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Previous studies conducted in our laboratory have found altered adult health outcomes

in animals with prenatal exposure to environmentally relevant levels of unconventional

oil and gas (UOG) chemicals with endocrine-disrupting activity. This study aimed to

examine potential metabolic health outcomes following a preconception, prenatal and

postnatal exposure to a mixture of 23 UOG chemicals. Prior to mating and from

gestation day 1 to postnatal day 21, C57BL/6J mice were developmentally exposed

to a laboratory-created mixture of 23 UOG chemicals in maternal drinking water. Body

composition, spontaneous activity, energy expenditure, and glucose tolerance were

evaluated in 7-month-old female offspring. Neither body weight nor body composition

differed in 7-month female mice. However, females exposed to 1.5 and 150 µg/kg/day

UOG mix had lower total and resting energy expenditure within the dark cycle. In the

light cycle, the 1,500 µg//kg/day group had lower total energy expenditure and the 1.5

µg/kg/day group had lower resting energy expenditure. Females exposed to the 150

µg/kg/day group had lower spontaneous activity in the dark cycle, and females exposed

to the 1,500 µg/kg/day group had lower activity in the light cycle. This study reports

for the first time that developmental exposure to a mixture of 23 UOG chemicals alters

energy expenditure and spontaneous activity in adult female mice.

Keywords: unconventional oil and gas, energy expenditure, endocrine disrupting chemicals, developmental

origins of health and disease, hydraulic fracturing, metabolism, metabolic disruptors

INTRODUCTION

Unconventional oil and gas (UOG) extraction combines directional drilling and hydraulic
fracturing to liberate oil and gas that was previously inaccessible by traditional drilling methods,
including sources of shale gas, coal bed methane, and tight gas. Across the industry, over
1,000 chemicals have been reportedly used in the hydraulic fracturing process. Varying mixtures
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of these chemicals are combined with millions of gallons of
water to fracture underground rock. UOG extraction has been
identified as a potential source of EDCs, developmental and
reproductive toxicants. We have previously reported that out of
24 UOG chemicals tested, 23 exhibited antagonist activity for
one or more of the estrogen, androgen, progesterone, thyroid,
and glucocorticoid receptors; and a mixture of 23 of these UOG
chemicals exhibited antagonistic activity for all five receptors (1).

UOG activities, including drilling, hydraulic fracturing,
and wastewater removal and storage, can contaminate surface
and ground water with endocrine-disrupting chemicals
(EDCs), defined as exogenous chemicals that can interfere with
normal hormone action [(2–6) and reviewed in (7–9)]. We
have previously observed an association between endocrine-
disrupting activity in surface water and UOG activities. For
example, we measured greater antagonistic activities for the
estrogen, androgen, progesterone, thyroid, and glucocorticoid
receptors immediately downstream of a UOG wastewater
disposal facility relative to upstream (4). Our laboratory has
reported that prenatal exposure to a laboratory-created mixture
of 23 UOG chemicals was associated with altered organ
weights, reproductive endpoints, and body weight in adult
offspring of gestationally-exposed C57BL/6 mice, suggestive of
developmental programming (1, 10, 11). Previous studies on
hydraulic fracturing flowback and produced water also support
the hypothesis that UOG chemical mixtures can alter fetal
development, as developmentally-exposed zebrafish exhibited
reduced reproduction, developmental malformations, and
developmental toxicity (12, 13). Additionally, a systematic
review by Elliot et al. found that 40% of 240 UOG chemicals
with publicly-available reproductive and/or developmental
toxicity information had been shown to exhibit developmental
toxicity (14).

Developmental exposure to EDCs has also been associated
with metabolic disease later in life (15), and these chemicals
have been termed “metabolic disruptors” (16, 17). Exposure
to multiple EDCs, e.g., bisphenol A (BPA), phthalates,
dichlorodiphenyltrichloroethane (DDT), and nicotine, among
others, has been associated with one or more altered metabolic
endpoints, such as obesity, insulin sensitivity, adipose tissue
regulation, and lipid disorders [reviewed in (18) and (19)].
UOG chemicals also have the potential to be metabolic
disruptors. We have shown that both a 23-UOG mixture
and UOG-impacted surface water samples had adipogenic
activity in vitro (20). Studies in zebrafish have shown that
exposure to UOG wastewater resulted in decreased metabolic
rates (12, 21). Two studies reported an association between
maternal residential proximity to UOG sites and low birth
weight infants, while another found an association between
maternal residential proximity to UOG sites and increased
birth weights (22–24). Both high and low birth weights are
associated with later-life development of obesity (25). We have
previously demonstrated that female mice prenatally exposed
to a mixture of 23 UOG chemicals from gestation day 11
through birth had increased body weights at postnatal days 7,
13, and 21. Body weight and composition can be indicative of
energy imbalance.

