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With thymic senescence the epithelial network shrinks to be replaced by adipose tissue.

Transcription factor TBX-1 controls thymus organogenesis, however, the same TBX-1

has also been reported to orchestrate beige adipose tissue development. Given these

different roles of TBX-1, we have assessed if thymic TBX-1 expression persists and

demonstrates this dualism during adulthood. We have also checked whether thymic

adipose involution could yield beige adipose tissue. We have used adult mouse and

human thymus tissue from various ages to evaluate the kinetics of TBX-1 expression, as

well as mouse (TEP1) and human (1889c) thymic epithelial cells (TECs) for our studies.

Electron micrographs show multi-locular lipid deposits typical of beige adipose cells.

Histology staining shows the accumulation of neutral lipid deposits. qPCRmeasurements

show persistent and/or elevating levels of beige-specific and beige-indicative markers

(TBX-1, EAR-2, UCP-1, PPAR-gamma). We have performed miRNome profiling using

qPCR-based QuantStudio platform and amplification-free NanoString platform. We have

observed characteristic alterations, including increased miR21 level (promoting adipose

tissue development) and decreased miR34a level (bias toward beige adipose tissue

differentiation). Finally, using the Seahorse metabolic platform we have recorded a

metabolic profile (OCR/ECAR ratio) indicative of beige adipose tissue. In summary,

our results support that thymic adipose tissue emerging with senescence is bona fide

beige adipose tissue. Our data show how the borders blur between a key immune

tissue (the thymus) and a key metabolic tissue (beige adipose tissue) with senescence.

Our work contributes to the understanding of cross talk between the immune system

and metabolism.
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INTRODUCTION

In human the degenerative process of thymic adipose involution is already detectable in childhood
and accelerates with puberty due to hormonal (sex-steroid) induction (1–3). The process shows
identical kinetics in mouse. Also, we have developed a model whereby TECs are treated by a steroid
(using Dx or dexamethasone) thus both in vivo and in vitro model systems are readily available
(4) As for all adipose tissues subtypes, thymic adipose involution is orchestrated by transcription
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factor PPARgamma (5–7). It is estimated that by the age
of 50 years in human (approx. 12 months in mouse), the
thymus loses approx. Ninety percent of its function: naïve T-
cell production (8, 9). The consequences of impaired thymus
function are profound: elevated incidence of infections, cancer
and autoimmune disorders observed at senior ages (10, 11). This
poses a significant burden on health-care and health-insurance
systems, while simultaneously lowering the quality of life in
the elderly.

Transcription factor TBX-1 is a key molecular player in
the formation of the third pharyngeal pouch involved in
thymus organogenesis during embryonic development (12).
Human patients with 22q11.2DS impairing TBX-1 often have
thymus hypoplasia or aplasia. In accordance, Tbx-1null mice
develop severe pathologies in tissues derived from the third
pharyngeal pouch, including hypoplasia of the thymus (13, 14).
In these cases, impaired thymus organogenesis leads to deficient
thymocyte development, naive T-cell production, and immune
functions (15). However, recently it has also been reported that
the role of TBX-1 in thymus organogenesis is more complex.
Ectopic expression of TBX-1 may suppress transcription factor
FoxN1, the mastermind of thymic epithelial identity (16). The
issue was investigated in the embryonic setting, but the potential
role of persistent TBX-1 expression during adulthood has not
been addressed.

TBX-1 has another pivotal role in the development and
function of a recently described subtype of adipose tissue:
beige adipose tissue (17–20). White adipose tissue stores
energy, brown adipose tissue generates heat (via NST or
non-shivering thermogenesis), while beige adipocytes act as
intermediates. Beige adipocytes respond to adrenergic stimuli
by thermogenesis (21). TBX-1 is considered as a beige-specific
marker, but other beige-indicative markers have also been
described. Mitochondrial uncoupling proteins (mostly UCP-1)
have been reported to be expressed by brown / beige adipose
tissue. EAR2 (also known as Nr2f6) was reported to efficiently
promote adipose tissue development with beige bias, while
CD137 (also known as Tnfrsf9) is an acknowledged beige
adipocyte surface marker (22).

The adult thymus expresses TBX-1 and UCP-1 in the stromal
compartment, both known to promote beige adipose tissue
development. Yet to date thymic adipose tissue that develops
with age has not been accurately positioned on this white-beige-
brown continuum of adipose tissue subtypes, despite recent
cellular analysis from an adipocyte perspective (23–26). For
this reason, we have characterized senescence-related thymic
adipose tissue using molecular, cellular and histological markers,
at structural and ultra-structural levels, using both mouse and
human samples. Additionally, we have also performed metabolic
profiling and complete miRNome analysis using both PCR-based
and amplification-free platforms.

METHODS

Cell Cultures
For in vitro experiments primary-derived (BALB/c) thymic
epithelial cells were used (TEP1) as reported previously (cell

source: Prof. G. Anderson, University of Birmingham, UK) (27).
Briefly, the cells were cultured in DMEM (Dulbecco’s Modified
Eagle’s medium Lonza) supplemented with 10% FCS, penicillin,
streptomycin and β-mercapto-ethanol. Human thymus-derived
1889c thymic carcinoma cells were cultured in RPMI 1640
(Roswell Park Memorial Institute medium, Lonza) containing
10% FCS, penicillin, streptomycin, L-Glutamine and Hepes (28,
29). Adipose differentiation of TEP1 and 1889c cells was induced
by steroid treatment. Briefly, experiments differentiation was
induced by dexamethasone alone (Dx) as added to complete
DMEM and RPMI medium. Cells were treated with Dx at a final
concentration of 1µM for 1 week.

