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Researchers have been looking for insulin-stimulating factors for more than 100 years,

and in the 1960ties it was definitively proven that the gastrointestinal tract releases

important insulinotropic factors upon oral glucose intake, so-called incretin hormones.

The first significant factor identified was the duodenal glucose-dependent insulinotropic

polypeptide, GIP, which however, turned out not to stimulate insulin secretion in patients

with type 2 diabetes. But resection experiments clearly indicated the presence of an

additional incretin, and in 1986, an unexpected processing fragment of the recently

identified glucagon precursor, proglucagon, namely truncated glucagon-like peptide 1

(GLP-1 7–36 amide), was isolated from the gut and found to both stimulate insulin

secretion and inhibit glucagon secretion. The peptide also inhibited appetite and food

intake. Unlike GIP, this peptide had preserved effects in patients with type 2 diabetes and

it was soon documented to have powerful antidiabetic effects in clinical studies. Its utility

was limited, however, because of an extremely short half-life in humans, but this problem

had two solutions, both of which gave rise to important antidiabetic drugs: (1) orally active

inhibitors of the enzyme dipeptidylpeptidase 4 (DPP-4 inhibitors), which was responsible

for the rapid degradation; the inhibitors protect endogenous GLP-1 from degradation

and thereby unfold its antidiabetic activity, and (2) long-acting injectable analogs of

GLP-1 protected against DPP-4 degradation. Particularly, the latter, the GLP-1 receptor

agonists, either alone or in various combinations, are so powerful that treatment allows

more than 2/3 of type 2 diabetes patients to reach glycemic targets. In addition, these

agents cause a weight loss which, with the most successful compounds, may exceed

10% of body weight. Most recently they have also been shown to be renoprotective and

reduce cardiovascular risk and mortality.
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Undoubtedly inspired by the discovery of the first hormone ever, secretin, in 1902 and gastrin in
1905, Moore et al. proposed in 1906 that the duodenal mucosa might secrete a hormonal substance,
which would affect the disposal of glucose from the blood by acting as “a chemical excitant for the
internal secretion of the pancreas” and tried to treat diabetes (not very successfully) by injections
of gut extracts (1). But in 1929, Zunz and LaBarre (2) used cross-circulation experiments in dogs to
demonstrate pancreas-dependent hypoglycemic effects after injection of upper intestinal extracts;
such extracts clearly promoted pancreatic exocrine secretion (“excretin”), but the hypoglycemic
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effects via pancreatic endocrine secretion (insulin had been
discovered in 1921) was thought to be due to an “incretin” (3).
Another hypoglycemic duodenal extract, supposed to stimulate
insulin secretion, was prepared by Heller in 1929 (4). However,
it was not possible at the time to isolate and identify the
“incretin” and it was only when it became possible to measure
insulin (through the work of Yalow and Berson in the late
50ties) that the incretin effect could be further substantiated.
With the insulin assay, it was possible to directly demonstrate
increased insulin secretion after oral vs. intravenous glucose
administration in spite of identical glucose concentrations, an
effect which today is referred to as the “incretin effect” (5, 6).
In elegant experiments, Perley and Kipnis in 1964 demonstrated
that gastrointestinal, endocrine factors were responsible for the
augmented insulin secretion (7) and also demonstrated that
this mechanism was greatly impaired in “non-insulin requiring
maturity onset diabetes.” The question then arose, which factors
might be responsible, and the interest again turned toward
the gastrointestinal hormones. Several hormones were tested
for insulin-releasing activity and many of them were able to
stimulate insulin secretion, so a set of criteria for assigning an
incretin role to a hormone was established. First, the hormone
had to be released after ingestion of glucose, since this stimulus
defined the incretin effect. Secondly, the hormone should be
capable of stimulating insulin secretion, when infused at rates
resulting in plasma concentrations similar to those elicited by
the oral glucose (8). This constitutes the “mimicry requirement.”
Whether or not insulin secretion should be pre-stimulated with
glucose was discussed, but given that the incretin definition
included a comparison of insulin secretion during isoglycemic
glucose challenges, it seems reasonable that the incretin candidate
would stimulate insulin secretion primed by elevated plasma
glucose concentrations. These criteria clearly excluded a number
of hormones (e.g., cholecystokinin and gastrin), although it
may still be argued that some of them could contribute to
stimulation of insulin secretion under special circumstances (6).
This applies, for instance, to secretin, which quite powerfully
stimulates glucose-induced insulin secretion, but when infused in
healthy volunteers reaching postprandial concentrations, it failed
to do so (9). However, in situations with high concentrations
of the hormone, which may be observed for instance after
gastric bypass operations, plasma levels may be sufficient to
stimulate insulin secretion. For cholecystokinin, there is an on-
going debate as to which molecular component of it is the most
prevalent and/or important and whether or not this component
has sufficient insulinotropic effects in the very low concentrations
at which it is circulating. Gastrin is the subject of a similar
discussion (6). On the other hand, it may be argued the oral
glucose is not a physiological stimulus, and that it would be more
relevant to look at insulinotropic gastrointestinal factors released
or activated after mixed meal ingestion. There is no doubt that
neural elements may play a role for regulation of postprandial
insulin secretion (10), but it can be clearly demonstrated that
even in people with a denervated (transplanted) pancreas, there is
an incretin effect (11). The endocrine component of the incretin
effect, therefore, is relevant even if the neural component is
disregarded. The absorbed nutrients may of course also influence