Taken together, there is limited but suggestive data linking
UOG chemicals and altered metabolism. However, no studies
have examined the direct of effects of developmental exposure
to UOG chemicals and energy expenditure and activity in
adulthood. We hypothesized that preconceptional, gestational
and lactational exposure to a laboratory-created mixture of UOG
chemicals would alter energy balance in adult mice through
modulation of energy expenditure. To test this hypothesis, we
exposed female C57BL/6 mice to a mixture of 23 UOG chemicals
5 weeks prior to mating, and from gestation day (GD) 1 to
postnatal day (PND) 21, and evaluated body composition, energy
expenditure, activity, and glucose tolerance in adult offspring.

MATERIALS AND METHODS

Animals
This study was carried out in accordance with the
recommendations of the National Research Council’s Guide
for the Care and Use of Laboratory Animals. The protocol
was approved by the University of Missouri Animal Care
and Use Committee. C57BL/6J mice (purchased from Jackson
Laboratories) were housed in polysulfone cages, in a barrier
facility with a 12 h light/dark cycle. Feed (LabDiet 5053: 13% kcal
fat, 3.25% kcal sucrose) and acidified water (in glass bottles) were
sterilized and provided ad libitum.

Chemical Mixture and Treatment
C57BL/6 dams used in this study were 8 months old at initiation
of treatment, and 9 months of age when mated. These dams
were used in a previous study. Offspring outcomes from the
first experiment were reported in Kassotis et al. (1, 11). Each
female received the same concentration of chemical mixture
that was randomly assigned in the previous study (1). Dams
(n = 14, 9, 11, 8, and 10) were exposed to the chemical
mixture (at concentrations of 0, 0.01, 0.10, 1.0, or 10µg/mL,
respectively) for 5 weeks prior to mating (Figure 1). Chemical
exposure was paused while females were mated in order to
bypass the window of fertilization, and to avoid consumption
of treatment chemicals by the males (Figure 1). Treatment was
resumed at gestational day 1 (1 day after presence of copulatory
plug) and continued through weaning of the F1 generation at
PND 21. “Developmental exposure” will be used throughout
the manuscript to describe the inclusive exposure to the dam
preconception and GD 1 to PND 21 exposure.

The 23 chemicals were mixed equimass in 200 proof ethanol
and added to drinking water such that each individual chemical
was present at a concentration of 0.01, 0.10, 1.0, and or 10µg/mL
in a 0.2% ethanol vehicle. Water bottles were changed twice per
week to ensure consistent chemical concentrations throughout
the dosing period. Water consumption was calculated as the
difference in the weight of the water bottle before and after use
every time the bottle was changed. Dosages based on weight of
the dam and the amount of water consumed were calculated as
1.5, 15, 150, and 1,500 µg/kg/day.

To be included in further analysis, litters had to meet
minimum inclusion criteria: Each litter had to have ≥ 3
pups, ≥ 1 male, and ≥ 1 female. After application of
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FIGURE 1 | Experimental timeline. Dams (n = 14, 9, 11, 8, and 10) that were

exposed to the 23 UOG chemical mixture (at concentrations of 0, 0.01, 0.10,

1.0, or 10µg/mL, respectively) for 5 weeks prior to mating. Chemical exposure

was paused while females were mated in order to bypass the window of

fertilization, and to avoid consumption of treatment chemicals by the males.

Treatment was resumed at gestational day 1 (1 day after presence of

copulatory plug) and continued through weaning of the F1 generation at

PND 21. Body composition was measured at PND 7, PND 21, and at 7

months of age. Energy balance analyses including energy expenditure, activity,

food intake, and glucose tolerance were measured at 7 months of age.

inclusion criteria, n = 6, 4, 5, 4, and 4 unique litters; and
n = 9, 11, 9, 10, and 10 individual animals from vehicle, 1.5,
15, 150, and 1,500 µg/kg/day treatment groups, respectively
(Supplementary Table 1).

At PND 7, F1 pups were toe clipped and anogenital distance
(AGD) was determined by caliper measurement. At PND 21,
pups were weaned and rehoused with pups of the same treatment
group and sex.

