRC phosphorylates the
ER and has been shown to regulate ER localization (325, 326).
Upon treatment with tamoxifen, c-SRC activity is increased
and this subsequently amplifies the extent of invasion and
motility in BC cells (313). Moreover, since c-SRC is essential
in modulating tamoxifen resistance, and blocking its activity
reverses tamoxifen resistance (327). c-SRC inhibitor could be
exploited as a combinatorial therapeutic drug in the treatment
of human BC.

5e. STATs
The STAT-family members (STAT1-4, STAT5a, STAT5b, and
STAT6) represent a family of transcription factors involved in
cell proliferation, differentiation, survival and apoptosis. They
have all been shown to be expressed in BC cell lines, but only
STATs 1, 3, 5a, and 5b are expressed in BC tissues (328, 329). It is
well-understood that the STAT proteinsmediate cell proliferation
and survival by regulating and influencing the activities of
several other transcription factors and associated pathways. It
has been shown that the STAT3 and STAT5 signaling pathways
are integrally involved in endocrine resistance and more so
in the growth factor-stimulated cases. Also, there is functional
redundancy between the two STAT proteins, where one protein
overcomes the loss/gain in function due to the others gain/loss
in function (330, 331). The activation of STAT3 and STAT5
pathways are downstream of the EGFR and c-SRC pathways,
which present as being overexpressed in tamoxifen resistant
tumors. SRC-1 also interacts with STAT1, STAT3, STAT5 and
STAT6, and although STAT3 and STAT5 are considered as
tumorigenic transcription factors, STAT1 is a tumor suppressor
(309, 332–334). It has also been demonstrated that ER+ BC
cells treated with tamoxifen, results in decreased phosphorylation
of STAT3 at serine 727, suggesting an association between
tamoxifen sensitivity and decreased STAT3 transcriptional
activity (335). Yamashita et al. in 2006 had shown that STAT5 is
a strong prognostic molecular marker in ER+ BC. In their study,
they investigated the expression of STAT3 and STAT5 in more
than 500 BC tissues by immunohistochemical techniques and
observed that in ER+ patients with STAT5 positive tumors there
was significantly increased overall survival, thereby suggesting
that expression of STAT5 is helpful in selecting patients who
could possibly benefit from endocrine therapy (336). Recently,
a role for increased STAT1 signaling in endocrine resistance was
reported in studies that identified STAT1 as a potential mediator
of endocrine resistance/sensitivity in BC and an appropriate
STAT1 inhibitor could serve as a therapy in endocrine resistant
BC (331, 337).

5f. NF-kB
The NFκB family of transcription factors is comprised of five
members (RelA/p65, RelB, cRel, NFκB1/p50, and NFκB2/p52),
all of which play an important role in cellular homeostasis
(338). Accumulating evidence in support of NFκB activation
in cancerous stem cells has led researchers to focus on various
genetic signatures (339). It not only creates a microenvironment
suitable for stem cell survival, but also its invasiveness and
metastatic capability. A line of evidence supports the notion that
NFκB and CXCR4 helps to maintain the stemness and promotes
migration of cancerous cells (340). Increased expression of
p50/NFκB1, p52/NFκB2, and c-Rel was detected in breast tumors
compared to adjacent normal tissue (341). Activated NFκB
activity has been detected in hormone resistant BC cells and
RelA/p65 expression was upregulated (342). A separate study
demonstrated that upon inhibition of NFκB and thus also
the RelA/p65 by parthenolide (an NFκB inhibitor), sensitivity
to tamoxifen was restored in resistant MCF7 cell lines, along
with decreasing BCL2 expression, which can be reversed by
a caspase 8 (CASP8) specific inhibitor (343). Inflammatory
molecules leading to endocrine resistance occurs through kinases
that regulate ERα directly or through ERα and RelA/p65/NFκB
complexes at ERE enhancer sites to either upregulate or
downregulate respective genes (344).

A previous study showed that the expression and DNA
binding of NFκB1/p50 and NFκB2/p52 were enhanced in LCC1
estrogen-independent, TAM-sensitive BC cells compared to
MCF-7 estrogen-dependent cells, which further demonstrated
a role for NFκB in the pathway to endocrine resistance (345).
Gionet et al. reported that NFκB1/p50 binds to the ERα on EREs
and inhibiting NFκB increased the expression of E2 responsive
genes (346).

