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Growth Hormone (GH) has been considered as a therapeutic option to increase the

number of growing follicles during Assisted Reproductive Technology (ART) for more than

30 years. In this review the biological rationale for therapeutic GH usage is explained

through evidence in animal models, aiming to put this into a clinical context. First,

we explain the GH—Insulin like Growth Factor (IGF)-1—gonadal axis and its role in

reproduction. Evidence suggests that GH can stimulate the secretion of IGF1 not only

in the liver but also in the peripheral target structures, including the ovary. Moreover,

IGF-1 can be secreted locally under the influence of stimuli other than GH. In the case

of the ovary, steroid hormones, gonadotropins or the combination of both seems to

be involved. Even more interesting, the ovary itself can secret GH locally and exert a

paracrine action modulating the intracellular signaling pathway of GH, i.e., not by the

systemic pathway where GH binds to the extracellular domain of the GH receptor. Finally,

these aspects from animal models are put into clinical perspective by discussing results

and shortcomings of studies and meta-analyses in order to put forth the state-of-the-art

rationale for therapeutic GH usage in modern ART.

Keywords: growth hormone, infertility, poor ovarian response, POSEIDON, IVF

INTRODUCTION

GH is a monomeric protein secreted by the pituitary with a high molecular similarity to other
lactogenic hormones like prolactin and placental lactogen. In the anterior pituitary gland, the
secretion by the somatotroph cell is regulated by both stimulatory peptides [e.g., Growth Hormone
Releasing Hormone (GHRH)] and inhibitory (e.g., Somatostatin) peptides. The secretion takes
place in a pulsatile way that combines short-term variability of spikes of irregular amplitudes
with a clear circadian increase, coinciding with the late non-Rapid Eye Movement (REM)
periods, probably mediated by dopamine related neurotransmitters (1, 2). This complicates the
determination of optimal plasma levels. The action of GH is exerted through its binding to the
extracellular domain of a complex membrane receptor. In contrast to dimeric glycoproteins like
gonadotropins, two receptors are needed in order to establish a trimeric structure composed by
two membrane receptors and the GH molecule. Thus, three recognition processes are needed for
an effective downstream activation: receptor-to-receptor and agonistic GH molecule to each of
the receptors to form the activated GH trimeric complex. This complex relationship between the
hormone and the target organ makes the process of activation vulnerable to different mutations,
causing different downstream effects such as the clinical diversity in the different phenotypes of e.g.,
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dwarfism (3, 4). The classic paradigm establishes that pituitary
GH acts on its hepatic receptors and stimulates the secretion of
somatomedins or Insulin-like growth factors (IGFs): insulin like
growth factor 1 and 2 (IGF-1 and IGF-2). These are molecules
sharing near 50% homology with pro-insulin. However, IGF-
1 and IGF-2 seem to have different roles. While IGF-1 is
considered the mediator of the classical biological actions on
growth, development and cellular proliferation, IGF-2 is relevant
in the regulation of perinatal development. The secretion of
IGFs is induced by GH mediated activation of single copy genes.
IGF mRNAs have been detected in several target tissues, and at
the same time both IGF types exert a negative feedback at the
hypothalamic level maintaining basal steady levels of GH (1).
Both circulating and local bioavailability is regulated by high
affinity binding proteins which fine-tune their local action (5).

NEW EVIDENCE FROM ANIMAL MODELS

In the last decade the old paradigm described above has been
challenged by new evidence obtained in genetically manipulated
research animals, introducing new elements of complexity to
be taken into account when interpreting the role of GH in
any peripheral structure, especially in the ovary. As reviewed
thoroughly by others (6), GH can stimulate the secretion of IGF-
1 not only in the liver but also in peripheral target structures (6).
Moreover, IGF-1 can be secreted locally under the influence of
stimuli other thanGH. In the case of the ovary, steroid hormones,
gonadotropins or the combination of both can be involved.
Finally, the ovary itself can secret GH locally and exert a paracrine
action, modulating the intracellular signaling pathway of GH
and this occurs without binding to the extracellular domain of
the membrane GH receptor. This is especially relevant since,
contrary to the pituitary secretion, the ovarian secretion of GH
takes places in a regular, non-pulsatile, non-circadian pattern.