Animal Rehousing
Female offspring at 6 months of age were transferred to
an open-top conventional facility for body composition and
metabolic assessments. Mice were allowed to acclimate to the
new environment for a month prior to initiation of metabolic
testing. This facility was temperature controlled and kept on a
12-h light/dark cycle. In this facility, the experimental animals
received non-sterilized feed (LabDiet 5053) and non-acidified,
non-sterilized water.

Body Composition
Body weight was measured at PND 7, PND 21, and 7 months
of age. Fat and lean mass were assessed at 7 months of age,
using an EchoMRI-900 (EchoMRI, Houston, TX). Fat and lean
percentages were calculated by dividing fat or lean mass by
body weight.

Indirect Calorimetry
Energy expenditure via indirect calorimetry, activity, and
behavior were measured using the Promethion from Sable
Systems Int., (Las Vegas, NV). Oxygen consumption, energy
expenditure, and activity were calculated with macros provided
by the manufacturer (26).

Total energy expenditure was measured for a 12-h cycle.
Resting energy expenditure was extrapolated from the lowest
average energy expenditure in a 30-min window within a 12-h
cycle and calculated to be representative of the resting energy
expenditure for a complete 12-h period. Non-resting energy
expenditure was calculated for each 12-h cycle by subtracting

12-h calculated resting energy expenditure from 12-h total energy
expenditure (27).

Activity andmeters traveled were measured by infrared beams
that track movement in horizontal (X and Y plane) and vertical
directions (Z plane). Spontaneous activity was defined as activity
in the X, Y, and Z directions, ambulatory activity in the X and
Y directions, and rearing activity in the Z direction. Meters
traveled counted all meters in the X, Y, and Z direction. Food
consumption was also measured in this system.

Energy expenditure, activity, and behavior were assessed for
a random subset of 7 animals per treatment group on the first
day of estrus. Energy expenditure was calculated from measured
oxygen consumption using the Kaiyala-Simple equation. Valid
data (barring system malfunctions) were collected for n = 7,
4, 6, 6, and 6 animals in the vehicle, 1.5, 15, 150, and 1,500
µg/kg/day groups, respectively (Supplementary Table 1). Mice
were individually housed in the system’s cages for 48 h. The first
24 h were used as an acclimation period, and the second 24 h
were analyzed separately as the 12-h light cycle or the 12-h dark
cycle. Oxygen consumption, energy expenditure, and activity
were calculated with macros provided by the manufacturer (26).

Glucose Tolerance Test
Glucose tolerance tests were performed only in females in blocks
of mice in estrus (n = 16/block). Mice were weighed at 1000 h,
and fasted from 1000 to 1600 h. A baseline (0min) blood sample
was collected via tail snip at 1600–1630 h, and blood glucose was
determined using a glucose monitor (Accu-Chek Aviva Plus).
Immediately after the baseline measurement was taken, 250
mg/mL glucose was injected intraperitoneally at 1 mg/kg body
weight. Blood glucose concentrations were measured at 30, 60,
and 120min post injection, as described previously (28).

Statistics
Data were analyzed with a linear mixed model, using SPSS
version 32. This model was selected so that litter could
be incorporated as a random effect. Treatment and date
of measurement (if more than 1 day) were included as
fixed effects for body weight, fat mass, lean mass, fat
percent, lean percent, food consumption, and activity. For
analysis of energy expenditure, body weight and size of litter
were also considered as fixed effects. Data were normally
distributed or transformed to achieve normality. Results are
displayed in all figures as the estimated marginal means, back
transformed for presentation if transformation was necessary,
except for Supplemental Figure 1C. Differences between vehicle
and treatment groups were analyzed using Fisher’s Least
Significant Difference tests, with 95% confidence intervals. The
percent dams that delivered (Supplemental Figure 1C) was
analyzed by Fisher’s exact test. All tests were compared to vehicle.

RESULTS

Maternal and Birth Outcomes
The body weights of pregnant dams were measured in order to
monitor health and calculate treatment dosage. The body weights
of the dams exposed to the UOG chemical mixture did not
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differ from those of dams exposed to the vehicle at gestation
day 0 after 5 weeks of treatment (Supplementary Figure 1A).
Treatment did not alter dam body weight or water consumption
(Supplementary Figures 1A,B). The percentage of dams per
group that delivered tended to be decreased in the 150 and
1,500 µg/kg/day groups (p<0.20) (Supplementary Figure 1C).
The number of live pups per litter did not differ relative to vehicle
(Supplementary Figure 1D).

