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Genetic susceptibility, together with old age, female sex, and low bone mineral density

(BMD) are amongst the strongest determinants of fracture risk. Tmost recent large-scale

genome-wide association study (GWAS) meta-analysis has yielded fifteen loci. This

review focuses on the advances in the research of genetic determinants of fracture

risk. We first discuss the genetic architecture of fracture risk, touching upon different

methods and overall findings. We then discuss in a second paragraph the most recent

advances in the field and focus on the genetics of fracture risk and also of other

endophenotypes closely related to fracture risk such as bone mineral density (BMD).

Application of state-of-the-art methodology such as Mendelian randzation in fracture

GWAS are reviewed. The final part of this review touches upon potential future directions

in genetic research of osteoporotic fractures.

Keywords: genetics, osteoporosis, fracture risk, genome-wide association studies, review, family, single

nucleotide polymorphism, copy number variation

GENETIC ARCHITECTURE OF FRACTURE RISK

Bone fractures are considered the most relevant clinical sequelae of osteoporosis. Genetic
susceptibility, together with old age, female sex, falls (1) and low BMD are amongst the strongest
determinants of fracture risk. A positive family history is a risk factor for osteoporosis and fractures
thus reinforcing the role of genetics in the basis of liability to osteoporotic fractures (2). Moreover,
parental hip fracture has been incorporated as a risk factor in the FRAX clinical assessment
algorithm in the last decade. Heritability studies have reported estimates for bone mineral density
(BMD) and fractures of up to 66 and 46%, respectively (3, 4). A parental history of fracture has been
related to any-type of fracture risk (risk ratio (RR) for any-type of fracture 1.17, 95% CI 1.07-1.21),
and hip fracture (RR 1.49, 95% CI: 1.17-1.89) (5). These previous findings are at the background of
further genetic investigations.

Different types of genetic changes may underlie diseases; structural variations, including
deletions or base pair changes, vary from mutations of larger stretches of genetic material
to single nucide polymorphisms (SNPs) and mutations affecting 1 base pair together
with structural variation comprising insertions and deletions of different size across the
genome. As discussed elsewhere in this journal issue, there are a multitude of genetic
mutations known to cause relatively infrequent monogenic conditions presenting with bone
fragility including familial forms of osteoporosis, osteogenesis imperfecta and other bone
disorders, for example: COL1A1 (6), COL1A2, LRP5 (7), WNT1 (8), LGR4 (9), PLS3 (10),
CRTAP, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1 and SP7 (11), summarized
in Table 1. One human genome contains roughly 3 billion (3,000,000,000) nucleotides,
which are the building blocks of the genome in the form of the letters A, T, G,
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TABLE 1 | An overview of monogenic bone disorders and the genes involved in

their pathology.

Disease Gene Locus References

Autosomal dominant

Osteopetrosis type II

CLCN7 16p13 (12)

Autosomal dominant

hypophosphataemic rickets

FGF23 12p13.32 (13)

Early-onset osteoporosis WNT1 12q13.12 (8)

Familial hypocalciuric

hypercalcaemia (FHH)

CASR 3q21.1 (14)

GNA11 19p13.3 (15)

AP2S1 19q13.3 (16)

Hereditary hypophosphataemic

rickets with hypercalciuria

SLC34A3 9q34.3 (17)

Hypophosphatasia TNS/ALPL 1p36.12 (18)

Juvenile Paget disease TNFRSF11B 8q24.12 (19)

Osteogenesis imperfecta (OI) COL1A1 17q21.33 (6)

COL1A2 7q21.3 (7)

IFITM5 11p15.5 (20)

SERPINF1 17p13.3 (11)

CRTAP 3p22.3 (11)

PRH1/LEPRE1 1p34.2 (11)

WNT1 12q13.12 (8)

Pseudohypoparathyroidism GNAS 20q13.3 (21)

Sclerostosis SOST 17q21.31 (22)

LRP4 11p11.2 (23)

Vitamin D-dependent rickets CYP3A4 7q22.1 (24)