insulin secretion themselves, and it is technically very difficult
to control for the influence of all of the circulating nutrients
and metabolites formed during meal ingestion. Interestingly,
an incretin effect i.e., enhanced insulin response elicited during
oral as opposed to intravenous intake, can be demonstrated
not only for carbohydrate meals but also for protein and fat
meals (12, 13). This observation is probably consistent with
release of insulinotropic hormones during ingestion of all three
macronutrients. All these stimulatory factors have been discussed
under the common designation: the entero-insular axis (10).
Clearly mapping of all components on the axis is complex, and
an exhaustive mapping cannot be provided at present.

As already briefly alluded to, the incretin effect in its strict
sense is quantified by performing an oral glucose tolerance test
(typically with 75 g of glucose in healthy individuals; for people
with diabetes lower amounts can be given, but this complicates
the estimation because the magnitude of the effect depends on
the amount of glucose ingested) (14, 15) on 1 day, with blood
sampling for glucose and insulin and for investigative purposes
hormonemeasurements. On a subsequent day, a glucose infusion
is given, the rate of which is adjusted manually to copy the
excursions from the oral day. This is not as difficult as it
sounds (numerous descriptions in the literature). In addition
to sampling for glucose determinations (every 5min) blood
is sampled at certain intervals for insulin and perhaps other
hormone measurements. For accurate determination of insulin
secretion, independent of varying hepatic insulin extraction, it
may be useful to measure plasma levels of C-peptide, proinsulin’s
connecting peptide, which is not extracted in the human liver.
The incretin effect may then be calculated as the difference
between the integrated insulin responses to the oral and the
intravenous glucose challenge and expressed in per cent of the
response to the oral load (16). In healthy subjects, this usually
amounts to up to 70%, which shows that the incretin effect is
responsible for a major part of the postprandial insulin response.
As mentioned, the effect, expressed in this way, is dependent on
the amount of glucose ingested–withmuch lower values observed
for lower amounts of glucose (14, 15).

An interesting, alternative way of looking at the
gastrointestinal influence on the disposal of a glucose meal,
is to calculate the amount of intravenously infused glucose
required to mimick the oral challenge. For a 75 g oral glucose
load this usually requires about 25 g of glucose. It follows that
2/3 of the ingested glucose is removed from the circulation
by a mechanism that is dependent on the oral route. This
estimate has been designated GIGD, gastro-intestinally mediated
glucose disposal (17). Clearly, the predominant part of this is the
stimulation of insulin secretion by gastrointestinal hormones,
but suppressed glucagon secretion, for instance, could also play
a role (which would further facilitate hepatic glucose uptake).
Indeed, in patients with type 1 diabetes and no residual insulin
secretion the GIGD may become negative, suggesting that for
instance inhibition of glucagon secretion may be an important
element of GIGD.

