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Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin’s

initial function was likely that as a free radical scavenger. Melatonin presumably evolved

in bacteria; it has been measured in both α-proteobacteria and in photosynthetic

cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes

for their nutrient value. According to the endosymbiotic theory, the ingested bacteria

eventually developed a symbiotic association with their host eukaryotes. The ingested

α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts

and both organelles retained their ability to produce melatonin. Since these organelles

have persisted to the present day, all species that ever existed or currently exist

may have or may continue to synthesize melatonin in their mitochondria (animals

and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin’s

other functions, including its multiple receptors, developed later in evolution. In present

day animals, via receptor-mediated means, melatonin functions in the regulation of

sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional

oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes

that are, in part, receptor-independent. In plants, melatonin continues to function in

reducing oxidative stress as well as in promoting seed germination and growth, improving

stress resistance, stimulating the immune system and modulating circadian rhythms; a

single melatonin receptor has been identified in land plants where it controls stomatal

closure on leaves. The melatonin synthetic pathway varies somewhat between plants

and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in

all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is

then decarboxylated with the formation of serotonin. Serotonin is either acetylated to

N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are

either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan

is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
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INTRODUCTION

After its isolation and identification in the pineal gland of
the cow, in subsequent years melatonin was identified in
a wide variety of animals and plants (1–7). The extensive
distribution of melatonin, especially in the primitive bacteria
(cyanobacteria and α-proteobacteria) indicates that the chemical
is an ancient molecule that has been retained throughout the
evolution of all organisms (8, 9) (Figure 1). It is speculated
that melatonin evolved in bacteria prior to the process referred
to as endosymbiosis. After cyanobacteria and α-proteobacteria
were engulfed by early prokaryotes, they eventually evolved
into chloroplasts and mitochondria, respectively, such that all
unicellular and multicellular organisms ultimately produce this
critical indoleamine in these organelles (11–13).With organismal
diversification, melatonin universally spread to all organisms
and, accordingly, its functions, biosynthetic pathway, generation
sites and biosynthetic regulation have also diverged.

The proposed initial function of melatonin was to detoxify
free radicals generated during the processes of photosynthesis
and metabolism (8, 14–17). With the bio-divergence during
organismal evolution, melatonin became a pleiotropic molecule
that resists oxidation-related stress but also influences biological
rhythms, suppresses inflammation, etc. (18–21).

The genes encoding the biosynthetic enzymes for melatonin
have been identified in a number of species; these proteins
potentially catalyze different substrates further determining
the diverse biosynthetic routes of melatonin (22, 23). The
multiple biosynthetic pathways provide direct evidence for
melatonin’s evolution. From unicellular to multicellular
organisms, the subcellular localization of the enzymes related to
melatonin biosynthesis may have changed somewhat (24, 25).
The separation of the sites of subcellular localization may
have been beneficial for the efficient control of melatonin
synthesis (22, 26–28).

To exploit the multiple functions of melatonin, organisms
developed various mechanisms to regulate its biosynthesis. For
example, when faced with stress, activator protein-1 (AP-1), a
transcription factor, promotes the synthesis of melatonin via
up-regulating melatonin synthesis genes (29–34). Based on its
evolutionary history, it seems clear that melatonin not only kept
its primary function as an antioxidant but extended its functions
to other important biological actions. Moreover, since it co-
habitated with other key molecules such as sirtuins for eons,
melatonin also learned to functionally cooperate with them (13).

FUNCTIONAL EVOLUTION OF MELATONIN

Molecular oxygen (O2) began to rise in the Earth’s atmosphere
(the Great Oxygenation Event) (Figure 2) around 2.5 billion
years ago due to its persistent release from photosynthetic
bacteria that had evolved an estimated billion years earlier (35–
37). The rise of atmospheric O2 was a highly selective pressure
for the evolution of organisms to use O2 as the basis of their
metabolism (38, 39). During aerobic metabolism, reactive oxygen
species (ROS) are invariably generated when O2 accepts leaked
electrons from the electron transport chain (ETC) (24, 40, 41).

FIGURE 1 | This figure illustrates the endosymbiotic origin of mitochondria and

chloroplasts. α-Proteobacteria, originally phagocytized for their nutrient value

by early eukaryotes eventually evolved into mitochondria. Photosynthetic

cyanobacteria were likewise phagocytized by eukaryotes and eventually

formed chloroplasts. Since plants have both mitochondria and chloroplasts,

plant cells generally have higher concentrations of melatonin than do animal

cells. Adapted from Reiter et al. (10).

It is estimated that up to 4% of the O2 consumed by organisms
during the aerobic metabolism eventually is reduced to ROS
(42, 43). These large amounts of ROS are toxic to cells and
organisms, inducing the development of complex and effective
mechanisms to neutralize them; this initially occurred in early life
forms such as bacteria and subsequent unicellular organisms (8,
44). To control oxidative stress, melatonin presumably emerged
primarily as an antioxidant and free radical scavenger in early
photosynthetic prokaryotic bacteria (12, 13, 45, 46). Melatonin
has retained, until the present time and in all organisms, its
ability to control oxidative stress that results from free radical
production that occurs during photosynthesis and respiration
(8, 47–49).