Animal Samples
Thymus lobes were used from C57BL/6J mice at 1, 6, 8, 12, 14, 18,
and 21 months of age. Mice were housed under minimal disease
(MD) conditions. Animal rooms were ventilated 15 times/h with
filtered air, mice received autoclaved pellet diet (Altromin VRF1)
and tap water ad libitum. The cages contained sterilized bedding.
Room lighting was automated with 12 h light and 12 h dark
periods. Room temperature was 21 ± 2◦C, relative humidity
was between 30 and 60%. Mice were kept in the Laboratory
Animal Core Facility of the University. Experimental procedures
were carried out according to the “1988/XXVIII act of the
Hungarian Parliament on Animal Protection (243/1988)” which
complies with recommendations of the Helsinki Declaration. All
animal experiments were performed with the consent of the
Ethics Committee on Animal Research of the University (ref.
no.: #BA02/2000-46/2016).

Enrichment of Primary Cells
Mouse thymic epithelial cells were isolated by MACS cell
separation. Briefly, mouse thymic lobes (1 month-old or 12
month-old) were digested with type F collagenase from C.
hystolyticum (3mg/ml, Sigma-Aldrich) for 2 h, with stirring
in every 20min, then washed with DMEM. Cell suspensions
were then labeled with anti-EpCAM1 antibody (1:100, rat
monoclonal antibody clone: G8.8) and washed with MACS-
buffer (2% FCS, 1mM EDTA in PBS) followed by incubation
with Dynabeads sheep anti-rat IgG-coated beads (Invitrogen)
The EpCAM+-cells were separated with EasySep column-free
cell isolation platform (Stemcell Technologies) according to the
manufacturer’s instructions. Isolated cells were used for total
RNA isolation and subsequent qPCR analysis.

Human Thymus Samples
Formalin-fixed, paraffin-embedded (FFPE) human thymus
samples from 18, 23, 42, 44, and 58 years of age were
provided by the Department of Pathology, Faculty of Medicine,
University of Pecs, Hungary. Experiments involving human
samples were performed with the consent of the Regional and
Local Ethics Committee of Clinical Center of the University (ref.
no.: 6069/2016) according to their guidelines. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki.
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Transmission Electron Microscopy
Cells were harvested and pelleted then fixed with PBS containing
2.5% glutaraldehyde overnight at 4◦C. Following fixation,
pellets were mixed in 3% porcine gelatin (Sigma-Aldrich).
Hardened small blocks of approximately 1 mm3 were cut.
Blocks were post-fixed in 1% osmium-tetroxide in PBS for
1 h at 4◦C and dehydrated with increasing concentration of
ethanol. Uranyl-acetate (1%) was added in 70% ethanol to
increase contrast. After complete dehydration in ascending
ethanol series, blocks were transferred to propylene-oxide
twice for 4min. Then blocks were immersed in the mixture
of propylene-oxide and Durcupan resin (Sigma-Aldrich) for
30min. Later blocks were placed into Durcupan-containing tin-
foil boats overnight, and embedded into gelatin capsule filled
with Durcupan resin (Sigma-Aldrich). Following polymerization
and hardening of the resin at 56 ◦C for 72 h, semi thin
sections were cut with Leica Ultracut ultramicrotom, mounted
on glass slides, stained with toluidine-blue and examined
with Olympus BX50 light microscope. Then serial ultra-
thin sections were cut by ultramicrotom, and mounted on
mesh grids. Ultra-thin sections were contrasted by uranyl-
acetate and lead-citrate, and examined using JEOL 1200EX-II
electron microscope.

Immune-Histochemistry
Human thymus lobes were fixed in paraformaldehyde (4% PFA
in PBS) then paraffin embedded. 5µm thick sections were
stained with immunohistochemistry method as described earlier
(30). First, slides were rinsed in heated xylene then washed
with a descending series of alcohol. After deparaffinization
slides were rehydrated and antigen retrieval was performed in
Target Retrieval Solution (pH 6 DAKO) at 97◦C for 20–30min.
Following wash in dH2O and endogenous peroxidase activity was
blocked with 3% H2O2 in TBS (pH 7.4) for 15min. Then slides
were washed with TBS containing Tween (0.05%, pH 7.4). Pre-
blocking was carried out with 3% BSA in TBS for 20min followed
by overnight incubation with a-TBX-1 (1:100, rabbit polyclonal
antibody, Sigma-Aldrich) primary antibody at 4◦C. After the
incubation slides were washed with TBS then incubated with
peroxidase conjugated secondary antibody (1:100, Polyclonal
Goat Anti-Rabbit IgG, DAKO) for 90min. Labeling was
visualized with liquid DAB Substrate Chromogen System
(DAKO). Hematoxylin served for nuclear counterstaining. Slides
were mounted with Faramount Aqueous Mounting Medium
(DAKO). Histological evaluation was performed with Panoramic
MIDI digital slide scanner (3DHistech) and images were
captured with CaseViewer. Image analysis was made with
ImageJ / IHC toolbox.