The ultimate question, however, is which hormones are
in fact responsible for the incretin effect. Very soon after
the discovery of gastric inhibitory polypeptide (GIP), by John
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Brown (18), he and John Dupre found that this new peptide
powerfully enhances glucose-stimulated insulin secretion (19).
Further research documented that GIP is released during oral
glucose administration, and in careful mimicry experiments
(20) it was established that GIP fulfills all requirements for
acting as an incretin hormone. It was originally isolated
on the basis of inhibitory effects on acid secretion in
canine isolated gastric pouches, but this effect could not be
reproduced under physiological circumstances in humans (21),
and gradually the meaning of the acronym (GIP): Gastric
Inhibitory Peptide, changed to glucose-dependent insulinotropic
polypeptide. Animal experiments supported the essential function
of GIP as an incretin hormone. Thus, immunoneutralization
with antibodies against GIP significantly inhibited oral-glucose-
stimulated insulin secretion (22). Later, after the introduction
of the molecular biology methods and the cloning of the GIP
receptor, mice with deletion of the GIP receptor did indeed
exhibit reduced insulin responses (23), although the effect on
these response and on oral glucose tolerance was small. However,
by immunoneutralization in rats, it turned out to be impossible
to completely remove the incretin effect (24), and experiments in
which the incretin effect was compared with the GIP responses
to glucose in people with various resections of the small intestine,
confirmed that the incretin effect was not correlated with the
GIP responses and upper small intestinal conservation, but
rather with the preservation of distal small intestinal segments
(25). These studies clearly pointed to the existence of another
incretin hormone.

The interest now focussed on “gut glucagon” (26). Older
studies had indicated that the gut (at least the canine gastric
mucosa) produces a glucagon-like hyperglycemic substance (27),
and antisera raised against the pancreatic alpha cell hormone
glucagon, also identified endocrine cells scattered throughout
the GI mucosa (28). However, accumulating immunochemical
evidence and differences with respect to physico-chemical
properties indicated that the “gut glucagon” was not identical to
pancreatic glucagon, the structure of which had been deduced
already in 1953 (29). Thus, antibodies directed against the
C-terminus of glucagon would not react with these extracts
unlike those directed against mid sequences of the peptide
(30). Radioimmunoassays based on latter type of antibodies
would also show secretion of substances with glucagon-
like immunoreactivity (GLI) after oral glucose, whereas the
C-terminal antisera would show decreasing concentrations,
in agreement with Ohneda’s demonstration of the glucose-
dependency of pancreatic glucagon secretion (31). Eventually,
the chemical nature of the gut GLI was revealed. There were
two components, the smaller one being a fragment of the
larger, but both containing the entire glucagon sequence (32,
33). The larger contained 69 amino acids of which residues
33–61 corresponded to the glucagon sequence(34), while the
shorter form corresponded to residues 33–69 (33, 35). Thus,
the smaller one, for which Dominique Bataille suggested the
catching name oxyntomodulin, because of its alleged action
on gastric oxyntic glands (36), was in effect a C-terminally
extended form of glucagon. The larger one was designated
glicentin, because Finn Sundby, who helped isolating the peptide,

thought it contained 100 amino acids and combined “GLI” with
“cent” + “in” to indicate its hormonal nature (37). Subsequently
an N-terminal fragment corresponding to the first 30 amino
acid of glicentin (Glicentin Related Pancreatic Polypeptide,
GRPP) was isolated also from the pancreatic alpha cells, and
was demonstrated to be released in parallel with glucagon
(38), and glicentin was therefore proposed to represent at
least a fragment of the hypothetical biosynthetic precursor of
glucagon, proglucagon. Proglucagon would thus be processed
in a tissue-specific, differential manner, giving rise to glucagon
in the pancreas and to glicentin and oxyntomodulin in the so-
called L-cells in the gut, the cells that harbored the glucagon
immunoreactivity. Glicentin had no activity on the endocrine
pancreas, but oxyntomodulin had a pronounced insulinotropic
activity (39), and was therefore an incretin candidate. At the
time, it was very difficult to measure oxyntomodulin specifically,
because of the inherent cross-reaction that any antibody against
oxyntomodulin would have with either glucagon or glicentin,
but via chromatographic studies of extractable and circulating
oxyntomodulin (40), combined with studies of its potency with
respect to insulin secretion, it was eventually considered unlikely
that this peptide was the putative second incretin hormone, a
concept that still prevails (41).