The special structure of melatonin determines its high
efficiency in detoxifying free radicals based on its ability to
donate an electron or a hydrogen atom, or depending on
the radical type, potentially by other means as well (5, 15,
17). The superior antioxidant capacity of melatonin to limit
oxidative stress is, at least partially, attributed to what is referred
to as the cascade reaction which occurs when it generates
derivatives that are likewise free radical scavengers (12, 15, 50–
52). Melatonin interacts with a variety of ROS to produce
cyclic 3-hydroxymelatonin and other melatonin metabolites,
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FIGURE 2 | This figure summarizes the possible evolution of various functions (not all are depicted in this figure) of melatonin. Melatonin, predictably, initially evolved in

bacteria for the purpose of mitigating oxidative stress, i.e., as an antioxidant (red lines). When the bacteria were phagocytized as food by early eukaryotes, they

eventually developed a mutually beneficial association with their hosts and evolved into mitochondria and chloroplasts (see Figure 1); this series of events is referred

to as endosymbiosis. Subsequently, as evolution proceeded, mitochondria (animals and plants) and chloroplasts (plants) were preserved up until the present day.

Thus, mitochondria and chloroplasts of every species that has ever existed or exists today, we theorize, presumably produce melatonin. This presumption is

supported by recent findings which show that these organelles, in many cases, possess the necessary synthetic machinery to generate melatonin. Melatonin’s role as

an antioxidant in these organelles is of great importance since they are sites of major free radical production. Other colored lines, which are appropriately labeled,

identify other functions of melatonin. It is essential that the time frame for these functions, as illustrated by the length of the colored lines, do not accurately depict the

time of evolution of these functions. Major events in the history of the Earth are also identified. The “B” following the numbers refers to “billions of years ago.”.

e.g., N1-acetyl-N2-formyl-5-methoxykynuramine and N-acetyl-
5-methoxykynuramine (53–56). These metabolites function as
radical scavengers, sometimes even more aggressively than
melatonin regarding their capacity to neutralize ROS (15, 57).

Despite its very long evolutionary history and its multiple
functions, the chemical structure of melatonin has remained
unchanged for billions of years (13). Moreover, melatonin
may have been retained by all organisms even with their
very wide biodiversification during evolution. This relates to
the conservation of mitochondria and chloroplasts (or both)
in most cells of all organisms. One exception is red blood
cells which, during erythropoiesis, eject certain organelles
including mitochondria.

As already noted, melatonin originally exclusively functioned
as an antioxidant in primitive bacteria; however, over billions
of years of evolution it became a pleiotropic molecule in
multicellular organisms (Figure 2). The development of new
functions of melatonin logically expanded the spectrum of its
antioxidant activity (8). Regulation of biological rhythms is one
of the key functional extensions. In early primitive unicellular
plants and animals, more free radicals were produced during the
photophase than during the scotophase; thus, larger amounts of
melatonin were presumably consumed during the detoxification
of excessively-produced free radicals during the day (58, 59)
resulting in a diurnal rhythm of melatonin. In contrast to
unicellular organisms, which directly perceive photoperiodic
changes and synchronize their biological activities accordingly
(60), complex multicellular organisms could no longer respond

directly to the photoperiodic changes (24). A signaling molecule,
therefore, was required to ensure the photic information was
transduced into a circadian signal for all cells (61). The
alteration in melatonin levels in bacteria due to its differential
utilization as a scavenger accurately reflected the photoperiodic
changes of the light/dark cycle; theoretically, multiple organisms
adopted the melatonin cycle as a signaling system for this
purpose (24, 62, 63).

Multicellular organisms, therefore, co-opted a melatonin
rhythm that already existed; but rather than depending on the
metabolic utilization of melatonin to determine the cycle, they
developed the subcellular framework to produce more melatonin
during the scotophase than during the photophase, thereby
ensuring a day:night melatonin cycle. In most vertebrates, but
seemingly not all (64), this required the evolution of the pineal
gland which is the location of the circadian production and,
importantly, cyclic secretion of melatonin allowing all cells
access to light:dark information. In present day animal species,
the melatonin cycle, with highest levels at night, is the same
regardless of the activity pattern of the species, i.e., nocturnal,
diurnal or crepuscular. In addition to the neural connections
between the eyes and the pineal gland, most clearly described
in mammals, the pineal of some lower vertebrates responds
directly to light stimuli (65). While the photic information has
a direct impact on the electrophysiology of the organ, there
is no proof that it alters melatonin production or secretion.
In non-vertebrate animals and in plants, much less is known
about the circadian production of melatonin (66, 67), although
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these species do exhibit other circadian rhythms (68, 69) as well
as possible 24 h fluctuations in melatonin, but sometimes the
highest levels occur during the day (70).

Other actions of melatonin that have evolved and relate
to the antioxidant activity of melatonin include retarding
some age-related processes, anti-inflammatory activity, resisting
neurodegenerative changes, the prevention of apoptosis in
normal cells, and the preservation of mitochondrial and
chloroplast physiology (8, 71–74) (Figure 2). These functions are
associated, at least in part, with melatonin’s ability to neutralize
free radicals.