Immune-Fluorescent Staining
Immune-fluorescent staining was performed on 8µm cryostat
thymus sections. Cytospin technique was used to spin TEP1
and 1889c cells onto glass slides (4). Slides were fixed in
cold acetone, then dried and blocked using 5% BSA in PBS
for 20min before staining with fluorochrome conjugated or
primary antibodies: a-EpCAM-FITC (1:100, clone: G8.8,), a-
UCP-1 (1:100, rabbit polyclonal antibody, Abcam) a-TBX-1

(1:100, rabbit polyclonal antibody, Sigma-Aldrich), a-PPAR-
gamma (1:100, rabbit monoclonal antibody, Cell Signaling
Technology). For secondary antibody Alexa-555 conjugated a-
rabbit goat IgG (1:200, Life Technologies) was used. Fluorescent
lipid staining was performed on paraformaldehyde (4%) fixed
TEP1 and 1889c cytospin slides with LipidTOX Red dye (1:200,
Invitrogen). For nuclear counterstain DAPI (Life Technologies)
was used. Sections were imaged using a Nikon Eclipse Ti-U
microscope equipped with a CCD camera (Andor Zyla 5.5) and
NIS-Elements software.

Metabolic Profiling
The use of TEP1 cells for Seahorse metabolic profiling
was started by pilot experiments for optimal starting cell
number, duration of differentiation, differentiation medium
etc. Accordingly, 15,000 cells/well were cultured for 9 days
using standard MDI differentiation protocol (31). This was
followed by the evaluation of their metabolic profile using
the Seahorse XF 96 platform (Seahorse Bioscience). Cells
were plated into Seahorse cell plates at confluence and were
left to attach overnight. The next day, cells were subject to
oxymetry measurement. After recording baseline oxygen
consumption cells were treated with butyril-cAMP (500µM),
oligomycin (2µM), and antimycin (10µM). Antimycin-resistant
oxygen consumption was considered as background and was
subtracted from all values. Baseline oxygen consumption,
membrane leak (OCR, after oligomycin treatment) was
calculated. Glycolysis was assessed through the extracellular
acidification value (ECAR, before oligomycin treatment) and
the ECAR/OCR values were calculated. Negative values were
omitted in calculations.

RNA Isolation, cDNA Preparation,
qRT-PCR, TaqMan Array
Total RNA of enriched thymic epithelial cells, TEP1 and
1889c cells was isolated with the NucleoSpin RNAII kit
(Macherey-Nagel). cDNA was prepared using the High Capacity
cDNA Reverse Transcription kit (Applied Biosystems). For
qPCR analysis the StepOnePlus (Applied Biosystems) platform
was used with SensiFAST SYBR Hi-ROX Mix (Bioline)
as well as PikoRealTM Real-Time PCR System (Thermo
Fisher Scientific) using Luminaris Color HiGreen qPCR
Master Mix (Thermo Fisher Scientific) (for primer list see
Table 1). Gene expression was normalized to β-actin, GUSB
and HPRT1 housekeeping genes. Reverse transcription of
1889c RNA samples for miRNA analysis was completed with
MegaplexTM RT Primers specific to human Pool A (Cat.
No.: 4399966) and Pool B (Cat. No.: 4444281). MiRNA
profiling was performed on Applied Biosystems QuantstudioTM

12K Flex Real-Time PCR System platform using TaqManTM

Array Human MicroRNA A (Applied Biosystems, Cat. No.:
4398965) and B Card (Applied Biosystems, Cat. No.: 4444910)
containing 6 housekeeping genes (RNU44, RNU48, ath-miR159a
and 4 U6 snRNAs) and 377 human miRNAs. Additionally
600 ng of total RNA was mixed with TaqManTM Fast
Universal PCR Master Mix (2X), no AmpEraseTM UNG
(Applied Biosystems, Cat. No.: 4364103) for each array
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TABLE 1 | List of mouse and human primer sequences.

Gene

Name

Mouse primer sequence Human primer sequence

Actin-for GGGAGGGTGAGGGACTTCC GCGCGGCTACAGCTTCA

Actin-rev TGGGCGCTTTTGACTCAGGA CTTAATGTCACGCACGATTTCC

GUSB-for AAATGGAGTGCGTGTTGGGT GATGCTGTACCCCCAGGA

GUSB-rev CGGTACCATTGCTGCTCGAA GTCGGTTGTCAGAGAAGTCG

HPRT-for TTGCTCGAGATGTCATGAAGGA CTGGCGTCGTGATTAGTGAT

HPRT-rev ATGTAATCCAGCAGGTCAGCA ACATCTCGAGCAAGACGTTC

CD137-for CGTGCAGAACTCCTGTGATAAC CCTGAGCTACAAAGAGGACAC

CD137-rev CTCCACCTATGCTGGAGAAGG GTGCAGCGCAAGTGAAAC

Ear2-for CCTGTACCCCAGAACTCCA GCAAGCATTACGGTGTCTTC

Ear2-rev CAGATGAGCAAAGGTGCAAA GATCTGGCAGTCACGGTTG

PPARg-for TGTCTCACAATGCCATCAGGT GGTGGCCATCCGCATCT

PPARg-rev TCTTTCCTGTCAAGATCGCCC GCTTTTGGCATACTCTGTGATCTC

TBX1-for GGCAGGCAGACGAATGTTC CTACGACCACTATCTCGGGG

TBX1-rev TTGTCATCTACGGGCACAAAG TGGGGCAATAGTCGTAGGAG

UCP1-for GGCCTCTACGACTCAGTCCA ACAATCACCGCTGTGGTAAA

UCP1-rev TAAGCCGGCTGAGATCTTGT GTAGAGGCCGATCCTGAGAG

card. Gene expressions were analyzed using Expression Suite
Software version 1.1.