A separate study suggested that NFκB induces breast cancer
progression by stimulating IL-6 and IL-8 (347, 348). Another
study reported that FOXA1 led to suppressed IL6 expression
by disrupting the binding of NFκB to the IL-6 promoter and
thus concluded that reduced FOXA1 expression leads to cancer
stem cell like properties in tamoxifen resistant cells through
the preferential binding of NFκB to the IL-6 promoter and
upregulating IL-6 expression (349).

5g. LMTK3
Lemur tyrosine kinase 3 (LMTK3) is a serine-threonine-tyrosine
protein kinase involved in various cancers. Aberrant expression
of the gene and polymorphisms within the gene serve as suitable
biomarkers in cancer progression (350, 351). LMTK3 is expressed
in both ER+ and ER-negative BCs and a kinome screen identified
it as an ERα regulator (352). In an elaborate experimental setup,
a role for LMTK3 in endocrine resistance was confirmed (353).
Future studies could focus on its use as a valuable biomarker and
therapeutic target.

6. HYPOXIA INDUCIBLE FACTOR

The intra-tumoral pressure of oxygen (O2) serves as an important
indicator of the possibility of tumor metastasis (354). In BC,
hypoxia is induced due to reduced oxygen levels becoming
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available at the site of the tumor due to their distance from
functionally viable blood vessels, and it in this simmering tumor
conducive and expansive microenvironment that activation of
its main effector, hypoxia-inducible factors (HIF) takes place.
The HIF family of transcription factors are comprised of at
least three factors: HIF1, HIF2, and HIF3, each of which exists
as a heterodimer, with an O2 inducible α and a constitutively
expressed β subunit (355). Hypoxia associated HIF1α is quite
commonly coupled with errors in DNA replication including
homologous replication and high mutation rates along with
changes in gene expression which is mainly due to epigenetic
changes regulated by histone demethylases.

Mounting evidence suggests that a large proportion of the
HIF1α targets are also targets of ERα and that the HIF1α gene
is endowed with the presence of an ERE within its genomic
architecture and is regulated by ERα (356). The transcription
factor HIF1α is regulated by ERα and that increased HIF1α
expression confers endocrine resistance to ERα+ cancer cells.
Clinical studies have thus shown that HIF1α is associated with
endocrine resistant BC (356). One of the common target genes
for both the ERα and HIF1α is KDM4B/JMJD2B, which is
a H3K9me3/me2, H3K36me2/me3, H1.4K26m2/me3 histone
demethylase and its genomic landscape contains binding sites for
both HIF1α and ERα (356). It has also been demonstrated that
both KDM4A and KDM4B form a complex with ERα and lead to
the regulation of ERα target genes and an upregulation of both
the genes has been observed in both ERα+ and ERα- cells (357).
Another histone demethylase of the KDM4 family: KDM4C,
promotes BC cells proliferation and metastasis by serving as
a transcriptional activator of HIF1α (358). HIF1α promotes
angiogenesis within tumors via regulation of its target gene
VEGF, thereby leading to BC cell proliferation and metastasis.
Hypoxia is the principal regulator of VEGF expression, as it is
a direct transcriptional target of both HIF1α and HIF2α (359).

Accumulating evidence from preclinical and clinical studies
have demonstrated a role for HIF1α in endocrine resistance.
Endocrine resistance was observed in MCF7 cells transfected and
stably expressing HIF1α, and targeting it with zoledronic acid
led to endocrine sensitivity (360). Signaling via the GPER-HER2-
ERK-cFOS pathway triggers HIF1α dependent VEGF activation
and BC progression (73). An enhancement in the resistance of BC
cells to tamoxifen and fulvestrant was observed in ERα+ cancer
cells transfected with HIF1α (356). A recent study reported that
HIF1α and p44/42MAPK play an important role in endocrine
resistance and may serve as appropriate therapeutic targets for
endocrine resistant patients treated with an AI (361, 362).