The actions of melatonin in different species have clearly
diverged during the differentiation of major animal and plant
taxa. These functions show a close relationship with the
characteristics of the specific taxa. In mammals, melatonin is a
molecule with hormonal properties (10, 75–77). The hormonal
properties of melatonin are apparent in the regulation of seasonal
reproductive activity, facilitation of sleep physiology, promotion
of immunoresponsiveness, suppression of carcinogenesis,
promotion of stem cell proliferation, anti-inflammation, and
modulating aging (73, 78–83). Some of these actions are surely
mandated by the interaction of melatonin with cell membrane
receptors, i.e., MT1 and MT2, and/or perhaps with nuclear
binding sites and are, therefore, considered hormonal (see
below). For example, melatonin’s ability to constrain cancer cell
proliferation often involves membrane receptors (84, 85). There
is also evidence, however, that receptor-independent actions
such as its free radical generating capacity (“pro-oxidant”), an
action possibly unique to cancer cells (86), also kills tumor cells
(87, 88). Moreover, melatonin’s multiple means by which it
limits cancer metastases have not been unambiguously shown
to be receptor-mediated (89). Thus, in mammals, melatonin is
not a typical hormone and functions via receptor-dependent
and receptor-independent means. On the evolutionary scale,
the free radical scavenging properties, which continue to exist
in mammalian cells, preceded the evolution of receptors for
this indoleamine; thus, the initial actions of melatonin were
receptor- independent.

In early non-mammalian vertebrates, the pineal organ directly
responded to light that penetrated a cartilaginous plate overlying
the epithalamus (90). This photic information was detected by
photoreceptive elements similar to those in the retinas, with
the electrical messages being sent to adjacent neural structures
(91). In higher vertebrates, the pineal gland is no longer
directly light-sensitive, although it does contain evolutionary
morphological remnants of photoreceptive rods/cones (92), but
it remains influenced by light and darkness via complex retina-
suprachiasmatic nucleus-sympathetic neural connections (93).

The mammalian pineal gland probably did not evolve as nor
should it be strictly classified as an endocrine gland. Endocrine
glands are typically regulated by the secretory products from
other glands and exhibit either feedback or feedforward
responses when contacted by these agents. Also, because of
their primary regulation by hormones, hormone production
and secretion typically are only modestly impacted by depriving
endocrine glands of their sympathetic innervation. These features
are inmarked contrast with those of the pineal gland, where other

hormones have barely perceptible effects on pineal melatonin
production (94, 95). The sympathetic denervation destroys the
function of the pineal (96), while for other endocrine organs
(e.g., anterior pituitary, thyroid gland) denervation is essentially
inconsequential. Giving norepinephrine or isoproterenol to
animals in which the pineal has been sympathetically denervated
induces a rapid increase in pineal melatonin synthesis indicating
that pineal synthetic processes are under the control of the
nervous system rather than by hormones (97); there may,
however, be some unique experimental conditions that perturb
melatonin synthesis in the pineal gland independent of its
innervation (98); how these actions are mediated remain
unknown. For example, high melatonin production can be
shifted to immune competent cells (99) under inflammatory
conditions. This important observation was unanticipated and
opens up the possibility that there may be other conditions under
which melatonin synthesis is enhanced in other cell types.

Another argument against melatonin being exclusively a
hormone comes from the observation that an estimated 99% of
the melatonin in vertebrates is likely not produced in the pineal
gland and is never released into the circulation. The discovery of
melatonin in mitochondria, where it likely functions as a direct
free radical scavenger and as an indirect antioxidant, means
that the total quantity of melatonin synthesized in vertebrates
is much greater than originally envisioned. In addition to
functioning as a scavenger at the site at which it is produced, i.e.,
mitochondria, melatonin generated at the subcellular level may
be locally released to function as a paracrine or autocrine agent
(100). There is also preliminary evidence that mitochondria-
produced melatonin is discharged from this organelle after
which it interacts with receptors on the outer mitochondrial
membrane where it may influence the release of cytochrome c
(101) (Figure 3). In invertebrates (104) which lack a pineal gland,
endogenous melatonin production may respond to external
environmental alterations that do not involve the light:dark cycle.

In the plant kingdom, melatonin is demonstrated to be a
multi-regulatory molecule with diverse functions in plant growth
and development, such as seed protection and germination,
root development, fruit ripening, and senescence (105–108).
Compared to animals, plants facemore environmental challenges
because of their sessile nature. As a protection against these
stresses, they rapidly unregulate melatonin synthesis which then
functions in the protection against oxidative stress induced
by these challenges (109). As mentioned, melatonin works
independent of receptors when it clears ROS (110, 111). The
majormembranemelatonin receptors in animals, MT1 andMT2,
activate different signaling cascades to improve or antagonize
biological effects (112–115). To date, only one phytomelatonin
receptor (CAND2/PMTR1) has been identified; it regulates
stomatal closure via a H2O2 and Ca2+signaling transduction
cascade (116). In addition, phytomelatonin can interact with
unknown receptors with active H2O2/NO signaling pathways,
and further improve plant stress tolerance by activating a variety
of antioxidant enzymes, alleviating photosynthesis inhibition,
and modulating transcription factors; these transcription factors
are involved with stress resistance, chelating and promoting
transport of heavy metals, or activating other stress-relevant
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FIGURE 3 | The association of melatonin with mitochondria is predicted on the basis of the origin of these organelles as specified in the text. Current evidence

suggests that melatonin is synthesized in some species in the mitochondrial matrix as illustrated here. Also, exogenously administered melatonin concentrates in the

mitochondria (102), i.e., melatonin is a mitochondria-targeted agent. Given that melatonin functions as an antioxidant is particularly important in mitochondria since

these organelles are a major site of free radical generation. In addition to directly neutralizing reactive oxygen species, melatonin also stimulates the antioxidant

enzyme superoxide dismutase (SOD2), an action that involves an elevated level of sirtuin 3 (SIRT3) (39). Melatonin potentially enters mitochondria through the

oligopeptide transporters, PEPT1/2 (103). Melatonin also influences mitochondrial membrane potential by influencing uncoupling protein (UCP). Also, melatonin from

the matrix may leak out of the mitochondria to interact with the melatonin receptors, MT1 and MT2, to control the release of cytochrome c.