NanoString System Assay
One hundred nanogram of total RNA was used to detect
up to 800 miRNA targets with nCounter SPRINT Profiler
(NanoString Technologies) using nCounter R© Human v3
miRNA Expression Assay. Sample preparation was performed
with nCounter R© CodeSet (NanoString Technologies) following
annealing, ligation and purification. Hybridization protocol was
completed at 65◦C and 12 h long according to the manufacturer’s
instructions. Quantified data was analyzed using nSolverTM

Analysis Software version 4.0. Threshold count was determined
using negative controls as background noise. Gene expression
changes were visualized on heat map using GraphGad Prism
version 7.04.

Statistical Analysis
All experiments were performed at least on three occasions,
representative experiments are shown. Measures were obtained
in triplicates, data are presented as mean and ±SD as error
bars. For statistical analysis GraphPad Prism software and
SPSS Statistics version 22.0 was used. To evaluate the kinetics
of TBX-1 expression with age in both mouse and human
samples normality distribution was tested using Shapiro-Wilk
test (n < 50). In case of human samples our data met the
assumption of homogeneity of variances, so parametric one-way
ANOVA with Tukey’s honestly significant difference (HSD) post
hoc test was used. To determine the significant differences of
mouse samples non-parametric Kruskal-Wallis test was used. For
further cases two-tailed student’s t-test was applied. Significant
differences are shown by asterisks (ns for p > 0.05, ∗p ≤0.05,
∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001).

RESULTS

Aging and Steroid-Induced TECS Show
Beige Adipocyte Markers
Thymic senescence is accompanied by the appearance of
adipose tissue. Mediastinal location and local FGF21 production
are characteristic to the thymus and both were reported to
promote beige adipose tissue development (23–25). For this
reason we searched for the up-regulation of beige adipocyte
markers in the adult thymus tissue and its model system:
steroid-induced TECs.

Aging Up-Regulates key Beige Adipocyte Marker in

Human Thymus Tissue
Using a pilot set of human thymic FFPE samples of various
adult ages (18, 23, 42, 44, and 58 years) we performed immune-
histochemistry staining for beige adipose tissue-specific marker
TBX-1 (Figures 1A–E). TBX-1 expression (enzyme reaction in
brown) appears to persist throughout adulthood. Normalization
to hematoxylin nuclear counterstain (in blue) shows that TBX-
1 staining intensity transiently decreases at young adult age (23
years) to show rebound at later ages (Figure 1F). In other words:
TBX-1 expression may present a bimodal nature with elevations
at both young and adulthood ages and an in-between transient
decrease during young adulthood. The histological appearance
of adipocytes is observed from 44 years of age onwards in
this series.

Further Beige Adipocyte Markers Are Also

Up-Regulated in Steroid-Induced Human TECs
As reported previously molecular level events are similar in the
aging thymus and steroid-induced TECs in the mouse setting
(4, 6). Accordingly, Dx-treatment significantly up-regulated
(p < 0.01) pan-adipocyte marker PPAR-gamma expression
in the human 1889c TEC line (Figures 2A,B,I). We have
evaluated 1889c human TECs for the expression of beige-
specific and beige-indicative protein markers as well following
Dx-treatment. Similar to human thymus sections above, 1889c
cells showed persistent and increasing (p < 0.05) TBX-1
expression following Dx-treatment (Figures 2C,D,I). UCP-1
expression showed only indicative (not significant) increase
upon Dx-treatment (Figures 2E,F,I). Lipid accumulation was
also tested, using a fluorescent dye (LipidTox Red) specific
for neutral lipid deposits. The staining showed that Dx-
treatment triggers significant (p < 0.05) accumulation of neutral
lipid deposits (Figures 2G–I) in harmony with our previous
reports (4, 6).

Aging Up-Regulates key Beige Adipocyte Marker in

Mouse Thymus Tissue
Using a pilot set of mouse thymic cryosections of various
ages (1, 6, 8, 12, 14, 18, and 21 months) we performed
immune-fluorescent staining for beige adipose tissue-specific
marker TBX-1 (Figures 3A–G). TBX-1 expression (in red)
appears to persist throughout adulthood in the mouse similar
to human above. EpCAM-1 staining (in green) shows medullary
areas to demonstrate histological organization. Normalization
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FIGURE 1 | Kinetics of TBX-1 expression in the adult human thymus with age. Human thymic FFPE sections from different ages (18, 23, 42, 44, and 58 years) were

evaluated by immune-histochemical staining (A–E), respectively. Brown color reaction (DAB) shows TBX-1 expression along with hematoxylin nuclear

counter-staining. Please note signs of adipose degeneration (vacuoles) at elevated ages. TBX-1 staining was normalized to nuclear counter-stain and is shown as

relative value (F). Please note that relative TBX-1 expression shows a transient decrease at young adult age (23 years of age). Significant differences are shown by

asterisks (**p ≤ 0.01, ***p ≤ 0.001). Data were calculated from three slides and representative slide is shown. For exact numerical values and standard error of mean

please refer to Supplementary Data Sheet.

to DAPI nuclear counterstain (in blue, not shown here) reveals
that TBX-1 staining intensity transiently decreases at adult
mid-term (12–14 months) to show rebound at senior ages
(Figure 3H). In other terms: TBX-1 expression potentially
appears to be bimodal in the mouse as well showing elevation
at both young and senior ages with a transient in-between
decrease during adulthood. Murine kinetics of TBX-1 expression
resembles the previously shown human kinetics but with higher
resolution in time. Please note medullary involution observed
from 14 months of age onwards in line with our previous
reports (4, 6).