7. STEM CELL POPULATION AND
TRANSCRIPTION FACTORS

Cancerous/tumorous stem cells give rise to tumors/cancers
and define their ability to proliferate and metastasize. They
encompass the ability to regenerate or self-renew and initiate
cancer progression, proliferation, migration and metastasis. The
stemness of these cells are correlated with poor prognosis and
endocrine resistance. A few of the biomarkers that define these

subpopulations are CD44, CD24, CD133, and ALDH1 along with
others (363).

A recent study identified FOXA1 as a prominent factor for
ERα activity in breast cancer (364–366). Induction of FOXA1
triggers a cascade of events leading to endocrine resistance,
one of the most prominent being the induction of IL-8 by the
FOXA1 expressing ER+ tumors (364). Another study identified
the FOXM1 motif bound strongly to the ERα DNA in endocrine
resistant cells by expansion of BC stem cells and could be a
promising target aimed toward BC therapy (367). RUNX1 has
been identified as a BC stemness repressor by repressing ZEB1
expression (368). RUNX2 is another stemness gene and a separate
study identified that RUNX2 and ERα interact with each other
in an ER+ endocrine resistant BC cell line to mediate EMT
and metastasis, and supports a role for RUNX1 in endocrine
resistance (367). Interestingly the same study also highlighted
the upregulation of SOX9 in tamoxifen resistant clinical samples.
RUNX1 is a tumor suppressor gene that has recently been
identified to have point mutations in ER+ BC (369). Xue et al.
identified FXYD3 as a target of the E2-ER pathway and it is
upregulated in the ER+ BC stem cells (370). They also went on
to validate its importance in ER+ BC cells. Crucially, the study
identified a direct regulation of the FXYD3 by SOX9.

There are possibly many transcription factors and associated
pathways that may transform a normal stem cell to a
cancerous stem cell, although two of the well-defined ones are:
NOTCH and Hedgehog (Hh). The NF-kB pathway has been
described elsewhere.

7a. NOTCH
The 4 NOTCH transmembrane receptors: NOTCH 1–4, interact
with multiple ligands (Delta-like 1, Delta-like 3, Delta-like
4, Jagged 1, and Jagged 2), resulting in cleavage of the
intracellular domain by γ-secretase. The intracellular domain
then translocates to the nucleus where it binds with co-activators
to regulate transcription of target genes and thereby plays an
important role in endocrine resistance (371). NOTCH signaling
has been shown to play a critical role in normal humanmammary
development and also regulation of cancer stem cells in both
invasive carcinoma of the breast as well as ductal carcinoma
in situ (372, 373). Augmenting the activity of NOTCH4 in
BC cells led to an increase in the expression of BC stem cell
biomarkers and the higher expression of NOTCH in these
cells, were evident in both the basal and luminal cell types
(374). Another study went on to delineate the role of NOTCH1
in inhibiting tumor progression in BC, whereby inhibition
of NOTCH1 resulted in tumor regression and prevention of
recurrence in ∼67% of the tumors studied (375). It has recently
been demonstrated that NOTCH pathway is hyperactivated
in resistant BC cells and can be abrogated by blocking the
NOTCH pathway (376). Previously, it was shown that E2
inhibits NOTCH activity by affecting the NOTCH receptor
cellular localization and that tamoxifen and raloxifene blocks
this effect, thereby activating the NOTCH pathway. Inhibiting
the NOTCH signaling pathway with γ-secretase inhibitors was
more effective when used with tamoxifen (377). Recently, it has
been reported that Nicastrin, an essential subunit of gamma
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secretase, and NOTCH4 are key molecules involved in resistance
to endocrine therapy and that the gamma secretase inhibitor
(GSI) PF03084014 and anti-Nicastrin MAbs can possibly reverse
and potentially re-sensitize endocrine resistant BCs (378).

In BC, SOX2 was identified as a factor responsible for the
reprogramming of BC cells into BC stem cells and its enhanced
expression was associated with the HER2+ BC subtype (379).
SOX2 is activated by the NOTCH signaling pathway and Oct4
localizes β-catenin within the nucleus and thus a role for the
NOTCH (described later) and WNT pathways in defining the
stemness of BC cells (379, 380). The two pathways interact
among themselves, regulating each other’s functions andHES1, a
NOTCH target gene, is regulated by the WNT signaling pathway
(381).WNT signaling has been reported to play an important role
in BC stem cells (382).