On the other hand, it was also clear that glicentin did
not represent the full proglucagon molecule. Evidence from
cell free translation studies had indicated that proglucagon
was considerably larger than glicentin (42), and using new
molecular biology methods, Kay Lund, working with Joel
Habener, managed to deduce the full structure of anglerfish
proglucagon on the basis of material isolated from the compact
islet organ, the Brockmann bodies of the anglerfish (43, 44).
The proglucagon structure deduced from this work was longer
indeed, and contained, apart from glucagon buried in a sequence
with some resemblance to glicentin, an additional glucagon-
like sequence [an account of the contributions from the
Habener laboratory was published recently (45)]. On the basis
of this, a race started to deduce the structure of mammalian
proglucagon. In 1983, Graeme Bell published the amino acid
sequence of a 160 amino acid protein, deduced from the
mRNA sequence isolated from a hamster islet library (46),
and later the same year, Bell and coworkers also published
the full deduced structure of human proglucagon (47) (see
Figure 1). On the basis of this, it was obvious that glicentin
did indeed account for the entire N-terminus of proglucagon.
However, the remaining part of the precursor contained not
only one, but two glucagon-like structures framed by pairs of
basic amino acid residues, the consensus cleavage sites for the
recently characterized prohormone convertases (48) (Figure 1).
The two glucagon-like sequences were rapidly synthesized by
several groups, but neither the first, corresponding to the
proglucagon 72–108 sequence or the second, corresponding to
proglucagon 126–158 (it was predicted that the two final C-
terminal amino acids, both basic, would be cleaved off during
processing), had any effect on pancreatic insulin secretion
(an early positive report of insulinotropic effects of PG 72–
108 at very high concentrations (10−7 mol/L) (49) could not
be reproduced by others). However, the new results made it
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possible to search for the actual products of proglucagon. Holst
and coworkers in Copenhagen generated antibodies against
peptides synthesized according to the deduced sequences, and
used radioimmunoassays to analyse the occurrence, processing
pattern, and secretion of immunoreactive glucagon-like peptides
(GLPs) from the pancreas and the gut and found, in analogy
with the differential processing of the N-terminal part of
proglucagon (=glicentin), a similar differential processing also
of the remaining part of proglucagon (50): in the pancreas,
this resulted in formation and secretion of MPGF (45) (major
proglucagon fragment), whereas in the gut there was both
formation of and separate release of immunoreactive GLP-1 and
GLP-2. Similar conclusions were reached by Svetlana Mojsov,
working with Joel Habener in Boston (51). Because of the already
mentioned lack of obvious biological activity of the two glucagon-
like peptides, the group also used the immunoassays to search
for immunoreactive peptides in extracts of the porcine and
human gut using at the same time the perfused porcine pancreas
as a bioassay for insulinotropic activity. This search resulted
in identification of a highly insulinotropic peptide (52, 53). It
turned out to be a truncated form of the predicted GLP-1,
starting with residue no 78 and thus cleaved at a monobasic site.
Furthermore, the C-terminal Gly from the predicted sequence
was used as donor for amidation of the naturally occurring
human peptide; the complete (human) structure of which
therefore was proglucagon 78–107 amide (54). A synthetic replica
of this peptide was indeed powerfully and potently insulinotropic
(53). Observations by Svetlana Mojsov in Joel Habener’s lab
also supported a monobasic cleavage and a synthetic peptide
corresponding to proglucagon 78–108 was indeed found to
be insulinotropic (55). Natural GLP-2 was also isolated and
sequenced in the Holst lab, and was found to correspond to PG
126–158 (56). Because of the original assumption that GLP-1
would be a peptide of 37 amino acids, the naturally occurring,
biologically active form was often designated GLP-1 7–36 amide
(or merely GLP-1), which is the preferred designation today.
Importantly, small amounts of (inactive) proglucagon 72–107
amide or GLP-1 1–36 amide are produced in the pancreas (57),
which has led to the erroneous assumption that active GLP-
1 is also normally produced there. An account of these early
developments was published recently (45).