Further Beige Adipocyte Markers Are Also

Up-Regulated in Steroid-Induced Mouse TECs
As reported previously focusing on PPARgamma expression
molecular level events are similar in the aging thymus and
steroid-induced TECs in the mouse setting (4, 6). We have
evaluated TEP1 mouse TECs for the expression of beige-
specific and beige-indicative protein markers after Dx-treatment.
TEP1 cells showed persistent, unchanged TBX-1 expression
following Dx-treatment (Figures 4A,B,I). UCP-1 expression
showed significant (p < 0.01) increase following Dx-treatment
(Figures 4C,D,I). Lipid accumulation was also tested (LipidTox
Red as above). The staining showed that Dx-treatment results
in significant (p < 0.05) accumulation of neutral lipid deposits

(Figures 4E,F,I) in accordance with our previous reports (4,
6). Ultra-structural imaging by TEM shows the appearance
of multi-locular intracellular lipid deposits (indicated by
asterisks) upon Dx-treatment, reminiscent of beige adipose tissue
(Figures 4G,H).

Steroid-Induced TECs Show Beige
Adipocyte Metabolic Profile
There is a significant difference between white, brown and beige
adipose tissue metabolic traits. In search of further evidence
we have characterized the metabolic fingerprint of Dx-induced
mouse TECs (TEP1).

The metabolic fingerprint of TEP1 cells treated with Dx (as
part of MDI differentiation medium) was assayed using the
Seahorse platform (Figure 5). MDI cells showed significantly
higher basal OCR values compared to control cells (p < 0.001)
(Figure 5A). Of note cAMP-induced OCR was rapid (30min
post-treatment) and lasted shorter than in previous reports
(32, 33). In line with elevated UCP-1 expression oligomycin-
resistant respiration was significantly higher in MDI cells than
in control cells (p < 0.001) (Figure 5B). Although we have
recorded increased glycolysis marked by significantly increased
ECAR values (p < 0.001) (Figure 5C), the significantly increased
ratio of basal OCR and ECAR (p < 0.001) (Figure 5D) in
MDI cells suggests their dependence onmitochondrial oxidation.
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FIGURE 2 | Beige adipocyte marker expression and lipid accumulation in steroid-induced human TECs. Cytospin slides of control (Ctrl) and steroid-induced (Dx)

1889c cells were stained by immune-fluorescence. Adipose tissue mastermind transcription factor PPARgamma (A,B), beige-specific marker TBX-1 (C,D) and

beige-indicative marker UCP-1 (E,F) was evaluated in red (Alexa555). Neutral lipid deposits were stained with LipidTOX Red dye (G,H). DAPI staining was also applied

as fluorescent nuclear counter stain in all cases. PPAR-gamma, TBX-1, UCP-1 and LipidTOX staining relative to DAPI staining is also shown by histograms (I).

PPAR-gamma and TBX-1 show significant increase, UCP-1 remains unchanged, while neutral lipid deposits show significant increase following Dx-induction.

Significant differences are shown by asterisks (*p ≤ 0.05, **p ≤ 0.01). Data were calculated from six slides, representative slide is shown. For exact numerical values

and standard error of mean please refer to Supplementary Data Sheet.
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FIGURE 3 | Kinetics of TBX-1 expression in the adult mouse thymus with age. Murine thymic frozen sections from different ages (1, 6, 8, 12, 14, 18, and 21 months)

were evaluated by immune-fluorescent staining (A–G), respectively. Epithelial network is shown in green (EpCAM1-FITC) while TBX-1 expression is shown in red

(TBX1-Alexa555) fluorescence. Please note signs of degeneration (auto-fluorescence) at elevated ages. Please also note that TBX-1 staining pattern localizes to both

nuclear and cytoplasmic bodies in accordance with The Human Protein Atlas: http://www.proteinatlas.org/ENSG00000184058-TBX1/cell. TBX-1 staining was

normalized to DAPI nuclear counter-stain (not shown) and is presented as relative value (H). Please note that relative TBX-1 expression shows a transient decrease at

adult age (12 months of age). Significant differences are shown by asterisks (*p ≤ 0.05, ***p ≤ 0.001). Data were calculated from three slides, representative slide is

shown. For exact numerical values and standard error of mean please refer to Supplementary Data Sheet.

Taking the observed increase in basal OCR value, OCR/ECAR
ratio, cAMP-response, and oligomycin-resistant respiration into
consideration, these suggest that MDI-differentiated TECs

possess a beige metabolic fingerprint in accordance with the
up-regulation of beige-specific and beige-indicative markers
shown above.
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FIGURE 4 | Beige adipocyte marker expression and lipid accumulation in steroid-induced mouse TECs. Cytospin slides of control (Ctrl) and steroid-induced (Dx)

TEP1 cells were stained by immune-fluorescence. Beige-specific marker TBX-1 (A,B) and beige-indicative marker UCP-1 (C,D) was evaluated in red (Alexa555).