With STAT3 and STAT5 being constitutively activated in
cancers, they have also been shown to defy each other’s
physiological actions with differential effects (383, 384). That
NOTCH activated STAT3 pathway plays an important role in
endocrine resistance, was verified in an endocrine resistant
model of MCF7 cells (TAMR-MCF7 cells), whereby constitutive
activation of STAT3 was observed and inhibition of the NOTCH
signaling pathway by a NOTCH inhibitor, DAPT led to a
concomitant reduction in the level of activated STAT3 observed
in this model of endocrine resistant MCF7 cells (385).

7b. Hedgehog (Hh) Signaling
The Hedgehog (Hh) signaling pathway has been studied
extensively in the past as an essential pathway dictating the
initiation, progression and metastasis of cancers, although more
recently the focus on this pathway is toward it being at essential
crossroads as part of the BC stem cell circuit of pathways
(386). This pathway is mainly activated in tamoxifen-resistant
tumors and it is activated by the PI3K/AKT pathway (387).
A recent study suggested the combined therapy targeting both
the PI3K/AKT pathway along with the Hh pathway to tackle
endocrine resistance in BC (388). Although the stem cell
biomarker CD133 has not been clearly defined, it is a moiety that
binds cholesterol and has a prominent role in Hedgehog (Hh)
signaling (363). The Hedgehog signaling pathway is regulated by
the E2 related receptor β and affect the downstream targets (389).

8. OTHER FACTORS AND PROTEINS

There are several other transcription factors and proteins that
determine cancer progression in the face of ongoing endocrine
therapies, some known and many unknown. The EMT factors,
Twist and Snail, have been implicated in endocrine resistance,
with Twist downregulating ERα by epigenetically regulating the
promoter of ERα (390–393). There are several other proteins
and molecules that play a major role in endocrine resistance,
including the NOTCH and WNT pathways described earlier. All
these proteins and transcription factors function as individual
molecules working together for/against the homeostasis of the
human cells, to determine the fate of cancer cells.

Metabolic and oxidative stress are a few of the other factors
affecting endocrine resistance. The mechanisms are elucidated

in detail below for each of these factors. Recent publications
have demonstrated that homeostasis in cell metabolism and
cell proliferation is mediated by a few other transcription
factors and pathways as well. Another mechanism for endocrine
resistance that has been suggested relates to the ability of
the metabolic enzymes to deliver the active compound. Some
studies have reported lower concentrations of BC drugs at
the site of the tumor when compared to levels in the plasma
and an association with poor outcomes (394). Alternatively, a
recent study demonstrated that an elevated concentration of
tamoxifen metabolites at the site of the cancer, led to agonist
effects (395).

8a. Oxidative Stress
Oxidative stress is caused due to an imperfect polarization
of reactive oxygen species (ROS) vs. antioxidants. Although
this holds true under all disease states that progress toward
chronic disorders, it stands out as a cause of major concern
in cancers, where there is excess cellular mass burden. Thus,
it becomes imperative to also understand the role of toxicity
to varied drug dosage/regimens and the associated oxidative
stress, in other words: the oxidative stress created due to
a sudden imbalance in the microenvironment of the cancer.
The polyunsaturated fatty acids present in every cell are
metabolized to malondialdehyde (MDA) by the ROS whereas
nucleic acids (DNA) targeted by ROS are metabolized to 8-oxo-
7, 8-dihydro-2′-deoxyguanosine (8-oxodG) (396, 397). A recent
study, demonstrated the possibility of using concentrations
of urinary 8-oxodG as a marker to define early stage breast
cancer patients (398). Again, a study of serum levels of 8-
oxodG, indicated an association with ductal carcinoma (399).
Glutathione is another antioxidant that exists as reduced
glutathione (GSH) and oxidized glutathione (GSSG), the ratio of
which (GSH: GSSG) has been inferred as a marker of oxidative
stress (400, 401).

A study revealed that E2 led to an increase in ROS production
and an upregulation in the expression of genes involved in
oxidative stress, e.g., hemeoxygenase 1 (HMOX1). An association
with c-SRC phosphorylation was observed in this experimental
setting and it was attributed to the oxidative stress induced
by E2 (402).