In GHR knockout mice, circulating GH levels are high and
IGF-1 levels are low (7). All studies on blocking or impairing
the action of GH on its receptor report a delay in puberty, a
significant reduction in litter size (a mean from 6, 7 in wild type
animals to 2, 7 in transgenic) (8), and a corresponding delay in
the exhaustion of the follicular pool (3). However, the genetically
modified animals are fertile and deliver small litters of healthy
animals. The experimental data show that this decrease in litter
size is the consequence of a reduction in ovulation rate rather
than problems related to implantation failure or early embryo
loss. Histological examination of the ovaries shows an increase
in primordial or primary follicles and a decrease in the number
of healthy and growing antral or pre-ovulatory follicles (7–10).
It is difficult to establish to which extent this is the result of
abnormal GH signaling or its immediate downstream mediator,
i.e., a decrease in local IGF-1 secretion. Interestingly, the negative
effects seen in the abovementioned studies can be reverted by the
administration of IGF-1 (11).

A suitable model to clarify the specific role of IGF-1 is
the IGF-gene knockout mouse (12). In these mice, the lack
of expression of IGFs results in dwarfism and infertility. The
female mutated animals fail to ovulate either spontaneously or

under the influence of gonadotropins, proving the importance of
IGF1 in the progression of cohorts from primordial and primary
stage to recruitable secondary follicles and in the sensitivity
to gonadotropins during the process of selection and follicular
growth. Interestingly, the histological observation shows an
increase in primordial and primary follicles as compared to the
wild type animal and an absence of antral follicles. These findings
reinforce the idea of a crucial role for IGF in the process of
progression of the follicles from the non-gonadotropin sensitive
to the gonadotropin sensitive stages.

Shiomi-Sugaya et al. observed that in an “in vitro” model
of secondary follicles from mice isolated in gel media, the
growth rate of the follicles or their time to atresia correlate
with IGF-1 mRNA expression (13). Also interesting is the
relationship between IGF-1 mRNA and the presence of theca
cells. Follicular progression was arrested by blocking IGF-1
production and restored by the co-culture with the cytokine, thus
confirming the importance of IGF-1 in follicular development.
These observations suggest a peri-follicular microenvironment
where theca cells, beyond providing precursors for local estrogen
production, modulate follicular progression through paracrine
action of androgens and IGFs.

A completely different approach to study GH role on follicular
dynamics is based in modifying GH secretion at the pituitary
level (14). In GH df/df Ames dwarf mice GH pituitary secretion
is practically abolished. In this context the pool of primordial
follicles is clearly increased as compared to N/df or wild type
animals. GH administration reverses this situation and decreases
primordial follicular count while increasing the number of antral
follicles. On the contrary, transgenic mice overexpressing GH
have a reduced number of primordial follicles as compared to
controls. It is relevant to note that, in the wild type animals,
the administration of GH diminishes the primordial follicular
population but do not increase the number of antral structures,
probably due to a subsequent increased atresia rate. Taken
together, these findings suggest that in the absence of GH, follicles
remain in the primordial stage.

EVIDENCE FROM “HUMAN MODELS”

In humans the evaluation of GH role on reproduction can
be approached through two different models: GHRH or
GH receptor mutations or combined pituitary hormone
deficiencies (CPHD). In the Itabaianinha County, in
Brazil, there is an ethnic group with high prevalence
of a mutation of the gene encoding GHRHR gene,
resulting in a severe reduction in GH signaling. Beyond
the phenotypic characteristics of GH deficiency, the
affected individuals have delayed puberty, but are fertile
mimicking what is found in animal models with GH
deficiency (15).

Similar clinical findings are observed in a group of
predominantly Sephardi Jewish with up to 29 mutations
of the gene encoding for GHR (16). A cohort of seven
married women has been followed for their entire reproductive
lives. Five of them have conceived 11 term pregnancies
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and 4 miscarriages. All pregnancies were spontaneous except
for one that was obtained by IVF. Six women reached
menopause between 48 and 51 years. In a different model
of childhood onset CHPD, Correa reports on five cases
from a single center. Pregnancy has been obtained in all
cases with controlled ovarian stimulation and GH –LT4 co-
treatment (17).