Offspring Body Composition
Developmental exposure to the UOG chemical mixture altered
the body weights of female offspring at PND 7. Body weight
at PND 7 in F1 females developmentally exposed to the UOG
chemical mixture was 10–26% lower in the 1.5, 15, and 1,500
µg/kg/day treatment groups relative to vehicle (Figure 2A). At
PND 21 and at 7months of age, these females no longer displayed
differences in body weight relative to vehicle (Figures 2B,C).
Fat mass, percent fat mass, lean mass, and percent lean mass
at 7 months of age also did not differ relative to vehicle
(Supplemental Figure 2).

Offspring Energy Expenditure
Developmental exposure to the UOG chemical mixture was
associated with altered energy expenditure in the dark cycle
in females. After 24 h of acclimation, energy expenditure was
assessed for the final 24 h. Energy expenditure data were divided
into 12-h light and dark cycles for analysis. In the dark cycle,
total energy expenditure was 16 and 19% lower and resting
energy expenditure was 20 and 18% lower in the 1.5 and 150
µg/kg/day treatment groups respectively (Figures 3A,B). Non-
resting energy expenditure tended to be 22 and 20% lower in the
15 (p = 0.054) and 150 (p = 0.054) µg/kg/day treatment groups
relative to vehicle (Figure 3C).

In the light cycle, total energy expenditure was 20% lower
in the 1,500 µg/kg/day treatment group relative to vehicle
(Figure 3A). Resting energy expenditure was 17% lower in the
1.5 µg/kg/day group relative to vehicle, while non-resting energy
expenditure was not altered relative to vehicle in any treatment
group (Figures 3B,C).

Offspring Activity
Developmental exposure to the UOG chemical mixture was
associated with altered spontaneous activity in both the light

and dark cycles in females. In the dark cycle, spontaneous
activity was 27% lower in the 150 µg/kg/day treatment group
relative to vehicle (Figure 4A). In the light cycle, spontaneous
activity was 34% lower in the 1,500 µg/kg/day treatment group
relative to vehicle (Figure 4B). No differences were detected
in ambulatory, rearing activity, or meters traveled for any
treatment group relative to vehicle in the light or the dark cycles
(Supplementary Figure 3).

Offspring Glucose Homeostasis
Glucose tolerance tests were performed at 7 months of age on the
day of estrus. No differences were detected in basal glucose levels,
glucose levels at subsequent time points using basal glucose as a
baseline, or in area under the curve for any treatment groups in
females (Supplementary Figure 4).

Offspring Food Consumption
Food consumption during the dark cycle did not differ between
vehicle and treatment groups in 7-month-old female offspring.
However, food consumption during the light cycle increased
by 60% in the 150 µg/kg/day treatment group relative to
vehicle (Figure 5), but no differences were detected in the other
treatment groups when compared to vehicle.

DISCUSSION

We report for the first time that developmental exposure to
a mixture of 23 oil and gas chemicals altered adult energy
expenditure in 7-month-old female mice, particularly in the dark
cycle when mice are more active. Mice in the 15 µg/kg/day
group had a lower non-resting energy expenditure. Females
in the 1.5 and 150 µg/kg/day groups had lower total and
resting energy expenditure within the dark cycle, and the 150
µg/kg/day group had lower spontaneous activity and tended to
have lower non-resting energy expenditure in the dark cycle.
This decrease in energy expenditure did not result in altered
body weight or body composition at 7 months of age. This study
supports the hypothesis that developmental exposure to EDCs
can contribute to the programming of energy expenditure and
activity in adulthood.

Hormones are essential in regulating metabolism throughout
development and programming metabolic function in
adulthood, and developmental exposure to EDCs has been

FIGURE 2 | Body weights of offspring. Estimated marginal means (±) SEM of body weight at post-natal day 7 (A), post-natal day 21 (B), and at 7 months of age (C).

*p < 0.05 relative to vehicle **p < 0.0125 relative to vehicle (n = 9, 11, 9, 10, 10 respectively for vehicle, 1.5, 15, 150, and 1,500 µg/kg/day treatment groups).