In luminal B breast cancer, the loss of sirtuin proteins,
particularly SIRT3, promotes tumorous phenotypes dictated
by atypically regulated protein acetylation and thus cells are
exposed to oxidative stress. One of the analysis from the loss
of SIRT3 showed its association with the development of
endocrine resistance in the luminal B BC (403). Tamoxifen
builds up in tumors as part of the daily dosage regimen,
and leads to an increase in tamoxifen induced oxidative
stress. This effect leads to an activation of the protein,
Nuclear factor-erythroid 2-related factor-2 (Nrf2) which
subsequently activates the anti-oxidant response element (ARE).
Thus, Nrf2 and ARE levels could serve as oxidative stress
biomarkers in tamoxifen treated BC patients (404). These
markers could also be studied for their role in endocrine
resistant BC and also provide a rationale to study the role of
oxidative stress.
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8b. Drug Metabolism
The therapeutic drugs used in ER+ BC are administered at
a certain dosage between fixed intervals to achieve optimal
dosage and efficacy which is detected as plasma half-life.
The plasma half-life is dictated by the metabolic rate and
subsequent elimination of the drug from the plasma. Among
the popular drugs studied in ER+ BC, tamoxifen is among
one of the most widely used choice of available treatments
and is metabolized to its active forms 4-hydroxytamoxifen
(4-OH tamoxifen) and N-hydoxy desmethyl tamoxifen (N-
OH desmethyl tamoxifen), which is further metabolized to
endoxifen in the liver through the polymorphic cytochrome
P450 enzymes (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4,
CYP3A5), the most effective metabolic enzyme being CYP2D6
(405, 406). Interestingly, the potency of its active metabolite
endoxifen is far more effective than tamoxifen in its native
form. The active metabolites are degraded for excretion by
the UDP-glucuronosyltransferases (UGTs) and sulfotransferase
(SULTs) enzymes (407). The genotypic information for the CYPs,
UGTs, and SULTs has been surmised as one of the molecular
mechanisms that define endocrine resistance.

Differences in the expression and associated mutations in
each enzyme (CYPs, UGTs, or SULT’s) of the tamoxifen
metabolic pathway, would help define the effectiveness of the
drug in the individual, leading to the well-known concept
of personalized medicine. Studies have demonstrated a role
of the genotype (expression profiles and/or polymorphisms in
the tamoxifen metabolic genes) along with co-intake of other
drugs that could lead to altered effectiveness and/or plasma
concentrations and associated half-life. One of the crucial
CYP genes, CYP2D6, has several polymorphisms within its
gene, and each have been associated with either an increase
or decrease in enzyme activity. Each variant defines the
metabolic rate of tamoxifen, denoted as either extensive (EM),
intermediate (IM), or poor metabolizers (PM) (408, 409).
Studies have reported altered plasma concentrations which
correlate to polymorphisms in CYP2D6 (406). One of the
first studies that investigated the polymorphisms in CYP2D6
and SULT1A1 in 226 BC patients on tamoxifen, presented
with differences in recurrence of the disease based on the
homozygosity/heterozygosity of the CYP2D6∗4 and SULT1A1∗1
alleles (410).

In another study conducted by a Korean group (Asian
cohort), a polymorphism at CYP2D6∗10/∗10 correlated with
lower plasma concentrations of the tamoxifen metabolites
(411). The variation between activities of the CYP2D6 gene
due to allelic variants across various ethnicities becomes
imperative when translating preclinical data into clinical
use for dosage and regimen (409, 412). Along with the
genotype and associated polymorphisms, the enzymes
metabolize other drugs too, and thus the effectiveness of
tamoxifen is dependent on the intake of tamoxifen and any
other drug taken simultaneously, for example paroxetine
(406). In a separate study, it was noted that upregulation
of the CYP3A4 enzyme played a crucial role in tamoxifen
resistant BC cells and this was attributed partially to the
11,12-epoxyeicosatrienoic (11-12-EET) acid pathway and

thus drugs targeting the CYP3A4/11,12-EET pathway may
serve as suitable therapeutic drugs (413). A phase I trial
conducted using Z-endoxifen as a treatment of choice rather
than tamoxifen was performed to bypass the metabolism of
the drug and thus differential effects due to the CYP and other
enzymes, showed promising anti-tumor effects unaffected
by toxicity (414).