A first, the discovery of GLP-1 was met with moderate
excitement; in fact, what was discovered, was yet another
insulinotropic peptide from the gut (adding to the about 9
insulinotropic peptides already known to exist). In addition,
incretin enthusiasts had suffered a serious disappointment, when
it was observed, at about the same time, that GIP although being
potently insulinotropic in healthy individuals was ineffective in
patients with type 2 diabetes (58). This was interpreted to indicate
that the beta cell failure of type 2 diabetes, i.e., the inability
of the cells to respond to glucose with appropriately increased
insulin secretion also would apply to the incretin hormones [in
agreement with the demonstration by Perley and Kipnis (7) and
Nauck et al. (59) of the loss of incretin effects in type 2 diabetes].
Nevertheless, with the help of the early radioimmunoassays, it
was established that GLP-1 7–36 amide was indeed secreted from
the gut in response to glucose ingestion (60) and in mimicry

FIGURE 1 | Products of proglucagon processing.

experiments its potential as an incretin was soon established (61).
Also, renewed interest was aroused when it was discovered that
GLP-1, unlike all the other insulinotropic peptides from the gut
(including GIP but interestingly not including secretin) also was
a potent inhibitor of glucagon secretion (62). So this new peptide
from the gut had potential to influence blood glucose in two
ways, both by stimulating glucose-induced insulin release and by
inhibiting glucagon secretion, both of which would limit hepatic
glucose production, the main driver of the fasting hyperglycemia
of type 2 diabetes. Indeed, in subsequent studies with infusions
of physiological amounts of GLP-1 both its insulinotropic and its
glucagon-inhibitory effects (at fasting glucose concentrations!) as
well as an ensuing reduction of hepatic glucose production were
demonstrated in human volunteers (63); these experiments also
showed that although glucose production was inhibited initially,
plasma glucose concentrations only fell by 0.5–1.0 mmol/L in
spite of prolonged infusion, because the insulinotropic effect of
GLP-1 disappeared as glucose concentrations fell, demonstrating
the glucose dependency of these actions. Indeed, in later clinical
studies it was demonstrated that when it comes to the antidiabetic
effects of GLP-1, the inhibition of glucagon secretion is at least as
important as the stimulation of insulin secretion (64).

Inspired by the similarity of GLP-1 with glucagon and
oxyntomodulin, it was relevant to look at other “glucagon-like”
gastro-intestinal actions of GLP-1, and via extensive human
studies it was soon established that GLP-1 was a physiological
and powerful inhibitor of gastrointestinal secretion (both gastric
and pancreatic) and motility (65), with a very strong inhibitory
effect on gastric emptying (66). Most (all?) of these effects
were apparently transmitted via inhibition of efferent vagus
nerve activity (67, 68), providing early suggestions of powerful
actions of GLP-1 via hindbrain and hypothalamic mechanisms.
In agreement with the high density of L-cells in the distal
part of the small intestine, from where the so-called ileal brake
mechanism (upper gastrointestinal inhibition elicited by distal
stimulation) is elicited, it appeared that GLP-1 might be one
of the hormones behind it (69), sending inhibitory signals to
the brain and proximal GI tract upon arrival of nutrients to
the distal small intestine. To the extent that nutrients were
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also increased in the circulation at this time, GLP-1 would also
by stimulation of insulin secretion promote the deposition of
the nutrients while braking further intake. According to this
view, the glucose-induced incretin function would mainly be
exerted by the proximally located GIP, while GLP-1 would come
into play after more excessive nutrient intake resulting in more
distal exposure. Today, it has been possible to finally dissect the
relative importance of the two hormones GIP and GLP-1 for the
incretin effect in man; the tool making this progress possible
was the development of specific and potent antagonists of the
GLP-1 and GIP receptors (see below), that could be used in
humans: exendin-9-39 for the GLP-1 receptor (70) and GIP 3–
30 NH2 for the GIP receptor (71). In experiments with healthy
volunteers, dual antagonism during oral glucose or mixed meal
ingestion, revealed additive contributions of the two hormones
on postprandial glucose excursions as expected, but regarding
insulin secretion, removal of the GIP component resulted in
the most pronounced reduction of insulin secretion, whereas
glucagon secretion was only affected by the GLP-1 component.