CYP27B1 12q14.1 (24)

VDR 12q13.11 (25)

X-linked hypophosphatemic

(XLH) rickets

PHEX Xp22.11 (11)

X-linked osteoporosis PLS3 Xq23 (11)

and C.When a SNP in the sequence is swapped for another letter,
this is called a mutation and considered a SNP when occurring
relatively frequent, i.e., with a minor allele frequency (MAF)
>0.5% in the population). Technologies for SNP genotyping
include enzyme-based methods (e.g., polymerase chain reaction
[PCR]-based), hybridization-based methods (e.g., microarrays)
and next-generation sequencing.

Genome-wide screening, as applied in genome-wide
association studies (GWAS), tests for associations between
genetic markers (SNPs and traits of interests in a hypothesis
-free manner. This approach can add onto a priori knowledge
about the physiological, biochemical or functional aspects of
possible candidates (26). On the other hand, genome-wide
genotyping is unbiased in the sense that by surveying the whole
genome in a hypothesis-free manner, involvement of unexpected
candidates or even loci with unknown function could be revealed
(27). Meta-analyses are an appropriate way for follow-up in
candidate gene studies of top loci and genes prioritized by
GWAS, and use of existent GWAS for look-ups of functional
biological hypotheses.

It has been shown that SNPs underlie differences between
people, including the variability in disease susceptibility, and
recent GWAS have vastly expanded our knowledge in this

area (28). Apart from developing our understanding of disease
etiology, expectations are that these genetic markers will be useful
in disease diagnostics and prediction, form potential drug targets
and potentially modulate treatment response (9).

Fracture is the most clinically relevant endpoint of
osteoporosis and its etiology is complex. Similarly to other
traits strongly related with old age, the heritability of fracture
risk decreases with age. Studying correlated endophenotypes
that are associated with fracture risk, such as BMD, lean mass
and hand grip strength might be a good alternative to study the
genetic basis of fracture risk. GWAS for various osteoporosis-
related traits have shown that targeting these quantitative
endophenotypes with excellent measurement properties (root
mean square standard deviation expressed as coefficient of
variation of 1.0–1.2% for the spine and 1.1–2.2% for the femoral
neck by DXA)(29) is efficient in the number of loci discovered.
The earliest GWAS of DXA-BMD identified 24 loci that influence
DXA-BMD variation explaining ∼3% of trait variance (30–36)
of which several variants have also been nominally associated
with fracture risk (37, 38). A breakthrough was the meta-analysis
by the genetic factors for osteoporosis (GEFOS) and genetic
markers for osteoporosis (GENOMOS) consortia (39), where
the top-associated BMD markers explaining ∼6% of BMD
variance were also tested for fracture risk (31,016 cases and
102,444 controls), where 14 out of 56 BMD loci were associated
at Bonferroni corrected significance level with fractures, of
which six loci at genome-wide significant level. An alternative
measurement method for DXA is total body BMD, as is more
commonly applied in childhood and adolescence, where GWAS
recently reported more than 80 loci explaining 10% of the
variance (40). This same publication examined these SNPs in an
independent fracture study, where a decrease of one standard
deviation in genetically determined total body BMD resulted
in 56% higher odds of fracture. Another endophenotype is
BMD estimated from quantitative heel ultrasound, where in this
GWAS 12 out of the associated 307 SNPs were also associated
with fracture risk, newly adding the AQP1 and SLC8A1 loci as
potential fracture genetic determinants (41).

BMD is among the quantitative traits for which GWAS have
been effective in discovering high numbers of loci (42, 43). On the
other end, GWAS for dichotomous disease as a direct outcome
have yielded relatively lower numbers of loci discovered (42),
probably due to study power issues. This might concern the
studies for osteoporotic fractures as well. Further, identifying the
specific genetic determinants contributing to the risk of fracture
has been difficult due to its multifactorial nature and occurrence
late in life. High phenotype heterogeneity and ascertainment bias
reduce the power to detect association,making the genetic studies
evenmore difficult. Endophenotypes may be nearer to the coding
DNA in the chain of events at the basis of multifactorial diseases,
and, homogeneous determination of endophenotypes may be
simpler than defining certain diseases. Indeed, hypothesis-free
genome-wide screens have shown that the most prominent and
consistently replicating genetic loci associated with fracture risk
are also associated with BMD, which serves as proof of BMD
being a very powerful endophenotype for fracture prediction
(44). This also implies that an underlying fragility component
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mediated through genetic predisposition seems to form a major
part of the basis for fracture risk.