9. IMMUNE SYSTEM

The complicated crosstalk between the cancer cells and immune
cells at the site of the tumor has led researchers to harness
the unique capability of the immune system to destroy and at
times shrink the size of the tumor. In BC as in other cancers,
increased levels of immune cells and soluble mediators like
cytokines and some chemokines, predict poor prognosis. It
has been reported that tumor associated macrophages (TAM)
are associated with low survival rates and that the TAMs
exhibit features that promote angiogenesis, migration, EMT
and metastasis by suppressing anti-cancer immunity (415, 416).
Interestingly, the levels of interleulin-1β (IL-1β) and tumor-
necrosis factor α (TNFα) are higher in metastatic ER+ BC
patients, where these cytokines activate the NF-κB and lead
to endocrine resistance (417, 418). Antibodies and molecules
directed against transcription factors upstream of NF-κB in
the NF-κB pathway has been observed to restore sensitivity in
cell line models of endocrine resistant BC (419, 420). IL-1β
dependent activation of the ER, due to phosphorylation at the
serine 305 locus of the protein by IKKβ leads to growth and
proliferation of BC cells in the absence of E2, thus providing
evidence for a prominent role for cytokines in BC (421).

Although in BC it is the negligible immunogenicity of
the tumors that limits the effectiveness of immunotherapies
like checkpoint inhibitors, yet the immune system plays an
essential role in the development and branching of ductal and
luminal epithelial differentiation (422, 423). According to some
researchers, the immune system appears to play a very prominent
role in the triple negative BC setting (ER-negative, PR-negative,
and HER2-negative), and has a limited role in the endocrine
sensitive setting (ER+ BC) (424, 425).

Thus, although there is a role of both the innate and adaptive
immune cells in BC and immune mechanisms have been more
intensely studied in ER negative patients, recent studies have
focused on studies suggesting a role for the adaptive arm of
the immune system in ER+ patients, namely the TILs (22). In
post-menopausal women with ER + BC receiving neoadjuvant
AI, anastrozole, an inflammatory gene expression signature
was observed in baseline samples (426). The cluster of genes
expressed were suggestive of infiltrating immune cells and these
are associated with poor response to endocrine therapy. The
most recent study focused on identifying a prognostic value for
immune scores and associating it to the relapse in ER + BC
patients receiving neoadjuvant AI, anastrozole or tamoxifen (23).
The study reveals the importance of spatial heterogeneity of TILs
and a crucial role for immune memory of tumor immune cells in
ER+ patients.
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In the ER+, PR+, and HER2+ setting, it is the therapy
based on monoclonal antibodies against HER2 that activate
the antibody-dependent cytotoxic killing ability of natural killer
(NK) cells through the adaptive arm of the immune system
(427). hTERT is also capable of eliciting an immune response
and it has been reported that there was an abundance of hTERT
peptide 1540 specific CD8+ T cells in some cancers and in
the metastatic BC setting, patients immunized with the peptide
presented with increased TILs and necrosis of some tumorigenic
areas (428).

Checkpoint inhibitors, anti-CTLA4 and anti-PD1 have been
reported to elicit anti-cancer responses, although studies in
the ER+ luminal BC subtype, demonstrate that due to the
low titer of TILs in these patients, it is not the therapy of
choice (422). In a study aimed at tumor rejection in HER+
metastatic BC patients, trastuzumab was given in combination
with anti-PD1 (PANACEA study) and it was reported that the
objective response rate in the PDL1+ BC patients was 15.2%
and 0% in the PDL1-negative arm of the study (422). The
myeloid derived suppressor cells (MDSCs) are another set of
myeloid derived cells that have revealed their importance in
promoting resistance to therapies (429). Therapies involving the
immune system hold promise for future efforts to overcome BC
endocrine resistance.

10. miRNA AND EXTRACELLULAR
VESICLES

MicroRNAs (miRNA’s) are small (∼22-nucleotide) regulatory
non-coding RNA molecules and miRNA deregulation was first
reported in 2005 in BC (430). Investigators have reported
that miRNAs can regulate the network/cascade of signal
transduction pathways associated with endocrine resistance by
several mechanisms: upregulating drug efflux transporters and
anti-apoptotic proteins, promoting EMT and forming cancer
stem cells (431).