In spite of the disappointment with GIP in T2DM, it was
time to see whether the new incretin would have any effects in
T2DM patients. The first study was done by Gutniak et al. (72)
in Stockholm. They infused synthetic GLP-1 into both type 1 and
type 2 diabetic patients and used the Biostator, an early artificial
pancreas, to demonstrate that almost no insulin administration
was needed to normalize blood glucose levels, when GLP-1
was infused. Almost simultaneously, Nauck et al demonstrated
that infusions of GLP-1 during slightly hyperglycemic clamp
conditions in both patients with type 2 diabetes and matched
controls elicited almost similar insulin responses (whereas GIP
infusions were ineffective) (73). In continued studies, intravenous
infusions of GLP-1 in slightly supraphysiological amounts,
were able to completely normalize fasting plasma glucose
concentrations in patients with long standing T2DM admitted
to hospital because of poor glycemic control (fasting glucose
around 13 mmol/L) (74). The normalization was accompanied
by increases in insulin and lowering of glucagon plasma
concentrations, both of which returned to the original levels as
glucose concentrations were getting normalized, illustrating the
glucose dependency and safety (with respect to hypoglycaemia)
of the GLP-1 infusion. These experiments marked the beginning
of the era of the GLP-1 based therapies.

The preserved insulinotropic effect of GLP-1 in patients with
T2DM may seem incompatible with the almost complete loss
of incretin effect in these patients (75). Subsequent studies have
shown that low physiological concentrations of GLP-1 are indeed
ineffective in patients with T2DM (76), whereas larger slightly
supraphysiological doses [like those employed by Nauck et al.
(74)] could in fact normalize beta cell sensitivity to glucose
(77); in contrast, GIP remains inactive in T2DM regardless of
dose (77). The molecular explanation for this difference is still
not known.

In the late 80ties, researchers began looking for the new
glucagon-like peptides in the brain, inspired by the reports
of immunoreactive glucagon in certain neurons of the brain
(78), particularly in the nucleus of the solitary tract. These
neurons also were immunoreactive for GLP-1 (79). In addition,

binding studies suggested the presence of a large number of
putative receptors for GLP-1 not only in the beta cells of the
pancreatic islets but also in the brain (80). In 1992, Bernard
Thorens managed to clone the single GLP-1 receptor (81),
making it possible to move from GLP-1 binding to receptor
expression which confirmed the expression pattern in the brain
(82, 83). A likely interpretation of these findings was that the
brain receptors were targets of projections from the GLP-1
neurons in the nucleus of the solitary tract in the brain stem
(84). In addition, inhibition of food intake could be elicited by
intracerebroventricular (ICV) administration of GLP-1 to rats
(85, 86). But were these observations relevant for peripheral GLP-
1? Would peripheral GLP-1 be able to reach nuclei in the brain
and what might be the effect of this? It was soon demonstrated
that leaks in the blood barrier notably in the area postrema, the
subfornical organ and themedian eminence would not only allow
entry of GLP-1 into these regions of the brain (87), but there was
also dense receptor expression at these sites suggesting peripheral
GLP-1 might also have actions on the brain (80), and in 1998
it was demonstrated that peripheral intravenous infusions of
physiological amounts of GLP-1 would lead to decreased appetite
and inhibition of food intake (88). It remains unclear whether
there is a relationship between the central actions of peripheral
GLP-1 and the GLP-1-producing neurons in the brain stem, but
it is clear that one of the most important actions of peripheral
GLP-1 is to regulate food intake in agreement with its “ileal
brake” function.