Neutral lipid deposits were stained with LipidTOX Red dye (E,F). DAPI staining was also applied as nuclear counter-stain. TBX-1, UCP-1, and LipidTOX staining

relative to DAPI staining is also shown by histograms (I). TBX-1 shows unaltered expression, while UCP-1 and lipid accumulation show significant increase following

Dx-induction. Significant differences are shown by asterisks (*p ≤ 0.05, **p ≤ 0.01). Data were calculated from six slides, representative slide is shown. For exact

numerical values and standard error of mean please refer to Supplementary Data Sheet. Ultrastructure of control (Ctrl) and steroid-induced (Dx) TEP1 cells was also

evaluated by transmission electron microscopy (TEM) (G,H), respectively. Asterisks (*) show intracellular multi-locular lipid deposits following Dx-induction.
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FIGURE 5 | Metabolic parameters of steroid-induced TECs. Following pilot experiments, 15,000 cells / well were cultured for 9 days in MDI (or control) medium prior

to Seahorse measurements. Baseline OCR was recorded followed by induction with cAMP (readings every 30min) (A). Cells were treated with oligomycin to show

oligomycin-resistant respiration indicating mitochondrial inner membrane leakage (B). ECAR was also determined (C) and the OCR/ECAR ratio was calculated (D).

Significant differences are shown by asterisks (**p ≤ 0.01, ***p ≤ 0.001). Data were calculated from forty measurements, mean is shown. For exact numerical values

and standard error of mean please refer to Supplementary Data Sheet.

Aged and Steroid-Induced TECs Show
Beige Adipocyte Gene Expression Profile
Adult human and mouse thymus sections showed similar
histological changes with age. Likewise, mouse and human
steroid-induced TECs were also similar by immune-fluorescent
staining. Next, TECs enriched from adult mice or Dx-
treated (murine or human) TECs were subjected to gene
expression analysis.

Changes in gene expression were further tested at the mRNA
level in EpCAM1-enriched primary murine thymic epithelial
cells from senior adult age (12m) and steroid-induced TEP1
or 1889c cells for beige-specific (TBX1) and beige-indicative
genes (UCP1, CD137, EAR2) (21–26). Enriched cells showed the
up-regulation of both beige-specific and beige-indicative genes
with age (1 vs. 12 months) as TBX1, UCP1, and EAR2 all
showed significant elevation (p < 0.05 for all, Figure 6A), while
CD137 activity remained unchanged. Gene expression analysis
of mouse TEC line following Dx-treatment showed a similar
tendency. as significant increase of TBX1 and UCP1 expression
was detected (p < 0.01 and p < 0.05, respectively, Figure 6B),
while CD137 and EAR2 were not altered. Likewise, the steroid-
induced human TEC line showed significantly increased PPAR-
gamma expression (p < 0.01) as reported previously for mouse
TECs (4) and also significant increase of UCP-1 expression (p <

0.05) (Figure 6C), while CD137 and EAR2 remained identical.
Please note the harmony of in vivo and in vitro data in both
mouse and human species supporting our observations.

Steroid-Induced TECs Show Beige
Adipocyte miRNA Profile
There is a significant difference between white, brown and
beige adipose tissue miRNA profile. Seeking further evidence
we have characterized the miRNA profile of Dx-induced human
TECs (1889c).

We have elaborated two distinct platforms (Figure 7) for
complete human miRNome analysis. For both platforms
increased copy numbers are shown in red, while decreased
copy numbers are shown in green (heat map). QuantStudio
miRNA (QS) panels (A and B, Figures 7A,B) evaluate 768
miRNA entities, while the NanoString (NS) cartridge measures
copy numbers of 880 miRNA entries (Figure 7C). Of note
QS is amplification- (PCR) based while NS is amplification
free. QS provides enhanced sensitivity, NS ensures unmatched
signal-to-noise ratio. Accordingly, QS identified more miRNA
species with occasional out-of-scale activities (shown in white)
while NS recognized less species with a compressed scale of
activities relative to QS. An overlap of the recognized miRNA
species identified by at least one platform or evaluated by both
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FIGURE 6 | Beige adipocyte marker expression in aged or steroid-induced, mouse, and human TECs. Marker expression was evaluated by qRT-PCR from sorted

TECs of mice (A). TBX-1, UCP-1 and EAR-2 showed significant increase with age (1m vs 12m). CD137 remained unchanged. Marker expression was evaluated by

qRT-PCR in Dx-induced mouse TEP1 cells (B) and human 1889c cells (C), respectively. In mouse TEP1 cells TBX-1 and UCP-1 showed significant increase with

Dx-induction. CD137 and EAR-2 did not present significant difference. In human 1889c cells PPAR-gamma and UCP-1 showed significant increase with Dx-induction.

CD137 and EAR-2 did not present significant difference. Relative quantity values (RQ) are shown where Y = 1 represents young adult (A) or control expression levels

(B,C), respectively. Significant differences are shown by asterisks (*p ≤ 0.05, **p ≤ 0.01). Please not that Y-axis is logarithmic. For exact numerical values and

standard error of mean please refer to Supplementary Data Sheet containing both RQ and Ct/SD values for all experiments and target genes.

platforms similarly is summarized by Table 2. The table connects
the identified miRNA species with context-relevant function
based on literature search. Of note, several of the recognized
species have relevance to thymus senescence with special
focus on adipose tissue development, epithelial-to-mesenchymal
transition, cell proliferation and senescence.