At the beginning of the GWAS era, the genomics field was
dominated by the common disease-common variant hypothesis,
which states that common diseases are caused by common
genetic variants (45). Yet, the list of rare genetic variants
influencing common disease is growing (46). In between these
two categories are SNPs with minor allele frequency (MAF)
of 0.5–5%.

RECENT ADVANCES IN THE GENETICS OF
OSTEOPOROTIC FRACTURES

Several GWAS specifically aimed at fracture risk, have been
performed to date, as discussed below and summarized inTable 2
and Figure 1.

GWAS for Fracture Risk and DXA-BMD
With regard to the allele frequencies, osteoporotic fracture risk
has been shown to be associated with common, uncommon
and rare variants. In a study of structural variation in relation
to fracture risk (5,178 Dutch individuals of which 809 fracture
cases), the proportion of fracture cases with at least one deletion
was significantly higher compared to controls and a 210 kb
deletion located on chromosome 6p25.1 was associated with
fracture risk (OR=32.58, 95% CI 3.95 to 1488.89). An in
silico meta-analysis in four studies with copy number variation
microarray data found similar results for the association with
fracture risk (OR 3.11, 95% CI 1.01 to 8.22). Notably, this
variant was absent in samples from several countries; indicating
geographic diversity.

Nevertheless, this study indicates that the study of rare CNVs
deserves follow-up (49). Also, another effort in the GEFOS
and GENOMOS consortium encompassing for the first time a
sequencing-based GWAS meta-analysis has discovered EN1 as a
determinant of bone density and fracture (rs11692564(C) allele
OR= 1.18) (52). Further, deCODE investigators have discovered
common sequence variants in PTCH1 (53) (MAF= 11.4–22.6%)
and less frequent (MAF = 0.14%−0.18%) variants in LGR4 (9)
associated with BMD and fractures (OR= 1.09 and OR= 3.12).

The first two published GWAS for fracture risk identified the
SVIL gene locus in African American populations (50) and the
MECOM gene locus in Korean and Japanese populations (48),
respectively. It should however be noted that access to larger
sample sizes is still limited for samples of non-European descent,
as reflected in a lack of a replication meta-analysis for the African
American fracture GWAS. The second GEFOS GWAS meta-
analysis for BMD assessed the identified loci for their relation
with fracture (39). The recently published large scale GWAS
meta-analysis for fracture in 25 cohorts from all over the world
with genome wide genotyping and fracture data (discovery in
37,857 fracture cases and 227,116 controls; replication in up
to 147,200 fracture cases and 150,085 controls) identified 15
loci (44), of which all were also associated with bone mineral
density. Relative to the previous DXA-BMD GWAS–fracture
association study (39), we confirmed the 2p16.2 (SPTBN1),

7q21.3 (SHFM1), 10q21.1 (MBL2/DKK1), 11q13.2 (LRP5), and
18p11.21 (FAM210A) loci, and observed an increased signal at
SOST, CPED1/WNT16, FUPB3, DCDC5, RPS6KA5, STARD3NL,
and CTNNB1. Additionally, we added the 6q22.33 (RSPO3),
6q25.1 (ESR1), 7p12.1 (GRB10/COBL), and 21q22.2 (ETS2) loci
to the list of novel fracture loci. The signals mapped to genes
clustering in pathways known to be critical to bone biology (e.g.,
SOST,WNT16, and ESR1) or novel pathways (FAM210A,GRB10,
and ETS2). These variants explain approximately 2% of variance
in fracture risk (unpublished data).