hormones such as salicylic acid, ethylene, and jasmonic acid
(109, 117, 118). In animals, melatonin also binds directly to the
catalytic site of quinone reductase 2 (QR2, E.C. 1.10.99.2), a
cytosolic molecule, to modulate the activity of this enzyme; that
modulation may be either up or down regulation (119, 120).
Importantly, the change in QR2 activity may further play a key
role in ROS generation or detoxification (121).

ORIGIN OF MELATONIN RECEPTORS

The presumed original function of melatonin, i.e., as a direct
free radical scavenger, required nothing of the cell except
positioning melatonin in close proximity to where the bulk of
the ROS are usually formed. Such positioning of an antioxidant
is essential since free radicals have an extremely short half-
life and instantaneously damage molecules in the immediate
neighborhood of where they are formed. If a free radical
scavenger is not properly situated, it cannot prevent the initial
damage inflicted by a highly reactive radical. To accomplish
this proper placement, evolution arranged for the uptake by
and synthesis of melatonin in mitochondria (101, 102) and
chloroplasts (108, 122), both major contributors to the total
oxidative burden of cells.

In currently-surviving vertebrates, melatonin has
a very extensive physiological toolkit. To broaden its
functional repertoire, it was necessary for its binding
sites/receptors and associated signaling transduction
processes to also evolve. Many of the currently known
activities of melatonin are mediated by G-protein
coupled receptors in the membranes of animal cells
(113, 123, 124). The best known receptors associated with
cell membranes are members of the G-protein coupled
receptor family (111, 125, 126); they are designated MT1 and
MT2 (127–129).

Perhaps, of special relevance to the current discussion, is
the finding that the MT1 receptor, generally considered to be
confined to the limiting membrane of cells has also been recently
associated with the outer membrane of mitochondria (101).
According to the researchers whomade this discovery, melatonin
from the mitochondrial matrix diffuses out of these structures
and interacts with MT1 receptors on the outer membrane of
these organelles; they coined the term “automitocrine” to define
this process. Via this receptor-mediated pathway, mitochondria-
generated melatonin may control the release of cytochrome c
from the matrix. This self-regulatory process has implications for
apoptosis resulting from extensive free radical damage.

In addition to the well-characterized and highly relevant cell
membrane receptors which are indispensable for a number of
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melatonin’s key functions, there are also binding sites in the
cytosol (130) and in the nucleus (131–133). In the cytosol,
the enzyme quinone reductase 2 (QR2) has been designated as
receptor MT3 (134). The activity of this detoxifying enzyme may
to be related to some of the actions of melatonin in reducing
oxidative damage. Melatonin also couples with calmodulin in
the cytosol, an action that is reportedly linked to the cancer-
inhibitory effect of the indoleamine (135, 136).

In an invertebrate, the crayfish (Procambarus clarkii),
melatonin functions in the modulation of the reticular
photoreceptor potential amplitude with the intensity change
differing between the day and night (137). With the aid of
the commonly used melatonin receptor blockers, the authors
deduced that the actions of melatonin on visual photoreceptors
are mediated by a site reminiscent of the mammalian MT2
receptor. In another crustacean, the crab (Neohelice granulata),
some of the metabolic actions of melatonin are inhibited by
luzindole, a classic MT1/MT2 receptor blocker (138).

In the honey bee, Apis cerana, a melatonin receptor with the
typical seven transmembrane domains has been characterized
(139); the authors named it AccMTNR1A. It mediates the
response of this species to cold stress, a feature that is
common with that of plants. Silencing of the receptor also
interfered with the transcription of some antioxidant signaling
pathways. This illustrates that antioxidant enzyme activity may
be regulated in the honey bee as they are in plants (105).
Collectively, the data from invertebrates show that not only
do they produce melatonin but they probably have receptors
that mediate some of its actions. Fossil records indicate that
insects evolved more than 400 million years ago, so the
melatonin receptor has likely existed for at least the same
time duration.

Tetrahymena are nuclear dimorphic, unicellular, ciliated
eukaryotes. Like many other eukaryotes, Tetrahymena feed
on bacteria so this evolutionarily-early organism would be
expected, due to endosymbiosis, to have retained the melatonin
synthetic potential of the engulfed bacteria. There is evidence
that Tetrahymena contain biogenic amines including possibly
melatonin (140). Whether this species possesses melatonin
binding sites/receptors has not been established. If they
are found to contain melatonin-binding molecules, it would
show that some type of melatonin receptor evolved about
one million years after melatonin arose. As it currently
stands, there is little information related to when melatonin
receptors originated.