DISCUSSION

Thymic Tissue Samples and
Steroid-Induced TECs Show Beige
Adipocyte Markers
TBX-1 has been extensively studied for its role in the thymic
context during embryonic organogenesis, but not in the adult
thymus undergoing adipose involution (11–15). Using human
and mouse thymus sections we show that TBX-1 expression
persists throughout adulthood with a transient decrease in
expression (23 years of age in human and 12 months of age in
mouse) based on our pilot studies. This persistence of thymic
TBX-1 expression raises the possibility of an alternative role in
adulthood. This hypothesis is supported by reports showing
that (1) once the thymus has been formed TBX-1 suppresses
FoxN1 (key transcription factor of thymic epithelial identity)
and (2) TBX-1 has a key and specific role in beige adipose tissue
development (17–21). This plausible connection is supported by
our results as further beige-indicative markers (UCP-1, EAR2)
show increasing mRNA levels with age. This is in harmony with
the fact that the thymus resides in the mediastinum and secretes
FGF21, both reported to promote the emergence of beige adipose
tissue (25). The in vitro model system of aging (Dx-treated
mouse TEP1 or human 1889c cells) show similar molecular
and cellular changes. Immune-fluorescent histology shows the
presence of TBX-1 both in control conditions and following
Dx-treatment. UCP-1 protein expression, on the other hand,
significantly increases following Dx-treatment. Protein level data
are in accordance with mRNA results as both TBX-1 and UCP-1
showed an increase following Dx-treatment (both in mouse
and human). The above molecular changes are accompanied
by evident phenotypical changes: the appearance of typical

intracellular multi-locular neutral lipid deposits (characteristic to
brown/beige adipose tissue) as shown by LipidTox staining
and transmission electron microscopy. Taken together,
these data suggest that thymic adipose tissue emerging with
senescence and modeled by steroid-induced TECs show beige
adipocyte features.

Steroid-Induced TECs Show Beige
Adipocyte Metabolic Profile
There is profound difference between white and brown/beige
adipose tissues with respect to metabolic traits (23). Basal
respiration (OCR) is significantly lower in white fat cells than in
brown/beige fat cells. Also, UCP-mediated uncoupled respiration
rate (resistant to inhibition by oligomycin) is characteristic
to brown/beige fat cells and not observed in white fat cells
(32). Furthermore, in brown/beige fat cells cAMP-induced
mitochondrial oxidation is elevated compared to white fat cells
(33). Having analyzed these metabolic parameters, our data
suggest that adipocyte differentiation in our model system
shows beige bias as indicated by elevated basal OCR, increased
OCR/ECAR ratio, enhanced cAMP-response and oligomycin-
resistant respiration. Our metabolic readouts are in accordance
with the recorded beige adipose tissue markers, morphological
characteristics and gene expression profiles.

Steroid-Induced TECs Show Beige
Adipocyte miRNA Profile
Unbiased dual platform complete miRNome analysis identified
a number of context-relevant miRNA copy number alterations.
Of note, miR-27a and miR-106b are beige adipose tissue
regulators and miR-155 is an inhibitor of brown/beige adipose
tissue formation (36, 46, 53). From a broad pan-adipocyte
perspective, miR-128a-3p, miR-1825, miR-301a-5p, miR-30d,
miR-425-5p, miR-550a, and miR92b-3p also influence adipose
tissue formation and show changes in the current experimental
setting (40, 43, 48, 49, 54, 55, 62, 66, 67). Furthermore,
a cornerstone of thymus adipose involution: epithelial-to-
mesenchymal transition (EMT), operates via miR-105-5p, miR-
200a-3p, miR-597-5p, miR-888, and miR-99b, all demonstrating
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FIGURE 7 | miRNA profile of steroid-induced TECs. miRNA profile of Dx-treated human 1889c cells measured by Quantstudio 12K Flex Pool A (A), Pool B (B) and

NanoString nCounter SPRINT Profiler (C). Heat-map representation shows miRNA species with most significant changes in copy number. Relative quantity values are

presented (ctrl = 1). Up-regulation of miRNA species is shown in red while down-regulation is shown in green. Out-of-scale RQ values are shown in white. Pilot study

is shown, for exact numerical values please refer to Supplementary Data Sheet.

changes in copy number in steroid-induced TECs (35, 36, 50,
63, 65, 69, 70). Taking a final expansion of interest, from
a senescent perspective miR-125a-3p, miR-125a-5p, miR-15b-
5p, miR-181a-5p, miR-323-3p, and miR-331-3p affect cellular /
tissue level senescence with focus on the thymus and also show
significant changes (36, 39, 40, 45, 47, 56–58). In summary,
steroid-treatment in TECs affects the same miRNA species that
were reported in connection with senescence-related thymus
adipose involution that apparently yields beige adipose tissue.

Expanding Overlap Between Metabolism
and Immunity
Overlap of metabolism and immunity has already been raised
decades ago, and this inter-disciplinary field has recently become
a prominent research area. For example, both previous and
recent papers discussed overlap between the neuroendocrine and
immune systems with regard to melatonin (71–73). Melatonin—
mainly produced by the pineal gland, but also expressed by
the thymus in small amounts—has been reported to have
an immune-modulatory effect, enhancing immune functions
with Th1 bias. Accordingly, anti-viral and anti-cancer defense
is boosted by melatonin and age-related loss of melatonin

production partly explains elevated incidence of infection
and cancer observed with senescence. Protection from cancer
metastasis development in the central nervous system (CNS)
implies proper blood-brain barrier (BBB) function (74–76). BBB
function, CNS function and immune status are all controlled
by metabolic interplays involving small molecules such as
lactate. Local tissue lactate concentration has been reported to
have important role in immune regulation, its accumulation
promoting autoimmune reactions (77, 78). Intercellular immune
modulatory signals triggered by metabolically active small
molecules are transmitted in cells through signaling pathways.
An important pathway connecting metabolism and immunity
utilizes mechanistic target of rapamycin (mTOR). It was shown
that mTOR senses certain small nutrients (amino acids) and thus
affects immune tolerance through regulatory T-cells (79, 80).
Mammalian immunity heavily relies on both the innate and the
adaptive branch. Within innate immunity macrophages have an
important role in connecting metabolism and immunity. It has
also been reported that carbohydrate metabolism significantly
affects inflammation via macrophages (81).