As reviewed elsewhere (54), several Mendelian randomization
(MR) studies in relation to fracture risk have been published.
One of the first publications in this field was an exploration of
the association between C-reactive protein levels and increased
fracture risk, where we did not find evidence for a causal effect
(55). Nevertheless, particularly for proving negative associations
well-powered meta-analyses are required. The largest MR study
to date was conducted on behalf of the GEFOS/GENOMOS
consortium and the 23andMe research teams (44). In this
study, SNPs that had been previously reported in GWAS were
used as instrumental variables, representing 15 risk factors for
fracture including: BMD (femoral neck and lumbar spine),
age of puberty, age at menopause, grip strength, vitamin
D, homocysteine, thyroid stimulating hormone level, fasting
glucose, type 1 diabetes, type 2 diabetes, rheumatoid arthritis,
inflammatory bowel disease, coronary artery disease, and the
lactose intolerance marker (rs4988235) as a surrogate to assess
long term differences in dairy derived calcium intake. SNPs
influencing BMD were strongly and inversely correlated with
odds of fracture (for femoral neck BMD SNPs genetic correlation
−0.59; and for lumbar spine BMD SNPs genetic correlation
−0.53). By contrast, of the remaining clinical risk factors
evaluated, only homocysteine was shown to be genetically
correlated with fracture risk (genetic correlation >0.2 or <-
0.2, and surpassing the threshold for statistical significance
for multiple testing), but this should be interpreted with
caution as the confidence interval is wide. In the subsequent
Mendelian randomization analysis, again, only the BMD SNPs
were significantly associated with fracture risk. This implies
a causal effect of these SNPs through BMD on fracture risk,
without any evidence for pleiotropic effects as the Mendelian
randomization-Egger regression intercepts centered around zero.
By contrast, despite high statistical power, none of the other
tested and well-accepted risk factors had evidence for a major
causal effect on fracture risk. These results should be interpreted
with caution as reviewed elsewhere (56). Still study power is
limited in spite of the large sample sizes and the LD score
regression method used. Potentially existing pleiotropy or non-
linear relationships (e.g., threshold effects and extremes of the
population) may be subjects of future research. Another very
recent study (57) extensively assessed genetic determinants of
osteoporosis, combining the UK Biobank and 23andMe cohorts
(57). The authors, first identified 518 genome-wide significant
loci (of which 301 novel) associated with heel BMD and then
identified 13 loci associated with fractures across 1.2 million
individuals (all also associated with heel BMD). Furthermore,
they identified target genes known to influence bone density and

Frontiers in Endocrinology | www.frontiersin.org 3 June 2019 | Volume 10 | Article 337

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Koromani et al. Genetics of Fractures in Osteoporosis

TABLE 2 | Findings of fracture risk genome wide association studies.

Sample size

fracture cases

vs. controls

Type of fracture Ethnicity Type of genetic variation References

A. PUBLISHED FRACTURE RISK GENOME WIDE ASSOCIATION STUDIES

329 vs. 2,666 Vertebral (radiographic) Caucasian Single nucleotide polymorphism Oei et al. (47)

288 vs. 1,139 Any Asian Single nucleotide polymorphism Hwang et al. (48)

809 vs. 4,369 Any Caucasian Copy number variation Oei et al. (49)

540 vs. 10,305 Any African-American Single nucleotide polymorphism Taylor et al. (50)

1,553 vs. 4,340 Vertebral (clinical) Caucasian Single nucleotide polymorphism Alonso et al. (51)

37,857 vs. 227,116 Any Caucasian Single nucleotide polymorphism Trajanoska et al. (44)