As noted above, melatonin was discovered in land plants
about 25 years ago (2, 3) where it functions as an antioxidant
in a receptor-independent manner (141) as in animals. The
first phytomelatonin receptor, designated CAND2/PMTR1, was
described in Arabidopsis thaliana (116). This receptor is located
on epithelial cells which govern the closure of the leaf stomata.
For this process, the signal transduction cascade involves Gα

subunit–activated H2O2 production and Ca2+ signaling. It is
estimated that land plants came into existence on Earth about
200 million years ago. Whether the first land plant that appeared
or any plants that preceded them possessed melatonin receptors
is unknown.

In addition to the direct scavenging of radicals and radical
products by melatonin, land plants also have many of the
antioxidant enzymes that exist in animals. In plants, the enzymes
are melatonin-influenced and are quickly upregulated when the
plant is exposed to an abiotic stress, e.g., draft, heat, cold,
toxin, etc. (105, 142). It is presumed that this upregulation
involves melatonin receptors as is likely the case for animals
as well.

For additional details on the pharmacological
characterization, cloning and signal transduction pathways
of melatonin receptors, the reader is referred to comprehensive
reviews of this subject by the groups of Jockers et al. (114, 115),
Oishi et al. (130), Tosini et al. (143), Liu et al. (128), Dubocovich
(114). Obviously, melatonin receptors developed subsequent to
the evolution of melatonin. Based on what is currently known
of their distribution, they probably originated with the origin of
multicellular organisms, both plant and animal.

DIVERGENCE OF MELATONIN
BIOSYNTHESIS IN DIFFERENT TAXA

Melatonin is believed to exist in all living organisms including
bacteria, yeasts, fungi, animals, and plants (144, 145). This
molecule is formed exclusively from the amino acid tryptophan
(146). While tryptophan is consumed in the diet, it can also
be synthesized via the shikimic acid pathway starting with D-
erythrose-4-phosphate, phosphoenolpyruvate, or carbon dioxide
in some species (147). With the evolution of organisms (apart
from animals) bacteria, fungi, and plants retained the ability to
synthesize tryptophan (24). Conversely, mammals only attain
tryptophan, an essential amino acid, during food intake. A
reduction of tryptophan leads to the marked lowering of
melatonin production in animals compared to that in plants
(145, 148). Since plants cannot behaviorally avoid extremely
stressful conditions, they require extra protection from stress;
hence, the biosynthesis of tryptophan is presumably retained in
plants to ensure that melatonin is available for relieving oxidative
stress levels under environmentally-stressful conditions.

Beginning with tryptophan, melatonin biosynthesis includes
four enzymatic steps in all organisms (22, 67). During its
evolution lasting billions of years, the pattern of the melatonin
synthesis became diversified (Figure 4). Tryptophan is first
converted to serotonin which involves decarboxylation and
hydroxylation. There are two strategies for the synthesis of
serotonin that leads to melatonin production in different taxa.
The biosynthetic pathway of serotonin in microorganisms
and plants is different from that of vertebrates. Tryptophan
is decarboxylated to tryptamine by tryptophan decarboxylase
(TDC), followed by serotonin biosynthesis catalyzed by
tryptamine 5-hydroxylase (T5H) in plants (149, 150). In
contrast, rather than tryptophan decarboxylation being the
initial step in serotonin production, animals first hydroxylate
tryptophan using tryptophan hydroxylase (TPH) to form
5-hydroxytryptophan and then 5-hydroxytryptophan is
decarboxylated by aromatic amino acid decarboxylase (AADC)
to form serotonin (7).
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FIGURE 4 | Pathways of melatonin synthesis in different plant (left) and animal

(right) taxa. Depending on the organism, not all of the events necessarily take

place in the chloroplasts or mitochondria of every species. For the species,

plant and animal, that have been investigated, the published data provide

strong evidence that these organelles are critically involved with melatonin

production.

Between tryptophan and melatonin, serotonin is a key
intermediate after which the biosynthetic process utilizes two
potential pathways, each of which includes two consecutive
enzymatic steps to generate melatonin (15, 22). These steps
catalyze serotonin to form the final product, melatonin;
this involves serotonin N-acetyltransferase (NAT) and N-
acetylserotonin O-methyltransferase (ASMT; formerly known
as hydroxyindole-O-methyltransferase, HIOMT) (151–155). The
penultima enzyme, NAT, plays a key role in the conversion
of serotonin to N-acetylserotonin while the last enzyme,
ASMT, catalyzes NAS to produce melatonin (153, 154, 156).

Alternatively, serotonin can be first O-methylated to 5-
methoxytryptamine (5-MT) by AMST; thereafter, 5-MT is N-
acetylated by NAT to produce melatonin (7, 155). Differing from
the formation of serotonin, the two alternative pathways for
the conversion of serotonin to melatonin, likely occur in both
plants and animals as well as in the microorganisms. However,
different homologs of NAT have been detected between plants
and animals, as well as ASMT in the two groups, revealing
their different origins during evolution (122, 157–159). NAT
seems to have originated independently as indicated by the few
shared amino acid residues between animals and plants as well
as between primitive cyanobacteria and archaea (24, 158). Thus,
the enzymes controlling the biosynthetic steps of melatonin seem
to have different origins at the emergence of melatonin; these
enzymes further evolved divergently after endosymbiosis.

