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Human primordial germ cells (PGCs) have been described in the yolk sac wall around the

beginning of the third week. From week 4 to 5, they migrate under control of SCF/c-KIT

signaling pathway to the genital ridge, where they become gonocytes. PGCs and

gonocytes express classic pluripotency markers, such as KIT, NANOG, and OCT3/4 that,

during spermatogonia differentiation, are gradually suppressed, and substituted by the

expression of some germ cell specific genes, such as VASA, SOX17, and TSPY. These

genes, during normal development of germ cells, are tightly regulated by epigenetic

modification, in terms of microRNA expression and DNA methylation. In adolescents and

young adults, testicular germ cell tumors (TGCT) have a common precursor, the germ cell

neoplasia in situ (GCNIS); the hypothesis of their origin from PGCs or gonocytes, whose

maturation is altered, is widely accepted. The origin of TGCT, probably starting at early

stages of embryogenesis, seems to be a part of the Testicular Dysgenesis Syndrome

(TDS) where some early PGC/gonocytes, for still unclear reasons, are blocked in their

differentiation, retaining their early marker profile. In this paper, current knowledge on

the combination of epidemiological and genomic factors, involved in the development of

testicular germ cell tumors, is reviewed.

Keywords: germ cell neoplasia in situ (GCNIS), primordial germ cell (PGC), testicular germ cell tumors (TGCTs),

testicular dysgenesis syndrome (TDS), Sertoli cells, Leydig cells

INTRODUCTION

The two main categories of testicular cancer fall into “germ cell,” representing up to 95% of
testis malignancies, vs. “non-germ cell.” Tumors originated by germ cells are known as testicular
germ cell tumors (TGCT) and can be divided into twomain types: seminomas and non-seminomas
according to their histological features. In about 10% of cases both seminoma and non-seminoma
cells are present simultaneously in one testicle resulting in the so-called mixed germ tumors (1).

TGCT were extremely rare types of cancer until the second half of the twentieth century, when
their prevalence arose dramatically and, for not yet elucidated reasons, have continued to steadily
increase. In fact, the annual number of cases has more than doubled since the 1950s (2, 3).
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TGCT, also known as Type II germ cell tumors (4), account for
only 1% of all malignancies in males but in several Countries they
are the most common solid tumors, occurring mainly in young
men (18–35 years) (5) in which represent the leading cause of
cancer-related death.

The incidence of this cancer shows geographic and ethnic
differences: it is lowest (ranging from <0.5/100,000–5/100,000)
in the majority of African and Asian Countries and highest
(up to 12/100,000) in white populations of Northern European
Countries. In particular, in the latter population, was observed,
in 2012, significant differences in the incidence ranged from over
12/100,000 in Denmark and Norway to 5/100,000 in neighboring
Finland or 5.4/100,000 in Italy and 3/100,000 in Spain (6).

Fortunately, the platinum-based chemotherapy has
contributed to improve the mortality rate of TGCT worldwide
from 1970 onwards and, today, the overall cure rate of TGCT is
more than 90%; however about 10% of TGCT are unresponsive
to chemotherapy, and 4–8% of relatively young patients,
especially those with disseminated non-seminomas, die of the
disease. These facts show the relevance to further improve our
knowledge on the mechanisms underlying this disease.

Regarding TGCT etiopathogenesis, both inherited and
environmental factors are thought to play a pivotal role, but
at this time, there are insufficient evidences to make a risk
assessment on any single individual factors. Figure 1 (modified
by Asian J. Andr.) summarizes the “genvironmental hypothesis”
that could, probably, explain the development of TGCT with a
combined action of epigenetic and environmental factors (8).

RISK FACTOR OF TGCT

TGCT are considered the result of an altered germ cell
differentiation that can be linked to the Testicular Dysgenesis
Syndrome (TDS), a complex syndrome resulting from an
abnormal fetal development of male gonads due to genetic,
environmental factors or both (9, 10).

Various aspects of TDS (gonadal malformations, testicular
microlithiasis, cryptorchidism, previous TGCT in the
contralateral testis, disorders of sex development), altered
fertility (subfertility/infertility), or hypospadias, are associated
with increased risk of TGCT (9). For example, patients with
previous history of TGCT have a relative risk of developing
a contralateral malignancy about 25-fold higher than the
age-matched general population (11).

Inherited genetic aberrations leading to disorders of
sex development (DSD) are considered to affect gonadal
development increasing the risk for GCNIS and TGCT. For
example, 15–30% of patients 45XO/46XY DSD and 46XY DSD
(with different degrees of gonadal dysgenesis) show the highest
risk for TGCT (12).