References Variant Effect allele Effect allele

frequency

Alternate

allele

Odds ratio 95% Confidence

interval

Locus Candidate

gene

B. GENETIC VARIANTS FOUND ASSOCIATED IN THE FRACTURE RISK GENOME WIDE ASSOCIATION STUDIES

Oei et al. (47) rs11645938 C 9.65% T 1.06 0.98–1.14 6p25.1 FOXC2

Hwang et al. (48) rs784288 A 25% G 1.39 1.24–1.56 3q26.2 MECOM

Oei et al. (49) 210 kb deletion N.A. 0.14% N.A. 3.11 1.01–8.22 6p25.1 PECI

Taylor et al. (50) rs12775980 A 3% C 2.12 1.61–2.79 10p11.23 SVIL

Alonso et al. (51) rs10190845 A 4.9% C 1.74 1.06–2.06 2q13 FBLN7

Trajanoska et al. (44) rs4233949 G 61% C 1.03 1.02–−1.04 2p16.2 SPTBN1

rs430727 T 45% C 1.03 1.02–1.04 3p22.1 CTNNB1

rs10457487 C 51% A 1.05 1.04–1.06 6q22.33 RSPO3

rs2982570 C 58% T 1.04 1.03–1.05 6q25.1 ESR1

rs2908007 A 60% G 1.06 1.05–1.07 7q31.31 WNT16

rs6465508 G 34% A 1.04 1.03–1.05 7q21.3 C7orf76

rs6959212 T 34% C 1.03 1.02–1.04 7p14.1 STARD3NL

rs1548607 G 32% A 1.03 1.02–1.05 7p12.1 GRB10

rs7851693 G 35% C 1.04 1.03–1.05 9q34.11 FUBP3

rs11003047 G 11% T 1.09 1.07–1.10 10q21.1 MBL2

rs3736228 T 15% C 1.06 1.05–1.08 11q13.2 LRP5

rs1286083 T 82% C 1.05 1.04–1.07 14q32.11 RPS6KA5

rs2741856 G 92% C 1.10 1.07–1.11 17q21.31 SOST

rs4635400 A 36% G 1.04 1.03–1.05 18p11.21 FAM210A

rs9980072 G 73% A 1.04 1.03–1.05 21q22.2 ETS2

strength and performed a rapid throughput skeletal phenotyping
of 126 knockout mice with disruptions in predicted target genes.
They found an increased abnormal skeletal phenotype frequency
compared to unselected lines and a further in depth analysis
on gene DAAM2 showed a disproportionate decrease in bone
strength relative to mineralization.

Another Mendelian randomization study is the report on
a causal effect of serum estradiol concentrations (interestingly
in men) and an increased risk of any fracture (OR 1.35, 95%
CI, 1.18-1.55), non-vertebral major osteoporotic fractures (OR
1.75, 95% CI, 1.35-2.27) and wrist fractures (OR 2.27, 95% CI,
1.62-3.16) (58).

Although most genetic studies on fracture risk have pulled
together fracture information of any type, without discrimination
of site, there are two major efforts on vertebral fracture GWAS
that have been published. The first genome-wide association
study for radiographic vertebral fractures in the Rotterdam
Study, found a marker on chromosome 16q24 as genome-wide

significantly associated (59). Although the 16q24 locus was found
associated with BMD and vertebral defects at birth before, the
association with vertebral fracture risk could not be replicated
by de-novo genotyping across 15 studies worldwide, likely due
to the heterogeneity underlying the different fracture definitions.
A subsequent publication focusing on clinical vertebral fractures
(i.e., those presenting with clinical manifestations) identified and
replicated a locus tagged by rs10190845 on chromosome 2q13
where differential expression of the positional candidate genes
TTL and SLC20A1 was shown (51).

Recent GWAS for Heel BMD and
Other Endophenotypes
The most recent study by Morris et al. (57) identified 518
genome wide significant loci (of which 301 novel) across 426,824
individuals of UK-Biobank which altogether explain around 20%
in heel BMD variance. Earlier in 2017, Kemp et al. had identified
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FIGURE 1 | Number of loci discovered in fracture genome-wide association studies (Y-axis) plotted by fracture cases sample size (X-axis).

across a subsample of UK-Biobank (N = 142,487) 203 loci, of
which 153 novel at the time of publication (41).