The demonstration of the GLP-1 receptor and its expression
on the beta cells was of course consistent with its powerful
insulinotropic effects (89) and was soon followed by a large
number of cell biological studies of its effect on beta cell biology
(90). Thus, the receptor was predominantly Gs coupled leading
to cAMP production and activation of protein kinase A, and, as
shown later, activation of epac2, the guanine nucleotide exchange
protein (91). In various models, GLP-1 was also able to stimulate
beta cell replication [although this was dependent on the age of
the islet cells (92)] as well as neogenesis (from ductal precursors)
(93) and importantly GLP-1 also inhibited apoptosis of human
beta cells, induced for instance by fatty acids or cytokines (94).
Together, these observations indicated that GLP-1 may have
protective effects on beta cells, and raised hopes for long lasting
and perhaps disease modifying effects of GLP-1 in diabetes
therapy. Today, long lasting trials have shown that the treatment
effect is indeed durable (95), but whether or not this can be
interpreted as a beta cell protective effect remains uncertain.

Nevertheless, treatment of diabetes was obviously of great
interest, but how to do it? Effects of single s.c. GLP-1 injections
were extremely short lasting (the plasma half-life of the peptide
in humans after iv. injection is around 2min) (96). Oral
administration was out of the question [and effects of buccal
administration equally short-lasting (97)]. Therefore, in order
to investigate whether long term treatment with GLP-1 was
feasible at all, GLP-1 was given as a continuous subcutaneous
infusion for 6 weeks in a trial in obese people with severe Type 2
diabetes (98). Fortunately, no tachyphylaxis was observed: GLP-1
therapy reduced fasting and mean plasma glucose by 4.3 and 5.5
mmol/L; glycated hemoglobin by 1.3%; and body weight by 2 kg.
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Moreover, insulin sensitivity and beta cell function, assessed by
clamp studies, were greatly improved. Importantly, no significant
side effects were recorded, providing proof of concept for GLP-1
therapy in subjects with T2D. It was now clear that GLP-1 based
therapies had tremendous potential.

Of course, continuous subcutaneous infusion was not
an attractive approach for practical clinical application, so
something had to be done. The almost immediate degradation
of GLP-1 in the body raised the question of the mechanisms
involved, and inspired by early studies by the German
enzymologist, Mentlein (99), Deacon and Holst identified the
enzyme dipeptidyl peptidase 4 as the enzyme responsible for the
degradation of GLP-1 in plasma (100) and demonstrated that this
could be prevented with inhibitors of the enzyme; in analogy with
the use of ACE inhibitors for hypertension, and based on clinical
studies they proposed the use of DPP-4 inhibitors for the therapy
of T2DM (101). In model experiments in pigs, they demonstrated
that it was possible to completely protect infused GLP-1 against
DPP-4 mediated degradation, and that this protection resulted
in marked increase in the insulin response to glucose and GLP-
1 (102). These and other studies gave impetus to the clinical
development of the inhibitors of DPP-4 for diabetes therapy, and
in a pivotal proof-of concept study by Ahren and coworkers in
2004, vildagliptin, developed by researchers at Novartis, showed
hemoglobin A1c improvements to target levels of 7% in a 1-year
trial, whereas a significant rise was observed in the placebo group
(103). The clinical aspects of the DPP-4 inhibitors, which are
now used world-wide for diabetes treatment, will be discussed
by Deacon, Ahren and others in other contributors to this
Research Topic.

Because the cleavage activity of DPP-4 is depending on the
presence of a penultimate Pro or Ala at the N-terminus, analogs
of GLP-1 with substitutions at this position should be protected,
and analogs with Ser, Val, or alpha-aminobutyric acid remained
biologically active (104), so this problem could easily be solved,
but the substitutions only increased the half-life from 1.5 to
4–5min (104), the reason being a rapid extraction of GLP-
1 in the kidneys (105), and probably also other enzymatic
attacks (106). Clearly, additional modifications were required
to produce a clinically effective analog of GLP-1. This is where
exendin-4 entered the stage. Exendin-4 is a peptide isolated from
the saliva (not the venom) of the Gila Monster (Heloderma
Suspectum) (107). It consists of 39 amino acids with the 30 N-
terminal residues showing 53% homology withmammalian GLP-
1. Exendin-4 is not the GLP-1 of the Gila Monster [it has its
own GLP-1 with a much higher homology, in agreement with
the finding that the sequence is highly conserved among species
with 100% identity among all mammals so far investigated (108)],
but is nevertheless a full and potent agonist of the mammalian
GLP-1 receptor. The fascinating story of how this reptile peptide
made it to the diabetes market has been described previously
(109). Exendin-4 is not sensitive to DPP-4 activity, and is not
extracted in the kidneys, but freely filtered resulting in an i.v.
half-life of around 30min. Upon subcutaneous injection there
is an adequate exposure of this peptide for up to 5 h (110),
which suffices for meal-related clinical activity. Since the peptide,
in analogy with GLP-1, powerfully inhibits gastric empting,