Beyond karyotype, environmental factors may influence the
risk for TGCT such as an excessive exposure to estrogen or
molecules with estrogenic activity or endocrine disruptors during
pregnancy (13).

Previous studies showed that environmental estrogens altered
the normal development of embryonic urogenital system,

resulting in an increase in cryptorchidism in newborns, and a
decrease of total sperm counts associated with an increase in
testis cancer rates in young men (14).

As demonstrated by other studies, mothers of patients with
TGCT had higher estrogen levels during pregnancy (15) or were
exposed to organic pollutants (16).

In this regard, it’s fundamental to analyze the role of somatic
cells. Indeed, also somatic Sertoli and Leydig cells, besides germ
cells, could be affected in dysgenetic gonads. Their functions
are to provide the appropriate microenvironment and the
correct endocrine and paracrine signals for a normal germ cell
development. So, altered testosterone levels could affect the
normal development of somatic Sertoli cells (17) leading them
to an insufficient germ cell stimulation and to an abnormal
differentiation. In particular, a recent study performed on normal
and neoplastic adult human testes led to the hypothesis that, in
GCNIS tumors, Sertoli cell phenotype is changed to a less mature
state (18).

Moreover, Sertoli cells secrete stromal cell-derived factor
1 (SDF1/CXCL12), a chemokine implicated both in PGC
migration and regulation and support of adult stem cell niches.
SDF1/CXCL12 binds to CXCR4 receptor located on both normal
and TGCT cells and the signaling system lead to survival
and growth of transformed cells thus facilitating the metastatic
colonization of other organs.

Other important signaling systems expressed by Sertoli
cells are represented by activin and inhibin, two members of
the transforming growth factor beta (TGFbeta) superfamily
that play a well-known role in spermatogenesis and
FSH secretion.

Recently, it was demonstrated that activin A target genes
are differentially expressed in neoplastic adult human testes
compared to normal testes, thus suggesting a modulatory role of
activin in the tumor niche and in TGCT development (18).

Inhibin B production is stimulated by androgens thus
constituting a link between the microenvironment in where germ
cells reside and the cells themselves. Importantly, inhibin is
involved in the regulation of gonadal tumor development and
progression (19).

In addition, endocrine disruptors may disturb regulatory
actions exerted by androgens on somatic and germ cells
(5). The latter could continue to express embryonic genes
related to the undifferentiated state and pluripotency.
Consequently, fetal gonocytes undergo abnormal cell division
and accumulate chromosome aberrations facilitating their
malignant transformation.

Some observations support the hypothesis of an involvement
of sex hormone signaling. For example, TGCT develops only after
puberty when the activated hypothalamic-pituitary-gonadal axis
induces the transformation of GCNIS; in fact, patients affected
by hypogonadotropic hypogonadism have a low risk of TGCT in
cryptorchid testis (5).

Nevertheless, there is no evidence that the development of
seminoma or non- seminoma TGCT are directly induced by sex
hormones after birth. It seems more likely that hormones have
an indirect effect when, during spermatogenesis, they promote
GCNIS cell divisions leading to amplification of transformed
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cells bearing and accumulating various chromosome and genetic
aberrations (20).

In summary, it is likely that imbalanced levels of maternal
estrogens or environmental molecules with estrogenic activity
during pregnancy could interact with specific genetic aberrations
accumulated by GCNIS, playing a key role to promote
tumorigenic pathology. In addition, affected Sertoli cells could
create a defective microenvironment that allows arrested
gonocytes to survive in the postnatal testes.

FROM GONOCYTES TO
TESTICULAR CANCER

Previous studies about the origin of testicular cancers in
adolescents and young adults (21, 22) demonstrated that
TGCT have a common pathologic precursor, previously named
carcinoma in situ (CIS) or Intratubular Germ Cell Neoplasia
Unclassified (IGCNU) and, recently, according to an update of
the 2016 World Health Organization classification (23), referred
to as germ cell neoplasia in situ (GCNIS).

Further studies led to the currently most accepted hypothesis
that GCNIS is an embryonic germ cell, that is a primordial
germ cell (PGC) or a gonocyte, that failed to differentiate into
a spermatogonium during development (24).