Lean mass and hand grip strength have been associated with
fracture risk (60) and may provide a possible endophenotype
for potential genetic studies to elucidate fracture risk. It is
thought that this relationship may be because of an inverse
relationship between muscle strength and balance and thus
fall risk. A study by Zillikens et al. (61) found five SNPs
in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for
total body lean mass across 101767 individuals and three SNPs
in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean
mass among 73,420 individuals. Karasik et al. (62) additionally
identified a novel LM locus (TNRC6B).

Hand grip strength GWAS by Willems et al. was associated
with 16 new loci. Furthermore, in the same study, the authors
found evidence of shared genetic etiology of BMD and lean mass
with grip strength and moreover a suggestive causal role for
higher grip strength and lower risk of fracture (63). Similar results
were found for the potential causal relationship between hand
grip strength and fracture risk, but could not be replicated with a
multiple testing significance threshold in the study by Trajanoska
et al. (44).

POTENTIAL FUTURE DIRECTIONS IN
GENETIC RESEARCH OF
OSTEOPOROTIC FRACTURES

Increasing Sample Size
A minimum sample-size threshold needs to be reached in
GWAS, from where the number of discovered loci increases
along with growing sample sizes as study power improves
(42). Mega-sized biobanks, such as 23andMe and UK Biobank,
including hundreds of thousands of participants with GWAS

are increasingly becoming available (64, 65). A drawback from
such Mega-GWAS is that phenotype data tends to be of variable
quality and less accurate. However, there is a trade-off where
the huge numbers may boost study power tremendously and
overcome measurement error to a certain extent. In addition,
the success rate of unraveling underlying genetic mechanisms
may be influenced by the complexity of the genetic architecture
of the trait of interest, including imperfect penetrance, allelic
heterogeneity, and gene-environment and epigenetic effects (42,
43). The discovery of rare variants is hindered by the large sample
sizes required to attain sufficient study power, where research
consortia and Mega-GWAS with even larger sample sizes prove
their worth through ever-increasing sized meta-analyses. Larger
imputation reference panels and sequencing-based genotyping
are becoming progressively available, facilitating more accurate
examination of lower-frequency SNPs and other type of genetic
variants such as indels and larger deletions (66).

Furthermore, it has been proposed that the missing
heritability for human height and body mass index is likely
to be small after estimating the genetic variance from all imputed
variants (67); this will likely be the case for a (quantitative) trait
such as BMD as well. Until now, rare variant association studies
have found variants with larger effects where each explains
only a tiny proportion of the phenotypic variance, because the
heritability explained is dependent on the effect size and allele
frequency (68). Therefore, arguments can be found to study both
common and rare variants in the occurrence of common diseases
(68), as also confirmed by our experiences in the bone field.

Increasing Phenotyping Quality
More detailed phenotyping is believed to be of value for
scrutinizing skeletal-site specific effects for fracture risk, for
example cortical vs. trabecular bone, which justifies separate
GWAS efforts for specific fracture types. This thinking comes
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from the observations that heritability of BMD varies across
skeletal sites due to a mixture of shared and specific genetic
and environmental influences as quantified by the genetic
correlations (69), which supports the findings that some genetic
loci display skeletal-site specific effects (32). Furthermore, it has
been hypothesized that using stricter phenotype definitions and
taking into account fracture mechanisms may increase study
power. Yet, a major drawback is the decreasing sample size.
Results for radiographic (59) and clinical vertebral fractures (51)
have been published, as described above, efforts for hip and wrist
fractures are underway, but struggle with attaining sufficient
study samples to enable discoveries. Therefore, the all-type of
fracture GWAS approach seems the starting point to attain
maximum sample size for power to perform the first screening
for genetic variants that contribute to osteoporotic fracture
risk in general. Other even more specific subjects of clinical
studies could be atypical (femoral) fractures or fracture healing,
which could yield insight into differences in natural healing
mechanisms and efficacy of medical treatment between patients.