SUMMARY: LESSONS LEARNED FROM
ANIMAL AND HUMAN MODELS

All experimental or clinical situations of early GH/IGF
deprivation result in a delay in pubertal development with a
corresponding prolongation of reproductive life. Microscopically
there is a change in the composition of the follicular pools with
a predominant population of primordial and primary follicles
and the absence or limited presence of more advanced stages
of follicles. This situation can be reverted with GH or IGF-1
administration. IGF-1 has proven to be necessary for ovulation
to occur while in the absence of GH follicular development,
ovulation, and pregnancy can take place. In these cases, however,
the size of the litter is significantly decreased. All these findings
suggest a significant role of both systemic and local GH/IGF-1
regulation in the progress of follicles from non-gonadotropin to
gonadotropin dependent status and also in improving follicular
development and oocyte maturation. Thus, it is biologically
plausible that GH administration can play a positive role in
increasing the number of recruited follicles, especially in cases
with limited ovarian reserve. If the evidence from animal models
can be directly translated into humans, the administration of
GH with the purpose of improving the oocyte yield should
begin earlier than the stimulation with gonadotropins. In the
same line of thinking Gleicher and colleagues explore this
hypothesis, www.clinicaltrial.gov (NCT02179255), suggesting to
initiate HGH at least 6 weeks prior to start of COS.

Figure 1 shows factors influencing the dynamics of follicular
development. Activators such as GH and IFG-BP (Insulin
Growth Factor Binding Protein) complexes, Insulin, androgens
and activin, might promote follicular growth, transition to
antral stage or even follicular recruitment, either by acting
as anti-apoptotic factors or enhancing follicular response to
gonadotropins. Inhibitors such as Anti Müllerian Hormone
(AMH) are able to block initial follicle recruitment, transition
to antral stage or even the gonadotropin-dependent recruitment.
Late follicular stages are predominantly influenced by endocrine
factors such as gonadotropins: mainly FSH in the recruitment
and selection of the leading follicle and LH at later stages and
last oocyte maturation and ovulation. Although there has been
a clear differentiation between gonadotropin-independent and
gonadotropin responsive/dependent stages, all the molecules
mentioned have been shown to take part not only at one level,
but in the entire process of folliculogenesis. Basic science studies
provide biologically plausible data for GH and IGF-1 as key
factors for an optimal follicle development. GH may play an
activating role, either directly or indirectly, via for instance IGF-1
in the transition from primordial follicles to late antral stages.

FIRST CLINICAL EVIDENCE OF
THERAPEUTIC GH IN IVF

In the late eighties, a few case studies in patients undergoing
COS for IVF and ovulation induction (OI) suggested that
administration of GH improved the ovarian response to
stimulation with gonadotropins (19–21). Later it was shown
that GH treatment was associated with minor adverse reactions,
mainly gastrointestinal symptoms, in ∼17% of cases (8/48) (22).
The first reported mechanism by which GH would enhance FSH
action was by up-regulating the synthesis of IGF-1 in granulosa
cells (23). Animal studies suggested that GH increased the intra-
ovarian synthesis of the IGF-1 in vivo and in-vitro (24, 25)
and that this interaction was an important part of ovarian
physiology in humans (26, 27). Addition of IGF-1 in granulosa
cell cultures increased the intrinsic action of gonadotropins by
enhancing aromatase activity, estradiol (E2) and progesterone (P)
production and LH receptor formation (27, 28) and was able to
stimulate follicular development and oocyte maturation (25).

In 1990, a well-designed controlled clinical trial confirmed
the synergistic effects of GH in patients undergoing IVF and
stimulated with human menotropin gonadotropin (HMG) (21).
However, another RCT with 20 suboptimal responder patients
concluded that there was no improvement in the ovarian
response by adding GH although there was a trend for more
developing follicles (P = 0.06) (29). Interestingly, a sub-analysis
of this study in patients with polycystic ovaries (PCO) showed
a significant increase in the number of follicles developed (P =

0.04) and the number of oocytes retrieved (P = 0.03). The study
did not report pregnancy rates and live birth rates (LBR) (29).
Another study focusing on polycystic ovarian syndrome (PCOS)
patients as a target for GH treatment found favorable responses in
terms of serum and follicular IGF-1 concentrations (30). Despite
not reporting conclusive clinical results, these and other early
studies reported that GH treatment seemed to promote ovarian
steroidogenesis and follicular development (22).