Normal Germ Cell Development: From
PGCs to Spermatogonia
Human PGCs have been described in the yolk sac wall during
the 3–4 weeks post conception. From week 4 to 5, they migrate
under control of SCF/c-KIT signaling system (25) in the hind
gut epithelium and then they colonize the genital ridges, the
precursors of both ovary and testis, where they are surrounded by
supportive cells deriving from the coelomic epithelium. During
and early after their migration PGC express specific markers,
and some of these markers, such as OCT3/4, c-KIT, placenta
like alkaline phosphatase (PLAP) and NANOG could be used as
diagnostic markers for TGCT and GCNIS (26).

At 6th week, the expression of SRY gene in the male embryo
lead to differentiation of genital ridges into testes (27) inducing
the expression of SOX9, a transcription factor that initiates the
differentiation of supportive cells into Sertoli cells (28). Sertoli
cells organize the microenvironmental niche regulating germ cell
differentiation into spermatogonia until the first month after
birth, when the mitotic arrest takes place (29).

At 7th week, primitive seminiferous cords, a particular
structure in which germ cells and Sertoli cells are not yet
organized, are formed. Subsequently, germ cells migrate toward
the basal lamina of the seminiferous cords (if not migrate
they undergo to apoptosis and cleared from the seminiferous
epithelium) and, during the 13th week, germ cells start to lose
the expression of some markers (c-KIT, OCT3/4, and PLAP).
In particular, c-KIT can still be detected at a relatively low
level, while OCT3/4 and PLAP disappear completely. On the
contrary, VASA and SOX17 continue to be expressed remaining
positive throughout life (Figure 2). In addition, at same time,

gonocytes express TSPY, which regulates the normal proliferation
of spermatogonia and remain positive up to meiotic division.

PGCs differentiation passes through three stages which three
different types of germ cells: gonocytes, intermediate cells,
and spermatogonia, concurrently present in the fetal testis
and distinguishable by morphologic and immunohistochemical
features (30).

In particular, gonocytes are large cells with spherical
euchromatic nuclei with one or two nucleoli (31). At the
10th week of gestation, they are the more abundant type of
germ cells located centrally within the seminiferous cords and
separated from the basal lamina by Sertoli cells. Then, gonocytes
become intermediate cells, with similar morphology but located
peripherally within the seminiferous cords and in contact with
the basal lamina. At gestational week 15, many intermediate cells
are present together with gonocytes. It has been hypothesized
that when these cells reach the basal lamina, they lose their
pluripotency and start to differentiate into spermatogonia. From
the 18th week onward, spermatogonia constitute the most
common germ cell population. They are located peripherally to
the basal lamina and enter mitotic arrest.

With regards to molecular features the three different types
of germ cells populations (gonocytes, intermediate cells and
spermagonia) express different markers of pluripotency (Table 1)
and show different epigenetic modifications.

In particular, gonocytes express markers of pluripotency
(OCT3/4, NANOG, and c-Kit), and are positive for placental
alkaline phosphatase (PLAP). Normally, gonocytes are negative
for melanoma-associated antigen 4 (MAGEA4); in fact this
marker is expressed in the fetal germ cells from 17 weeks of
gestation onward (30).

Intermediate cells are negative for both c-KIT and MAGEA4,
and show low or negative staining for OCT3/4 and positive
staining for proliferating cell nuclear antigen (PCNA), marker
of proliferative activity. Beginning from late gestation (week 17–
18) until about 1 year of post-natal life, spermatogonia loss fetal
markers (the cells are negative for c-KIT and PCNA) and start the
expression of germ cell specificmarkers such asMAGE4A, VASA,
and testis-specific protein Y-encoded (TSPY) gene (32–34).

Regarding the epigenetic modifications, genes involved in
germ cell development are strictly regulated by epigenetic
changes, such as DNA methylation, and microRNA (miRNA)
activity (see below) (35, 36).

In particular, gonocytes show loss of genomic methylation.De
novoDNAmethylation will start in spermatogonia to re-establish
the parental imprinting pattern (35).

The maturation processes that lead from gonocyte to
spermatogonia are not synchronized and therefore in
seminiferous tubules are present germ cell populations
expressing embryo/fetal markers, differentiation markers,
methylated or un-methylated genes.

From Normal Germ Cells to GCNIS
The GCNIS cells, located above the basal lamina, show abundant
cytoplasm and large spherical or irregular nucleus with tetraploid
DNA content with 1 or 2 nucleoli (37). These cells are
present in 0.4–0.8% of men among where spermatogenesis is
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FIGURE 1 | The scheme illustrates the genvironmental risk model showing different etiological factors influencing the development of TGCTs. Suspected risk factors

and not associated factors are also listed. Modified from Elzinga-Tinke et al. (7).

reduced or absent. Their presence is hardly diagnosed because
of the absence of symptoms. Generally, it is estimated that
70% of GCNIC-positive male subjects will develop TGCT
within 7 years (38) with a median age at cancer diagnosis of
35 years.