The tough start of the fracture GWAS may be rooted in
the complex phenotype definition and heterogeneity of the
trait and its underlying genetics. A better understanding of the
genetic architecture seems necessary. More clarity is needed
which fracture phenotypes should be studied together because
they have a joint genetic etiology, and which do not and thus
should be analyzed separately; for example vertebral vs. non-
vertebral fractures are distinguished clinically and probably also
genetically. Then robust selection criteria should be defined for
an optimal fracture phenotype definition of interest. Research
ideas include data enrichment for cases that have a known family
history for osteoporosis, having fractured at relatively young
age or having sustained multiple fractures. This because the
heritability of osteoporotic fractures at younger age is higher (4).
Nonetheless, the osteoporotic fracture incidence at young age
is lower, which may limit study sample sizes. Theoretically, it
has been speculated that perhaps further exclusion criteria need
to be established for cases that are thought to be caused by
arguably non-genetic mechanisms (e.g., non-genetic secondary
osteoporosis, high-trauma, old age, malnourishment, etc.), where
refinement and automatization of measurements may enhance
the richness, quality and quantity of research data available.
However, until now in practice, bigger seems better to efficiently
identify genes; then one should take these discoveries and bring
them in a candidate-gene context and look across rich sets of
detailed phenotypes that help understand the underlying biology.
Combination intomultivariate GWAS ofmultiple disease-related
traits could further exploit the detection of pleiotropic effects (70)
and novel statistical methods may be able to better utilize the
richer phenotype information that will become available (71, 72).

Additionally, richer phenotyping of endophenotypes may
yield more insight. Dual energy X-ray absorptiometry still
misses 80% of patients who will fracture (73). One of the
underlying reasons is that it generates two-dimensional scans
and does not sufficiently appreciate bone microarchitecture,
an important determinant of bone strength (74). Areal
BMD does appreciate bone size and in part the internal
architecture; the trabecular bone score (TBS) which can also

be derived from DXA data will be worth further investigations
(75). Further improvements require more advanced imaging
than dual energy X-ray absorptiometry, principally by direct
three-dimensional radiological imaging investigations, such
as computed tomography or magnetic resonance imaging,
to directly visualize microstructure, differentiate cortical and
trabecular bone, and model bone strength biomechanically
(76). Second, the contribution of the mineral phase to bone’s
mechanical properties has dominated scientific thinking, while
bone is composed of three different phases (by volume: mineral
42%, collagen matrix 35%, and water 23%) (77). Novel imaging
techniques that can quantify this bone composition are coming
up (78), and genetic studies into these endophenotypes are yet
to come.

Finally, it could be argued that bone geometry and its genetics
should be studied. Intriguingly, taller persons are at increased
risk of fractures in spite of having larger bones with more mass
(79, 80). This may be caused by a different distribution of bone
mass by periosteal apposition (81). Further, loci implicated in
the GWAS of human stature are enriched for genes important
for skeletal growth (82). And more specifically, a GWAS meta-
analysis for hip shape was published very recently and found
17q24.3 and ASTN2 as associated in lookups in hip fracture
GWAS (unpublished data) (83).

Richer Genotyping
However, some of the measurement methods with respect
to both genotyping and phenotyping currently available are
simply too expensive or invasive to apply on a population
level at present. Yet, current limits are being challenged,
with the very first successful large-scale applications of whole-
genome sequencing and deep imputation using sequencing-
based reference panels in the osteoporosis research field (52).
The Haplotype Reference Consortium (HRC) and the Trans-
Omics for Precision Medicine (TOPMed) Program have created
large reference panels of human haplotypes by combining
together sequencing data from multiple cohorts. Further studies
of copy number and structural variations should be performed.
However, the genome may be too distant in the cascade from the
disease of interest to detect clinically relevant patterns, therefore,
screening the transcriptome, epigenome, metabolome, proteome
and even microbiome at perhaps multiple time points may
prove necessary. This may be applied to clinical fracture patient
studies as well as population-based cohorts, where subgroups
could be studied including for example individuals with multiple
fractures, persons with fractures at young age, and elderly
individuals free of fractures. The osteoporosis field has started to
explore epigenetic regulation for instance: microRNA (84, 85),
long non-coding RNA (86), gene expression (87), and DNA
methylation (88).