As already mentioned, the intermediate processes in
melatonin production display a variety of differences among
taxa. The present-day organisms possess diverse melatonin
biosynthetic pathways. The enzymes that produce melatonin
may play roles in catalyzing different substrates. Beyond the
four key enzymes, other evolved enzymes are reported to
directly participate in the biosynthesis of melatonin. This is
supported by evidence that plants evolved caffeic acid O-
methyltransferase (COMT), which is involved in the synthesis of
5-methoxytryptamine/melatonin by methylating serotonin/N-
acetylserotonin (160). Apart from the classic enzymes strictly
required for the melatonin biosynthetic pathways, Lee et al. (161)
found that N-acetylserotonin can be converted to serotonin in
rice seedlings by N-acetylserotonin deacetylase (ASDAC), which
may result in a reduction in the content of melatonin (Figure 4).

SUBCELLULAR LOCALIZATIONS OF
ENZYMES ASSOCIATED WITH
MELATONIN BIOSYNTHESIS FROM THE
VIEW OF ENDOSYMBIOSIS

Based on the endosymbiotic theory, when the early eukaryotic
cells (having nuclei but no mitochondria) endocytosed α-
proteobacteria or cyanobacteria (Figure 1), rather than digesting
these bacteria, the proto-eukaryotic cells developed a symbiotic
association with them (162–164). The observations that the
NAT protein, the rate-limiting enzyme of melatonin synthesis, is
abundantly located in mitochondria of animals and chloroplasts
of plants further support the different origins of the melatonin
biosynthetic enzymes as a result of endosymbiosis (26, 165, 166).
Furthermore, the DNA sequences and protein residues of
cyanobacterium, a plant-type species, and rice are closely related,
implying that the plant NAT gene was likely endosymbiotically-
derived from cyanobacteria (167, 168). NAT genes of other
eukaryotic organisms including fungi, invertebrates, and
vertebrates seemingly evolved from Rhodospirillum rubrum
(the presumed precursor of mitochondria) or closely related
species since their NAT genes share similarity to some extent
(24, 122, 169).

With endosymbiotic evolution, the function of melatonin
synthesis was carried into multicellular organisms. Thus,
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mitochondria and chloroplast, which resulted from the
endosymbiosis of α-proteobacteria or cyanobacteria,
respectively, became the major melatonin generating subcellular
organelle in both animals and plants (165, 166). In terms of
function, melatonin produced in these two organelles most likely
detoxifies excessive ROS and reactive nitrogen species (RNS)
generated during oxidative phosphorylation and other metabolic
actions (55, 73). The production of melatonin in mitochondria
provides maximal on-site protection of these critical organelles
(Figure 4). In plants, melatonin in chloroplasts provides
a similar defense against oxidative stress with subsequent
evolution after endosymbiosis. The melatonin-associated genes
of the incorporated bacteria were gradually transferred from both
mitochondria and chloroplasts to the nuclear genome of each
host (24, 164–166, 170). While mitochondria and chloroplasts
are considered major sites of melatonin synthesis, it does not
preclude the possibility that some melatonin is not also formed
in the cytosol ((171); also, see below).

With subsequent evolutionary processes, melatonin-related
genes were modified by mutations and in response to natural
selective pressures in different species (24, 155, 172). Specifically,
the major structural differences of the melatonin synthases
among phylogenetically distant species are the regulatory regions
which could further influence the subcellular localization of
these proteins (7, 24). At least in plants, the subcellular
localization analysis documented that the rate-limiting enzyme
for melatonin synthesis, NAT, is found in both chloroplasts and
mitochondria (26). TPH, ASMT/COMT, and TDC/AADC locate
in the cytoplasm while T5H is distributed in the endoplasmic
reticulum (7, 22, 150, 154). This subcellular location of melatonin
synthesis enzymes suggests that during evolution (Figure 2),
the sites of melatonin synthesis became more diverse and
extended to the cytoplasm and endoplasmic reticulum (22).
This divergent distribution of melatonin production shows a
good relationship with the transformation from prokaryotic
cell to eukaryotic cell. Regarding the efficiency of melatonin
biosynthesis, the present biosynthetic model is consistent with
adequate substrate availability. For example, acetyl-CoA, a
key substrate for melatonin production, is synthesized in the
mitochondria through pyruvate dehydrogenase complex reaction
(39, 173, 174). Furthermore, the different subcellular sites of
melatonin synthetase avoid substrate competition by other
enzymes preferring the same substrate (13, 22, 175). Thus,
multiple subcellular sites of melatonin biosynthesis in both plants
and animals could promote synthetic efficiency of this essential
molecule (171).