Aberrant expression of specific miRNAs has been implicated
in the development of tamoxifen resistance. Gene expression
profiling has identified differential expression of miRNA
expression profiles between tamoxifen resistant and sensitive
BC cell lines (431–433). A miRNA library recently identified
a plethora of miRNAs involved in TAM sensitivity in MCF7
cells (434). A previous study demonstrated that overexpression
of miR-101, led to TAM resistance in MCF7 cells grown in an
E2 free medium, mediated by the activation of AKT (435). The
miR-519a regulates tumor suppressor genes within the PI3K
and cell cycle proteins conferred endocrine resistance (436). The
miR-451a, promotes endocrine resistance through a reduction
in autophagosomes (437). Basically, The PI3K/AKT/mTOR
pathway plays a crucial role in metastasis and endocrine
resistance and overexpression of miR-451a enhances sensitivity
to tamoxifen by repressing 14-3-3ζ expression along with reduced
p-AKT and p-mTOR and an increase in the ERα expression.
miR221/222 targets p27/Kip1, which is a cell cycle inhibitor in
TAMR BC cells and promotes proliferation of cells even in the
absence of E2 (432). Interestingly, expressing miR-320a in TAMR

BC cells, leads to re-sensitization through downregulation of
the c-MYC and CYCLIN D1 (438). Again, an increase of miR-
873 in TAMR BC cells led to a restoration in the tamoxifen
sensitivity through CD3 (439). Another study, highlighted the
importance of the miRNA-375, in TAMR BC cells, where re-
expression of miR-375, led to a reversal in tamoxifen resistance
and associated EMT like behavior in these cells (440). BC
stem cells also activate the HIF1α pathway during hypoxic
conditions (441).

Extracellular vesicles (EVs) derived from cancer cells
are similar to lipid vesicles, and contain oncogenic
material in the form of overexpressed oncogenic
genes/proteins/mediators/nucleic acids/non-coding RNA’s
and metabolic enzymes. They typically home into specific
recipient cells where they can trigger a separate cascade of
molecules and associated pathological response (442, 443).
An analysis of the contents within the EV could shed light
on their role in endocrine resistance and metastasis. EVs have
been implicated in transmitting tamoxifen resistance from
the TAM resistant cells to the TAM sensitive cells via the EVs
containing miR-221/222 (434). Cancer biomarkers identified
include HER2 and HLA-G, which is associated with circulating
tumor cells and promotes proliferation, therapy resistance
and metastasis (444). The translational capacity of miRNAs
and EVs hold promise toward identifying therapies to combat
endocrine resistance.

CONCLUSION

The molecular mechanisms underlying resistance to endocrine
therapy have been much studied and these studies have
provided novel insights and yielded potentially new therapeutic
strategies that may overcome endocrine resistance in BC.
While an improvement in the quality of life and survival
of women with BC has increased with the discovery of
novel ER targeted therapies, endocrine resistance still remains
at large. The ER signaling pathway represents a complex
cascade of events with several regulators and comprehensive
crosstalk with and between pathways, thereby resulting in the
emergence of endocrine resistance. The authors view stem
cells and the immune system as a focus toward all future
studies on overcoming endocrine resistance in BC and other
solid cancers. The soluble microenvironment around the BC,
which consists of hormones, growth factors, cytokines, ROS,
and various other types of metabolic compounds determine
the effectiveness of the immune system in eliminating or
shrinking the size of tumors. The upcoming efforts should
now be to study potential biomarkers for definitive use in
the clinic in greater detail. It is well-understood that results
that appear promising in cell lines will not entirely translate
into clinically reproducible results, thereby rendering clinical
validation as a necessary step in evaluating novel therapeutic
strategies. Advances in integrative approaches examining the
transcriptomic and proteomic profiles in combination with
robust bioinformatics support studying the differences between
normal and resistant tumor tissue from a large dataset of patients
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will help tease out the differences/similarities between the two
datasets and furthering our understanding. A focused study
of the immune cell infiltrates and tumor spatial architecture
around the site of the cancer, polymorphisms within metabolic
enzymes and oxidative stress milieu are also aspects that
will help clinicians in treatment decisions. This approach
will help identify novel mediators, molecules and pathways
of interest thereby resulting in tailor-made treatment for
different sets of patients with similar clinical symptoms and
molecular profiles.
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