Functional Follow-Up
Oftentimes the function of genes contained in the associated loci
are not (completely) known. Functional follow-up studies are
needed, yet, the development of animal knock-out-models may
take years. Establishment of multi-disciplinary research consortia
worldwide may be beneficial to efficiently take GWAS discoveries
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to functional follow-up in a harmonized research pipeline. Also,
publicly available databases are being launched to enhance
interpretation of genomic sequence information, promoting
mutual data sharing between expert consortia, professional
organizations, health care providers, and patients. An inventory
of the GWAS catalog in 2009 revealed that 88% of the GWAS
associations are in either intergenic or intronic regions (28),
regions of the genome we still understand little about, but to
which GWAS has contributed by indicating regulatory sites (89).
Moreover, the GWAS association signal in the radiographic
vertebral fracture GWAS did not lie within a gene (59), and
the same was true for some of the signals in the BMD and
all-type of fracture GWAS (44). The Encyclopedia of DNA
Elements (ENCODE) project, aiming to identify all functional
elements in the human genome, has drastically enriched our
comprehension about regions outside of the exome and showed
that many GWAS SNPs overlap transcription-factor-occupied
regions or DNase I hypersensitive sites and are particularly
enriched in the segmentation classes associated with enhancers
and transcription start sites (90). A striking finding is that
obesity-associated noncoding sequences within the FTO locus
are associated with expression of the homeobox gene IRX3 at
megabase distances, but not with expression of FTO itself; (91)
this association seems to be driven by a topologically associated
domain (TAD) structure encompassing the FTO and IRXB genes
cluster (92). Such genomic explorations remain to be performed
for osteoporosis-related traits.

Pharmacogenomics
So far, therapies used to increase bone strength in individuals
with osteoporosis are mainly based on antiresorptives (93).
Bisphosphonates are the most widely used first-line because of
their effectiveness, reasonable safety, and a low cost price (94).
However, in practice, no single antiresorptive therapy is currently
appropriate for all patients, as a subgroup of patients on anti-
fracture medication responds suboptimally, e.g., small gain in
bone mass or new fractures occur in spite of treatment, or
negative side-effects such as osteonecrosis of the jaw or atypical
femoral fractures (AFF) among others (95). To our knowledge
no large-scale pharmacogenetic GWAS studies examining these
phenomena in osteoporosis have been published to date, though
initial case studies on the genetics of AFF and an accompanying

systematic review have been published (96). In the future,
results from pharmacogenomic studies may aid in assigning
the most effective therapy to specific patient groups and it has
been hypothesized that genetic biomarkers can be identified
to pinpoint those patients most vulnerable to side-effects of
certain agents. Nevertheless, because interaction studies tend to
involve more parameters, up to four times as many subjects
are needed (97); unless extremely large effects are in place, as
we have witnessed for a few pharmacogenomic successes, such
as anticoagulant dosing according to VKORC1 haplotypes and
HLA-B∗5701 screening for the risk of hypersensitivity reaction to
abacavir in HIV (98). Until now in genetic osteoporosis research,
solely candidate gene studies have been performed investigating
genetically-based variation in treatment response to raloxifene,
teriparatide, and bisphosphonates (99). One of the reasons for
this is that the coverage of pharmacogenomics variants was
limited on GWAS genotyping platforms (100, 101), but this is
improving with novel microarrays becoming available.

CONCLUSION

GWAS is the study design necessary to further investigate the
complex phenotypic and genetic architecture of osteoporotic
fracture risk. Although fractures can be considered a complex
trait, so far, the majority of susceptibility loci for fractures are
also associated with bone mineral density. Hopefully, novel
discoveries in the genetics of fracture risk will increasingly be
translated clinical practice, with genotyping increasingly being
successfully applied providing access to previously unknown
information that may change the diagnostics and treatment of
patients with bone diseases including osteoporosis with increased
fracture risk in the future.
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