MULTIPLE MECHANISMS PRECISELY
REGULATE MELATONIN BIOSYNTHESIS

The presence of melatonin at several sites correlates with its
biological functions. As in animals, 24-h rhythms have been
described in plants, e.g., in Chenopodium, which shows a
nocturnal maximum growth rate around light/dark transition
(176). Also, the dinoflagellate Lingulodinium and numerous other
microalgae including chlorophyceans (like plants, members of
viridiplantae), exhibit robust circadian rhythms of melatonin

(177). In comparison to animal cells, plant cells contain much
higher levels of melatonin, probably because they have two
melatonin producing organelles, mitochondria and chloroplasts
(77, 158, 178). In some species such as in Glycyrrhiza uralensis,
cranberry and several medicinal herbs melatonin levels are
reportedly several orders of magnitude higher than those in
the serum of animals. Remarkably, the levels of melatonin
in the pistachio nut may reach 230µg/g (15, 145, 179, 180).
This may relate to the high environmental stress condition
under which this plant normally grows. The immobility of
plants results in them being subjected to more unavoidable
environmental stressors, causing elevated ROS production and
oxidative damage. Thus, they require additional protection from
stressors by means of intrinsic mechanisms including high
levels of endogenously-produced antioxidants, such as melatonin
(158). This speculation is supported by the observation that a
variety of environmental insults induce a dramatic increase in
melatonin levels in plants (24, 141, 181). Under some conditions,
stressful situations may also induce melatonin production in
animals, e.g., physiological ischemia/reperfusion events (182).
Also, plant cells generally have higher levels of melatonin than
animal cells; this likely relates to the fact that plant cells have
two sources of melatonin (mitochondria and chloroplasts) while
animal cells have a single source.

The presence of melatonin in both plants and animals raises
the question as to whether animals and plants have different
mechanisms for modulating the biosynthesis of this indole-
containing compound. Current data indicate that the regulatory
mechanisms of melatonin synthesis are fundamentally different
between animals and plants (Figure 5). In vertebrates, melatonin
is referred to as the chemical expression of darkness (based
only on pineal and blood levels); in general, in plants a
day/night rhythm is less common, although not totally absent
in some species, with the melatonin concentrations sometimes
not varying much throughout the light:dark cycle (24, 183, 184).
Hence, melatonin synthesis in some plants is non-rhythmic, as in
the mitochondria of animals (101).

In vertebrates, light detection by the retinas suppresses
the activity of NAT and melatonin production (185, 186). In
plants, there is positive correlation between light intensity and
melatonin levels with plants growing in habitats exposed to high
light intensities, such as Mediterranean or alpine environments,
usually having higher melatonin levels than the same or related
species growing in other locations (187). In some species,
melatonin was reported to be enhanced by darkness of even
short duration, e.g., 1 h in rice seedlings (188), findings supported
by an elevated ASMT expression in response to darkness (189).
Moreover, heat-induced elevation of melatonin was antagonized
by light in Oryza (188). In addition to these exceptions, the
signal transduction pathways and regulatory mechanisms in
vertebrates differ substantially from those in plants. The major
regulatory components of melatonin synthesis in mammals, e.g.,
norepinephrine and its receptors, are not detected in plants and
are unlikely to exist, indicating the loss of this pathway in the
plants during evolution (24).

As noted above, the biosynthesis of melatonin is closely
associated with four successive enzymes leading to the
production of this compound. NAT usually is believed to
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FIGURE 5 | A summary of what is known concerning the molecular mechanism governing melatonin production in plant cells and animal cells.

be the rate-limiting enzyme in pineal melatonin synthesis in
vertebrates, although ASMT may limit this level around the
nocturnal melatonin maximum (190). For plants, under most
circumstances, NAT activity correlates well with the quantity
of melatonin produced. In rice seedlings, however, melatonin
was reported to be highest at the time of enhanced ASMT
expression (191, 192). Typical for animals, the activities of
NAT and melatonin production usually exhibit a good positive
relationship (185, 193). The regulation of NAT in the pineal gland
depends on the animal taxa examined. In many mammals, NAT
gene expression in the pineal is either up- or down-regulated
by the signals received from the suprachiasmatic nucleus (SCN)
while in some species with a predominantly transcriptional
control of NAT, its mRNA levels are stimulated up to two
orders of magnitude (194). For primates and ungulates, NAT is
mainly controlled post-translationally by phosphorylation and
dephosphorylation, and stabilization of the phosphorylated form
by a 14-3-3 protein (195). While the four successive enzymes
positively regulate the pineal concentration of melatonin in
all organisms, the overexpression of melatonin biosynthetic
genes, such as TDC, NAT, and ASMT do not always lead to the
accumulation of melatonin in plants (33, 122, 155, 159, 196, 197).

Recently, the ASDAC gene was found to catalyze the conversion
of N-acetylserotonin to serotonin, a reverse reaction from
the usual melatonin biosynthetic pathway in plants (161).
Clearly, plants possess two genes encoding both NAT and
ASDAC proteins, which impact the biosynthesis of melatonin;
NAT favors melatonin synthesis, whereas ASDAC lowers
melatonin levels.