the result is absolutely no rise in plasma glucose after meal
ingestion (111). On this background, a synthetic replica of
exendin-4, exenatide, was developed for clinical T2DM therapy
with two daily injections (110). Clinical trials were satisfactory
and the peptide was approved and marketed for therapy as
the first GLP-1 receptor agonist in 2005. Another, slightly
modified synthetic version of exendin-4, lixisenatide (112), was
subsequently launched and designated for once daily use, but in
fact the actions and pharmacokinetics of the two peptides are
identical. The second GLP-1 agonist to reach the market [2009–
10] was liraglutide (113), consisting of mammalian GLP-1 to
which was attached a palmitic acid chain via a linker coupled
to the Lys residue 26. As expected from the experience with
a similarly acylated peptide, levemir, this resulted in albumin
binding, and near elimination of renal filtration as well as relative
DPP-4 resistance. The half-life after s.c. injection was now around
12 h, suitable for once daily injection, but with a high average
exposure during chronic treatment (114). The effectiveness,
particularly with respect to fasting glucose concentrations of
the long-acting analog was, as expected, considerably improved.
The biological activity, also on other targets (115), was not
diminished, and liraglutide has also been approved for obesity
treatment (116).

By covalent (albiglutide, dulaglutide) or no-covalent
(semaglutide) coupling to larger molecules with slow clearance,
analogs with even more prolonged activity have been produced
so that there are now several once-weekly agonists on the
market. Also exenatide is available in a once weekly version, in
which the molecule is slowly liberated from a subcutaneously
injected depot. The most radical solution was adopted by
the company Intarcia, whose product Itca 650 comprises
exenatide administered in an osmotic minipump the size of a
match, and similar to those used for animals, but capable of
providing a constant delivery of exenatide for 6–12 months after
subcutaneous implantation (117).

In addition to the actions of GLP-1 discussed above, the
long acting analogs have also in long-term cardiovascular
outcome studies been demonstrated to result in reduced
cardiovascular risk, so far only in patients with both T2DM
and cardiovascular risk (95, 118, 119), but emerging evidence
suggests that this may also apply to individuals without
established heart disease. The mechanism involved is not
known, but the cardiovascular actions will importantly support
the future use of GLP-1 receptor agonists, which are already
generally recommended as second line therapies for patients with
metformin failure (120).

The GLP-1 RAs are now generally recommended for second
line therapy after metformin in many patients with T2DM
(120), but the truth is that rather few patients actually use
them. A number of explanations for this may be offered: (1)
they are injectables which may represent a problem for some;
(2) They have a bad reputation after accusations that they
would cause pancreatitis, pancreatic and thyroid cancers and
C-cell hyperplasia although these were unfounded and were
not confirmed in the large CVOTs; (3) the gastrointestinal side
effects (nausea, vomiting, bile system complications) although
not frequent with newer up-titration protocols; (4) the fact that
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the weight effect is generally small and that the effect flattens
out after some time, which is experienced as disappointing; (5)
the fact that treatment interferes with appetite and the pleasure
of eating, perhaps due to interference by the GLP-1 RAs with
the reward system of the CNS (121), which may be experienced
negatively by some; but finally (6) the price, which is dramatically
higher than that of metformin and the sulfonylureas. The latter
issue has made the WHO not to recommend the use of GLP-
1RAs in their most recent set of recommendations (122). The first
GLP-1RAs will go off patent in the early 2020-ties and this will
undoubtedly lower the price. It is also possible that the likely oral

availability of a GLP-1RA (123) will promote the future use. The
DPP-4 inhibitors which have already conquered a massive share
of the global market are likely to remain keep their status in the
years to come in spite of their lesser efficacy for two important
reasons (1) their price is gradually falling and (2) their unusually
benign side effect profile (124).
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