META-ANALYSES: A NEED FOR FURTHER
RESEARCH

In 2003, a Cochrane review and meta-analysis concluded that
the use of GH in COS for IVF was in need of further research
(31). The meta-analysis covered studies with GH co-treatment
administered in varying dosages (4, 8, and 12mg) and with
intervention performed alongside stimulation start. There were
no significant differences in any outcome measure and at any of
the dosages used. Following this meta-analysis, five subsequent
meta-analyses assessed the clinical use of GH as adjuvant in IVF.
The first analysis reported an increase in the clinical pregnancy
rates (CPR) and LBR by the administration of GH during COS
with gonadotropins in PORs—an absolute increase in CPR by
16% (95% CI: +4 to +28; fixed effects model) (number-needed-
to-treat = 6, 95% CI:4–25). Moreover, GH supplementation
was associated with a significantly higher proportion of patients
reaching embryo transfer (32). Despite this promising result, the
total number of cases included in the meta-analysis was too small
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FIGURE 1 | Factors influencing dynamics of follicular pool development. Adapted from Gougeon (18) IGF-BP complexes (Insulin Growth Factor Binding Protein

Complexes); GH (Growth Hormone); AMH (Anti Müllerian Hormone). Blue stripe shows follicular stages predominantly influenced by paracrine factors: activators such

as GH and IFG-BP complexes, insulin, androgens and activin and AMH. Green stripe shows follicular stages predominantly influenced by endocrine factors such as

gonadotropins. Although there has been so far a clear differentiation between gonadotropin-independent and gonadotropin responsive/dependent stages, all these

molecules have shown to take part not only at one level, but in the whole folliculo-genesis.

to reach robust evidence (only 169 patients in a total of 6 RCTs).
It is important to stress that from the 2003 Cochrane review to
the meta-analysis by Kolibianakis by (32), only one well designed
RCT was published in the literature, comparing the use of GH
alone as an adjuvant to COS in PORs (33). The study involved
61 PORs patients, and the study group (n = 31) received daily
GH co-treatment (4mg subcutaneously) mg from the first day of
GnRHa down regulation (day 21 of the preceding cycle) until the
day of the ovulation trigger (OT). The control group (n = 30)
received the same protocol except for the GH co-administration.
A numerically higher CPR was achieved in the GH group (12/31)
as compared to the control group (6/30). However, this difference
did not reach statistical significance. Prior to that two Chinese
studies were conducted in PORs and investigating the use of GH
(34, 35). Both studies were only available in full-text in Chinese,
hence, we did not include them in this review.

Kyrou et al. (36) performed a meta-analysis of RCT‘s which
evaluated interventions aiming at increasing pregnancy rates
in PORs. The only adjuvant treatment to standard stimulation
that appeared to increase the probability of live birth was the
addition of GH (OR 5.22, CI: 95% 1.09–24.99). Later, Duffy
et al. (37) made a revised update of the Cochrane meta-
analysis, including 10 studies with a total of 440 patients. Results
demonstrated a statistically significant difference in LBR favoring

co-administration of GH in IVF protocols in POR patients
without increasing adverse events (OR 5.39, 95% CI 1.89–15.35).
Notably, most of the studies included in these meta-analyses
led to a potential bias in the results due to poor description of
the method of randomization. Moreover, there were significant
differences in timing and dose of GH co-administration as well
as high heterogeneity in the definition of POR.

In 2015, Yu et al. (38) performed an updated meta-analysis
reporting results in line with previous analyses. The results
showed a significant improvement in terms of metaphase II
oocytes retrieved, number of 2PN obtained and number of
embryos available for transfer by GH supplementation in IVF
patients. However, no difference was seen as regards CPR.

THE SEARCH FOR THE MOST OPTIMAL
STIMULATION PROTOCOL

A retrospective matched case–control study including 42 patients
explored for the first time the effect of GH as an adjuvant
in a micro-dose GnRH agonist flare-up protocol. The study
group was treated with 3.33mg GH daily subcutaneously (SC)
for 14 days before starting COS (39). The authors did not
find differences in any of the reported outcomes, although the
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small sample size and the retrospective character of the study
necessitated a future RCT to draw firm conclusions. A RCT
including a total of 141 patients was subsequently performed
in GnRH antagonist co-treated Bologna criteria POR patients
(40). In this study, GH administration was initiated on day 6
of hMG stimulation in a daily dose of 2.5mg SC until the day
of HCG trigger. The study group had significantly fewer days
of stimulation, more oocytes retrieved and better fertilization
rates, albeit the authors did not find significant differences in
CPR per cycle and LBR per cycle. These results were similar to
those previously published in the first RCT using GH during
GnRH antagonist co-treatment (41). In 2015, an open label
four arm randomized study including a total of 287 POR
patients aligned with the ESHRE Bologna criteria aimed at
comparing 4 different stimulation protocols (42). All groups were
administered GH on day 6 of hMG stimulation in a daily dose
of 2.5mg SC. Patients were randomly allocated to either a long
or short GnRH agonist protocol, mini-flare or GnRH antagonist
protocol. The long protocol was superior regarding the number
of oocytes retrieved and fertilization rate, although no differences
were seen in CPR. More recently, Dakhly et al. explored GH
adjuvant treatment in the long agonist protocol in a prospective
randomized study with 240 patients (43). The intervention group
received adjuvant GH co-treatment 2.5mg s.c (7.5 IU) from day
21 of the previous cycle along with GnRHa, until the day of
HCG trigger. Authors found statistically significant differences
in terms of number of oocytes collected in favor of GH [(5.4 ±