The most widely accepted hypothesis about GCNIS origin
states that they are germ cells in which an arrest of the
development has occurred for an abnormal signals or inability
to respond to correct signals. The cells continue to express
their pluripotency markers, do not differentiate and remain
quiescent until puberty. In the quiescent period, GCNIS cells
could accumulate chromosomal aberrations that affect genes
involved in proliferation and differentiation that lead them
to an uncontrolled and potentially malignant growth (39) in

coincidence with puberty, when growth signals and hormones
produced by Sertoli and Leydig cells induce GCNIS to proliferate.

Previous studies on chromosomal aberrations in invasive
seminoma and non- seminoma neoplasms demonstrated that
80–100% of these tumors and GCNIS cells adjacent to cancer
exhibited a gain of the short arm of chromosome 12 (or smaller
parts thereof) (40) usually in the form of an isochromosome,
i(12p) chromosome (41).

This event suggests that gain of 12p could play a key role for
TGCTs to acquire invasive ability given that GCNIS cells, that
are relatively distant from the cancerous zone, normally do not
present short arm of chromosome 12 gain.

In fact, the chromosomal region corresponding to 12p
contains genes that could be associated to TGCT development,

Frontiers in Endocrinology | www.frontiersin.org 4 June 2019 | Volume 10 | Article 343

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Baroni et al. From Gonocytes to Testicular Cancer

FIGURE 2 | The scheme represents marker expression from early

embryogenesis to puberty during the normal (gray bar) and impaired (red bar)

testicular development leading to GCNIS. Germ cells (in different stages of

maturation), and GCNIS cells are represented as black or red circles,

respectively. Sertoli cells are represented as open white boxes. Modified from

Elzinga-Tinke et al. (7).

such as NANOG, STELLA, GDF3, and Cyclin D2 (CCND2).
In particular, NANOG, STELLA, and GDF3 are pluripotency-
related genes, and play an important role in embryonic stem
cell self-renewal, whereas CCND2 is involved in the cell cycle
regulation. These genes could similarly induce pluripotency in
GCNIS (42).

Histologic and biomolecular studies demonstrated several
likeness among TGCT and their precursor GCNIS cells. For
example, pluripotency markers such as OCT3/4 and NANOG
(43–45) are expressed in a similar way by PGCs, fetal gonocytes
and GCNIS. In addition, GCNIS cells exhibit several features
of PGCs and gonocytes such as the co-expression of OCT3/4
and SOX17 protein (46, 47). Moreover, high c-KIT gene
expression was detected in GCNIS similarly to PGCs and fetal
gonocytes but not in the adult spermatogonia (43). Similarly,
an upregulated c-KIT expression was described in atypical fetal
gonads thus strengthening the idea that germ cell transformation
and altered testicular development might be strictly associated
(48) (Figure 2).

Interestingly, GCNIS cells share mRNA/miRNA profiles
similar to immature germ cells, and exhibit global CpG
methylation erasure. This lack of epigenetic memory is a
common feature of PGCs and pluripotent cell types (49).

However, even though PGCs express various biomarkers
of pluripotency, they are normally unipotent to produce

TABLE 1 | The table summarizes the expression of different markers in the three

different stages of germ cell differentiation from PGC to spermatogonium.

Germ cell type Marker

Gonocyte OCT3/4 NANOG c-KIT

PLAP

intermediate cell OCT3/4 low positive or

negative

PCNA

Spermatogonium MAGE4A VASA

TSPY

gametogenic stem cells, so differing fromGCNIS cells that exhibit
pathologic functional pluripotency.

Taken together, all these findings have led to the hypothesis
that GCNIS is the intermediary cell between an arrested
and transformed PGC or gonocyte during embryonic/fetal
development and TGCT (50).

Future Perspectives About
Diagnostic Markers
Diagnosis for TGCTs is greatly based on detecting serummarkers
such as alfa- fetoprotein, beta-human chorionic gonadotropin,
and lactate dehydrogenase but only 60% of all patients show
elevations of these markers (51).

Testicular biopsy is the best current diagnostic test for
detecting TGCT, even if it is burdened with false negative
outcomes due to the non-random distribution of transformed
cells throughout the gonad (52). New approaches are necessary
to identify GCNIS before testicular cancer appearance, given that
these cells can leave the testis and enter the semen where they
could be detected by revealing specific markers. However, for
some of the assayed markers as OCT3/4, MAGE-A4, and NY-
ESO-1 a relatively low sensitivity was demonstrated (53–55).