Models included covariates: litter, date body weight was taken and litter size.
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FIGURE 3 | Energy Expenditure in Female Offspring at 7 months of age. Estimated marginal means (±) SEM in 12-h average increments of total energy expenditure

(A), resting energy expenditure (B), non-resting expenditure (C) (n = 7, 4, 6, 6, 5 respectively for vehicle, 1.5, 15, 150, and 1,500 µg/kg/day treatment groups). *p <

0.05 relative to vehicle **p < 0.0125 relative to vehicle. Models included covariates: litter, date of recording, litter size, and body weight.

reported to alter body composition, energy expenditure, activity,
glucose homeostasis and adipogenesis (29–32). Developmental
exposure to EDCs, including BPA, lead, arsenic, diethylstilbestrol
(DES), and perfluorooctanoic acid (PFOA) has been associated
with altered metabolism (19, 29–39). While these EDCs are

reported to disrupt one or more hormone receptors, including
estrogen, androgen, progesterone, glucocorticoid, thyroid
hormone, and others, they have all been reported to agonize the
estrogen receptor (33, 35–37, 39–41). Developmental exposure
to estrogen receptor agonists from preconception to weaning is
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FIGURE 4 | Activity of female offspring at 7 months of age. Estimated marginal means (±) SEM in 12-h average increments of total spontaneous activity (A), and

meters travelled (B) (n = 7, 4, 6, 6, 5 respectively for vehicle, 1.5, 15, 150, and 1,500 µg/kg/day treatment groups). *p < 0.05 relative to vehicle. Models included

covariates: litter and date of recording.

FIGURE 5 | Food consumption in female offspring at 7 months of age. Estimated marginal means (±) SEM of food intake at 7 months of age in 12 h increments of

both light and dark cycle (n = 7, 4, 6, 6, 5 respectively for vehicle, 1.5, 15, 150, and 1,500 µg/kg/day treatment groups). *p < 0.05 relative to vehicle. Models included

date of recording as a covariate.
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associated with increased energy expenditure and spontaneous
activity in female Agouti (lead and BPA) and C57BL/6JxFVB
(BPA) mice (29, 34, 38). These effects may be strain specific
as no difference in energy expenditure was seen in CD-1 and
California mice (42–46).

The role of androgens in metabolic dysfunction are well-
appreciated, though are not likely to play a role in the
observed effects herein. Acute androgen exposure is generally
considered anti-adipogenic and anti-androgen exposure is
adipogenic using in vitro or in vivo models (47, 48). However,
dissimilar effects can be observed in specific cases. Women,
such as those with polycystic ovarian syndrome (PCOS), have
increased serum androgens and suffer increased visceral white
adipose tissue deposition (47), potentially mediated by reduced
insulin sensitivity (48, 49). These effects also appear reversed
with developmental androgen exposure. For example, prenatal
exposure to androgen results in metabolic dysfunction in adult
female rodents and monkeys, including increased body weight,
adiposity, insulin, serum lipids profiles, and decreased energy
expenditure (1, 49–51).

We have previously reported that the UOGmix has antagonist
activity for estrogen, androgen, glucocorticoid, progesterone,
and thyroid hormone receptors suggesting the UOG mix may
antagonize one or more of these receptors during development
to alter metabolic endpoints in adulthood (10). In this study,
females exposed to the 1.5 and 150 µg/kg/day 23-UOG mix had
lower total and resting energy expenditure and 15 µg/kg/day
had lower non-resting energy expenditure in the dark cycle.
Further, females developmentally exposed to the 15 and 150
µg/kg/day 23-UOG mix had lower spontaneous activity. These
effects are the opposite of the increased energy expenditure and
spontaneous activity after developmental exposure to estrogen
receptor agonists (34, 38); thus, the UOG mixture may have
programmed reduced energy expenditure and spontaneous
activity at 7 months of age due to estrogen receptor antagonism
during development. While there is little information on
the developmental effects of estrogen receptor antagonists
and adult energy expenditure, depletion of estrogen receptor
activity (estrogen receptor-alpha knockout and g-protein coupled
estrogen receptor knockout) has been associated with lower
total energy expenditure suggesting estrogen receptor activity
may modulate development of energy homeostasis in adulthood
(50, 51). Androgenic effects during gestation could elicit some of
the effects reported herein; however, since the UOGmix contains
anti-androgenic activity rather than agonist activity, the effects
observed in the current study in 7-month-old female mice, do
not appear to be mediated through AR (1, 10). Taken together,
while the lower energy expenditure and activity seen in the
current study is consistent with antiestrogenic activity in the
23-UOGmixture, future studies are needed to delineate the exact
developmental receptor pathways modulated by the 23-UOG
mixture during development that alter adult energy expenditure.