Especially in plants, melatonin is maintained at a relatively
constant level under normal conditions; however, it can be
greatly and rapidly upregulated in response to unfavorable
conditions such as cold, heat, salt, drought, oxidative and
nutrient stress, and bacterial infection (142, 198–203). The
underlying mechanisms for the rapid regulation of melatonin
production have not been identified including the translation
and post-translational regulation of melatonin synthesis
enzymes, and the upstream transcription factors of these
rate-limiting enzymes or isoenzymes (204, 205). Melatonin
biosynthesis genes may have a role at the transcriptional
level to control the content of melatonin (Figure 5). For
this process, different taxa evolved divergently to work
with other factors for self-development or coping with
stressful conditions.
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Activator protein-1 (AP-1) is a stress-responsive transcription
factor that can be regulated by oxidative stress in many cell
types (206). AP-1 seems to promote both NAT and ASMT
activities to enhance melatonin synthesis. Structural analysis
of the human ASMT gene promoter shows that it contains
an AP-1 site at position−166 and similarly, there is an AP-
1 transcription factor-binding site in the AANAT mouse gene
(29, 30). Interestingly, stress uniformly stimulates glucocorticoid
production in organisms (207). Glucocorticoids upregulate
the transcriptional activity AP-1 and thereby promote gene
expression for melatonin synthesis (171, 208). AP-1, in addition
to acting as a signal transducer and activator of transcription-1
and 3 (STAT-1; STAT-3), competes with NF-κB for binding to
nat-κB1 to regulate the transcription of NAT (32). Transcription
of NAT driven by NF-κB dimers mediates pathogen-associated
molecular patterns (PAMPs) or pro-inflammatory cytokine-
induced melatonin synthesis in macrophages by binding to one
or two upstream κB binding sites (nat-κB1 and nat-κB2) of
the NAT promoter in RAW 264.7 cells (209). LIM homeobox
transcription factor Isl1 positively modulates melatonin synthesis
by targeting NAT at the (ATTA/TAAT) motif, via the ERK
signaling pathway of norepinephrine (34). Regarding the binding
site of TFs, the chicken NAT gene does not contain a canonical
cAMP-response element (CRE) sequence TGACGTCA (210)
but a TTATT8 repeat sequence and a CLS (6/8 identical
to the canonical CRE) in basal and cAMP-driven promoters
which bind c-Fos, JunD, and CREB to enhance basal and
forskolin-stimulated NAT transcription (211). This motif was
not found in NAT genes from other species, including mouse,
rat, and zebrafish (211). For the rat, a cAMP- response element
(CRE) -like sequence (CLS; TGCGCCA)-CCAAT complex in the
flanking region and a canonical CRE in the first intron drives
cAMP-dependent induction of the NAT gene as well (212, 213).
In addition, the cone-rod homeobox (Crx) transcription factor
was reported to regulate the expression of NAT in the mouse
pineal gland.

For plants, limited information related to transcriptional
regulation is available compared with that of animals. Evidence
from recent studies show that a multifunctional enzyme, namely
caffeic acid O-methyltransferase (COMT), can also catalyze
the last step of melatonin biosynthesis (28). In rice, melatonin
biosynthesis requires ASMT or COMT activity (154). Cai
et al. (33) revealed that, in tomato, cadmium stress induces
the expression of HsfA1a, which acts as a positive regulator
of COMT1 transcript levels by binding to the COMT1 gene
promoter heat-shock element (HSE) sequence (GAANNTTC),
and induces melatonin accumulation. For cassava, three TFs
were found to modulate melatonin biosynthesis. Cassava
bacterial blight induces the expression of MeWRKY79 and
MeHsf20, which activate the expression of MeASMT2 via
binding to W-box (TTGACC/T) and HSEs (GAAnnTTC) in
the MeASMT2 promoter; this, in turn, increases melatonin
accumulation and confers improved disease resistance (205).
MeRAV1 and MeRAV2 may directly regulate three melatonin
biosynthesis genes (MeTDC2,MeT5H, andMeASMT) by binding
their promoter containing CAACA motif as transcriptional
activators, and thus up-regulate melatonin biosynthesis

in response to disease resistance against cassava bacterial
blight (214).

CONCLUSION REMARKS

The acquisition of additional functions by melatonin, which
is believed to have originally evolved to provide molecular
protection from free radicals, occurred over a very long
evolutionary period. It is theorized that melatonin first appeared
in bacteria about 3.0–2.5 billion years ago. When these
melatonin-synthesizing bacteria were phagocytized by early
eukaryotes as food, over time they established a symbiotic
association with their hosts and developed into mitochondria
and chloroplasts. Since the bacteria that were ingested had the
ability to synthesize melatonin, this important function was
retained by themitochondria and chloroplasts. As a consequence,
we hypothesize that these organelles have produced melatonin
in every plant and animal species that has ever existed and
that this occurs in present day animal and plant cells as well.
Thus, every cell that possesses mitochondria (animals and plants)
or chloroplasts (plants), we feel, has the capacity to produce
melatonin. Melatonin at these sites is important to provide
protection against free radicals which are abundantly generated
in these organelles. Over its very long evolutionary history,
melatonin has acquired other essential functions that have been
retained by this physiologically-diverse molecule.

Tryptophan is the starting molecule for melatonin production

in cell species. The sequence of the enzymatic steps that convert
tryptophan to melatonin, however, varies among species. These
steps include hydroxylation, decarboxylation, acetylation, and
methylation. In some plant species, melatonin may not be
the end product; in at least one variety of rice, melatonin
can be hydroxylated at either 2, 4, or 6 position with 2-
hydroxymelatonin possessing significant antioxidant activity, like
melatonin itself. While the synthetic pathway of melatonin
has changed throughout evolution and differs among plant
and animal species, the structure of melatonin persists as
originally designed in bacteria billions of years ago. It is
pointed out, however, that what is known about melatonin
synthesis has come primarily from mammals and the pathway
in other vertebrates has been sparingly investigated. Moreover,
the pathway of melatonin production in invertebrates remains to
be examined.
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