Recently, a cell surface receptor TDGF-1 (CRIPTO) was
identified in blood serum of patients where GCNIS and several
tumor cell subtypes were found (56). Therefore, CRIPTO
expression could be a useful serum marker for detection of
testicular cancer.

Other recent studies showed that undifferentiated and
potentially malignant cells could be detected in vivo thanks to
identification of specific miRNAs (57).

In particular, miRNAs from miR-371–373 (mapped to
chromosome 19) and miR- 302–367 (mapped to chromosome
4) family members are upregulated in all TGCT and elevated
values could be detected in the serum, regardless of pediatric or
adult age, gonadal or extragonadal localization or tumor subtype
(seminomas, yolk sac tumors, or embryonal carcinomas) (58).

It’s noteworthy that these miRNAs are not up-regulated in
other tumor types or disorders. In perspective, detection of high
levels in liquid biopsies of well-defined set of embryonic miRNA,
such the two above mentioned “clusters,” might be useful
in diagnosis, prognosis and disease management of testicular
malignant TGCTs given their association with undifferentiated
and potentially malignant cells (59).
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A more recent study based on microarray gene expression
profiling and gene methylation datasets, suggests that
hypomethylation-high expressed genes such as CSF1R, PTPRC,
and MMP9, could be involved in TGCT (60).

CSF1R, a cell-surface protein, and PTPRC, a member of
the protein tyrosine phosphatase (PTP) family, regulate several
cellular activities such as cell growth, differentiation, and tumor
transformation (61).

Moreover, this study demonstrates that TGCT tissue samples
show up-regulated levels of MMP9, a class of enzymes involved
in the degradation of the extracellular matrix.

About this, another recent study shows that activin/TGFbeta
signaling within Sertoli cells of GCNIS tumors lead to increased
levels of MMP2 and MMP9 metalloproteinases (18) thus
strengthening the idea that Sertoli cells have an important
role in supporting TGCT development. Indeed, the breakdown
of the epithelial barrier by MMPs may contribute to tumor
progression, thus allowing the neoplastic germ cell to move into
the interstitium.

Overall, seems that higher levels of CSF1R, PTPRC, and
MMP9 are related to shorter survival time of TGCT patients,
suggesting that they may be involved in TGCT development.

In perspective, these genes could be useful biomarkers
for diagnosis, treatment and prognosis evaluation of TGCT,
constituting potential therapeutic targets for this type of cancer.

Finally, we must not overlook the fact that dysregulation
between somatic and germ cells may support the formation of
GCNIS cells, as demonstrated by the role of activin/TGFbeta
signaling in promoting an environment advantageous for TGCT
onset and progression.

CONCLUSIONS

Testicular cancer onset and development is caused by a mix
of genetic, epigenetic and environmental factors. Most TGCT
tumors are curable even in advanced stages thanks to cisplatin-
based chemotherapy. However, side effects and complications

may occur in patients treated with chemotherapeutic agents and
in some cases relapse or treatment resistance may occur.

Further studies will be aimed to both develop less toxic
therapies and directly target the neoplastic cells, thus overcoming
the resistance to chemotherapy.

Currently, an open testicular biopsy, helpful in specific group
of patients (men with atrophic testes, infertility, cryptorchidism
or suspicious ultrasound), is the sole way to diagnose GCNIS as
other early detection methods for TGCT are not available so far.

Obviously, for screening purposes, sensitive and specific non-
invasive early detection method are necessary.

Even if genetic and environmental factor of risk (prenatal,
perinatal, and postnatal) were considered able to influence the
onset of GCNIS, their role in the pathogenesis of TGCT is
insufficient to identify an at risk population.

Even if many cytoplasmic and nucleus markers (such as
OCT3/4, NANOG, etc.) have been assessed in semen, none of
these is a valid marker for GCNIS.

Instead, the detection of specific TGCT’s miRNAs (miR-
371∼373 and miR-302/367) in semen could be considered
a promising non-invasive marker of GCNIS being highly
overexpressed both in serum (in all TGCT) and in semen. In
addition, MMP9, CSF1R, and PTPRC genes could be useful
biomarkers for diagnosis, treatment and prognosis evaluation
of TGCT.

In conclusion, improving our knowledge on the molecular
mechanisms controlling GCNIS origin and malignant
transformation to TGCT, might be useful to develop a
noninvasive screening method for population at increased
risk for TGCT.
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