1.7) vs. 4.3 ± 2.1], but they failed to show statistical differences
in LBR in both fresh (17.5 vs. 14.1%) and cumulative frozen
embryo transfer cycles (18.3 vs. 14.7%) (43). However, this study
was criticized for mainly two shortcomings (44): (i) A mean
of 2.4 and 1.6 embryos were transferred in the study group
and the control group, respectively, in the fresh cycle, yielding
the results difficult to interpret with today’s standard of using
single embryo transfer and (ii) the luteal phase support with
micronized progesterone pessaries 400mg twice daily seemed
suboptimal for the POR patients and the most optimal approach
would be with a combination of HCG injections and micronized
progesterone pessaries 400mg three times daily as described by
Yovich previously (45) or other methods of ensuring optimal
mid-luteal serum P levels (46).

MOST RECENT META-ANALYSES

Recently, Li et al. (47) performed a meta-analysis including 11
RCT’s with a total of 663 patients. A pooled result, using fixed-
effects model showed that the CPR and LBR per transfer were
significantly higher in the GH group (RR 1.65, 95% CI 1.23–
2.22; p < 0.001 and RR 1.73, 95% CI 1.25–2.40; P < 0.001,
respectively). Moreover, the cycle cancellation rate (RR 0.65, 95%
CI 0.45–0.94; P = 0.02) was significantly lower in GH co-treated
cycles. No significant difference was seen in implantation rate
(RR 1.05, 95% CI 0.56–1.99; P = 0.87). Although co-treatment
with GH significantly increased the number of oocytes retrieved
and the number of MII oocytes obtained, there was a high
heterogeneity between studies regarding these two outcomes

(I2 = 87 and 89%, respectively) (47). The latest meta-analysis
regarding the use of GH in COS was also published in 2017
(48). In that analyses all previous articles were included as
well as data from the so-called LIGHT study (49). This was a
multicenter, double-blind, placebo-controlled trial performed in
10 centers throughout Australia and New Zealand. Authors did
not include Bologna or POSEIDON criteria for POR. A GH
dose of 12IU was administered from the first day of stimulation
in the intervention group. After 4 years of enrollment, the
study was stopped prematurely, reporting only 130 patients
randomized. The number of patients reaching an oocyte retrieval
per randomized cycle was significantly higher in the GH group
(62/65 [95.4%] vs. 51/65 [78.5%], OR 5.67, 95% CI 1.54–20.80),
however, no differences were reported in the LBR (9/62, [14.5%]
vs. 7/51, [13.7%], risk difference 0.8%, 95% CI −12.1 to 13.7%;
OR 1.07, 95% CI 0.37–3.10). Unlike other studies, no statistical
differences were reported between groups regarding the mean
number of oocytes retrieved (5 vs. 4, rate ratio 1.25, 95% CI 0.95–
1.66) and the chance of reaching embryo transfer (53/61 [86.9%]
vs. 42/51 [82.4%], OR 1.42, 95% CI 0.50–4.00). No differences
in embryo quality were found between groups. Results from this
study should be interpreted with caution, as it was underpowered
due to the few number of patients included.

CONCLUSIONS

The use of GH to enhance follicular response to gonadotropin
stimulation has biological plausibility, as shown in animal
and human models. The GH/IGF system plays a pivotal role
in the regulation of follicular dynamics. Any experimental
manipulation reducing the exposure to either GH or IGF lead to
an imbalance between the primordial gonadotropin independent
and gonadotropin sensitive follicular pools and a subsequent
decrease in the size of the litter. However, to date, although
a higher number of oocytes has been consistently reported
researchers failed to show benefits in terms of LBR with the use
of adjuvant GH. The use of GH is definitely “unfinished business”
and future trials with bigger sample size need to be more specific
as regards inclusion criteria, treatment protocol and GH dose to
draw firm conclusions. Until then, it seems that some clinicians
would use GH as adjuvant whereas many would not.
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