Carbohydrates are also basic metabolic fuels. The mammalian
immune system is a costly defense system with regard to T-cell
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TABLE 2 | Overlap of QS- and NS-based miRNA results with functional and literature annotation.

Name Up/down regulation QS/

NS

Function References

miR-103a-3p QS A Inactivation upregulates insulin receptors in adipocytes (34)

miR-105-5p QS A, NS Epithelial to mesenchymal transition (35)

miR-106b QS B Beige adipose tissue regulator (36)

miR-1208 QS B Targets TGFB2 (involved in adipose tissue development) (37)

miR-1246 NS Promotes cell proliferation (38)

miR-125a-3p QS A Tissue-specific senescence (39)

miR-125a-5p QS A, NS Regulation of epithelial cell differentiation (40)

miR-126-3p QS A Insulin/IGF1 signaling pathway (41)

miR-1274a QS B Potential biomarker for Alzheimer’s Disease (42)

miR-1274b QS B Potential biomarker for Alzheimer’s Disease (42)

miR-128a-3p QS A Regulatory effect on PPARg (43)

miR-138-5p QS A Negative regulation of apoptosis (44)

miR-15b-5p QS A, NS Characteristic of senescent cell derived EVs (36, 45)

miR-155 QS A Induces brown adipocyte differentiation from white adipocytes (46)

miR-181a-5p QS A, NS Stress-related thymic involution (47)

miR-1825 QS B Lipid signaling (48, 49)

miR-200a-3p NS Regulates epithelial cell transformation (EMT and MET) (50)

miR-2110 NS Cellular development, cell-mediated immune response (51)

miR-2116-5p NS Regulatory function in colorectal cancer (52)

miR-25-3p QS A, B, NS Modulator of the Wnt pathway (47)

miR-27a QS A, B Negative regulator in beige adipose tissue (36, 53)

miR-301a-5p NS Role in adipogenesis (54)

miR-30d QS B Upregulation in adipose tissue (55)

miR-323-3p QS A Regulation of senescence through IGF signaling pathway (56)

miR-331-3p NS, QS A Induces senescence and cell cycle arrest (57, 58)

miR-421 NS Upregulation modulates oxidant stress and lipid metabolism (59)

miR-425-5p QS A, B Inhibits differentiation and proliferation of preadipocytes (40)

miR-4531 NS Involved in type 1 diabetes mellitus (60)

miR-520d-3p NS, QS B Regulatory function in colorectal cancer (52)

miR-548q NS Possible biomarker of nasopharyngeal carcinoma (61)

miR-550a QS B Adipogenic differentiation (62)

miR-597-5p NS, QS A Drives EMT (63)

miR-657 QS B Regulates IL-37/NF-κB signaling (64)

miR-6721-5p NS Unknown

miR-888 QS B, NS Downregulates E-cadherin (65)

miR-92a-3p QS A, NS Replicative and organismal human aging (36)

miR-92b-3p QS B, NS Regulation of lipid deposition (66, 67)

miR-939-5p QS B, NS Inhibits cell proliferation (68)

miR-99b QS A, B, NS Regulates epithelial cell differentiation (36, 69, 70)

development and selection taking place in the thymus, where
approx. Ninety-five percent of developing thymocytes are deleted
being useless or potentially autoimmune. However, the adaptive
branch heavily relies on the constant supply of fresh naïve
and scrupulously selected T-cells to prevent infection, cancer
and autoimmunity from developing. Severe negative imbalance
in energy expenditure (due to fasting or malnutrition) has
long been known to hamper thymus function and immunity
(82). In contrast, currently, global human population is more
threatened by obesity than fasting/malnutrition along with its

reported negative effects on thymus function (1, 83). Fashionable
countermeasures of obesity include e.g., applying diet to induce
ketosis. Ketosis has been reported to enhance FGF21 secretion,
known to promote white adipose tissue browning especially
in the mediastinal context, where the thymus also resides (25,
84). Further options of white adipose tissue browning include
interventions e.g., irisin (exercise hormone) treatment (32).
However, since irisin promotes beige adipose tissue development
it may also impair thymus function via promoting adipose
involution identical to thymus senescence.
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Our study highlights another potential intersection of
immunity and metabolism via the dual role of TBX-1 during
thymus development and senescence. TBX-1 shows bimodal
expression (high expression in early and late ages, with a
transient decrease in-between) in both mouse and human. It is
conceivable that TBX-1 plays a role in thymus organogenesis
early on (early “immune” peak) and thymic adipose involution
later on (late “metabolic” peak). This dualism may be
unique to the thymus due to the observed “beige” adipose
involution process.

With senescence the thymus suffers adipose involution.
Impaired thymic niche leads to decreased naïve T-cell output.
This in turn weakens T cell-mediated anti-viral and anti-cancer
defense, and elevates the chances of autoimmune disorders
due to dysfunctional T-cell selection. Therefore, thymic adipose
tissue emerging with age impairs immune homeostasis and
the maintenance of tolerance. Our results indicate that thymic
adipose tissue shows “beige” characteristics by molecular, cellular
and metabolic profiling. Our research contributes to the breadth
of overlap between metabolism and immune homeostasis.
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