In the current study, we expanded the exposure window
from our prior work using a prenatal exposure (GD 11–18) to
combine pre-conception, prenatal, and lactational exposure to
assess impacts of adult maternal exposure prior to fertilization
and to bracket fetal development from GD 1 to PND 21.
Exposure during GD 1–11 covers development of the placenta,

pancreas, and liver, and maternal high fat diet during this
period has been shown to cause adverse metabolic outcomes
in offspring (52). Also, a prolonged exposure through PND
21 includes development of the brain including expression of
neurotransmitters and their receptors (53). The brain is a key
modulator of energy balance regulating food intake, energy
expenditure, and insulin secretion (54). UOG chemicals are
cleared from the body within hours, so the exposure window
for this study did not cover the time of mating to avoid male
exposure as it has been shown male sperm can effect the
epigenetics of offspring leading to obesity (55). Exposure started
at GD 1, which is 24–36 h after mating depending on exactly
when copulation occurred. This exposure paradigm is largely
after the major wave of the zygotic activation phase between∼24
and 36 h, when the embryo is becoming transcriptionally active,
which will result in some heterogeneity of exposure depending
on when copulation occurred (56, 57). Epigenetic remodeling
occurs during this developmental phase and experiments should
specifically target this phase for exposure to determine if UOG
chemical exposure alters epigenetic reprogramming (56, 58).
Future work is needed to systematically assess the impacts of
UOG exposure on the epigenetics of offspring and the unique
impacts of different exposure windows.

In the current study, we report that a combined pre-
conceptional, prenatal, and lactational exposure from GD 1 to
PND 21 to a mixture of 23 UOG chemicals was associated
with decreased body weights at PND 7 in females. Previously
our lab has shown that a prenatal exposure from GD 11 to
GD 18 to the same 23-UOG mixture resulted in the opposite–
increased body weight at PND 7 and 21 (11). This may be
due in part to the different exposure windows as developmental
exposure to environmental chemicals can have quantitatively and
qualitatively different effects depending on the exposure windows
(59–61). Alternatively, decreased body weight at PND 7 in the
current study could have been a transient acute effect from
lactational exposure to the 23-UOGmixture or a result of altered
maternal behavior as EDCs have been shown to disrupt maternal
behavior (62–64).

Many factors contribute to energy balance, body composition,
and body mass regulation. In this study, pre- and post-natal
exposure to the 23-UOG mixture decreased total and resting
energy expenditure in some UOG mix groups, but this did
not result in altered body weight, lean mass, or fat mass
in 7-month-old females. Although one would typically expect
higher body mass or fat mass to track with lower energy
expenditure, this is not always the case. For example, Wan
et al. also found that AKT knockout mice displayed an increase
in energy expenditure compared to control mice matched for
body mass (65). A limitation of indirect calorimetry is that it
is taken at one point in time and does not represent energy
metabolism throughout the lifespan of the animal. It is possible
that the lower energy expenditure measured in the 23-UOG
mixture may have led to greater body mass if mice were aged
longer-a question directly assessed in a companion paper in
this journal, Balise et al. (submitted). In addition, although
efforts were made to reduce any stress caused by the indirect
calorimetry cages by providing an acclimation period and using
the same bedding as home cages, it is possible that a change
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to a new environment impacted control mice and 23 UOG
exposed mice differently during the defined period of time.
Energy homeostasis is maintained with different compensating
mechanisms such as differences in digestion, skeletal muscle
metabolism, adipose storage, or fecal deposition. In addition,
although we carefully measured food intake at defined periods
of time, it is possible that small reductions in food intake
allowed 23-UOG mixture treated animals to maintain normal
body mass despite reduced energy expenditure. Future long-
term studies can be conducted to determine if these significant
decrements in energy expenditure have long term ramifications
for body mass and metabolic health. At this age, an impact
on body weight might not be seen unless the system is
challenged beyond compensatory mechanisms. For example,
a high-fat diet or western style diet challenge has revealed
underlying metabolic programming following developmental
exposure to other EDCs, such as DEHP, atrazine, and BPA
(66–68). Further studies challenging these animals with a
high fat high sugar diet might reveal underlying metabolic
differences by challenging the homeostatic mechanisms that
regulate metabolism (see Balise et al., submitted).

Overall, we have reported that the 23-UOG mixture
can alter developmental programming and result in
altered energy expenditure and activity of 7-month-
old females. The results shown thus far highlight the
need for additional research on metabolic health effects
in humans and animals in drilling-dense regions. More
studies should be aimed at understanding exposure to UOG
and other environmental chemicals on metabolic health
outcomes (69).
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