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G protein-coupled receptors (GPCRs) constitute the largest superfamily of integral

membrane protein receptors. As signal detectors, the several 100 known GPCRs are

responsible for sensing the plethora of endogenous ligands that are critical for the

functioning of our endocrine system. Although GPCRs are typically considered as

detectors for first messengers in classical signal transduction pathways, they seldom

operate in isolation in complex biological systems. Intercellular communication between

identical or different cell types is often mediated by autocrine or paracrine signals that are

generated upon activation of specific GPCRs. In the context of energy homeostasis, the

distinct complement of GPCRs in each cell type bridges the autocrine and paracrine

communication within an organ, and the various downstream signaling mechanisms

regulated by GPCRs can be integrated in a cell to produce an ultimate output. GPCRs

thus act as gatekeepers that coordinate and fine-tune a response. By examining the role

of GPCRs in activating and receiving autocrine and paracrine signals, one may have a

better understanding of endocrine diseases that are associated with GPCR mutations,

thereby providing new insights for treatment regimes.
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INTRODUCTION

To maintain homeostasis in humans, a wide array of extracellular factors is required to harmonize
physiological activities between various organs and tissues. These signaling molecules in the form
of hormones, peptides, neurotransmitters, proteins, ions, and lipids act via specific receptors to
elicit cellular responses. Among the different receptor families, more than 700G protein-coupled
receptors (GPCRs) form the largest and the most diverse receptor superfamily that participate in
virtually all aspects of human physiology. Most human GPCRs can be grouped into five families
(Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin) according to their structural
similarity, which is known as the GRAFS classification system (1). The physiological relevance
makes GPCRs one of the most popular drug targets (2), and their importance in the field of
endocrinology is highlighted by the identification of naturally occurring GPCR mutations in
patients with various endocrine diseases (3). In classical endocrine systems, hormones are released
into the bloodstream and they modify target cells in a distant part of the body; it has become
apparent that these processes are regulated by cellular communications encompassing autocrine,
paracrine, intracrine, and juxtacrine interactions. In this review, we will focus on our current,
yet evolving understanding of the autocrine and paracrine signals regulated by GPCRs in various
physiological systems. Since signals mediated by GPCRs are regulated by a myriad of complex
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determinants, with crosstalk between different signaling
pathways that culminate in the fine-tuning of cellular responses,
it is important to examine the role of GPCRs in the context of
signal processing within and between different cells and tissues.

GPCRS AND THE HIERARCHY OF
ENDOCRINE, AUTOCRINE AND
PARACRINE SIGNALING

Although the discovery of autocrine and paracrine interactions
was initially overshadowed by the characterization of endocrine
glands, the concept of cells being able to secrete regulatory
factors was first appreciated more than 200 years ago by
leading scientists of the time, including Brown-Séquard whom
many regarded as the “father of endocrinology.” It is now
firmly established that the endocrine glands are regulated by a
plethora of internal and external signals via blood circulation,
and that these input signals can further trigger the release
of autocrine/paracrine messengers. Various autocrine/paracrine
factors are known to contribute to the communications and
intricate feedbacks between different types of cells within an
endocrine gland, resulting in a coordinated hormonal output
and the corresponding physiological outcome. Remarkably, the
same chemical molecules can be used in multiple contexts
of endocrine, paracrine or autocrine signaling, or even in
synaptic signaling. The function of these signaling molecules
can be considered in a hierarchical manner (Figure 1) for the
majority of endocrine organs as: (1) a circulatory input that
initiates the subsequent autocrine/paracrine interactions; (2)
an autocrine/paracrine messenger that mediates the feedback
networks among different cells within the endocrine gland;
and (3) a hormonal output secreted by endocrine cells, which
enter the circulation and further serve as a circulatory input
for other organs. Among these signaling processes, GPCRs
are ineluctable mediators in sensing both circulatory inputs
and autocrine/paracrine factors. According to the “GRAFS”
classification scheme, there are five classes of vertebrate GPCRs
(1) whose differential distribution on different cell types helps
to ensure specificity of the feedback network. Because optimal
utilization of nutrient is a vital prerequisite for survival, this
review will focus on examples of GPCRs in the Rhodopsin and
Secretin families that regulate energy homeostasis. However,
it should be noted that the concept of GPCRs mediating
autocrine/paracrine responses is applicable to many other
endocrine tissues/organs such as adipose tissue (4), the adrenal
gland (5), and testis (6). Other classes of GPCRs are also
functionally essential for various endocrine systems; a prime
example is the calcium-sensing receptor of the Glutamate family
for calcium homeostasis (7).

PANCREATIC GPCRS IN THE REGULATION
OF ENERGY HOMEOSTASIS

The human pancreas is composed of granular tissues embedded
with a duct system. While exocrine cells constitute the major
biomass of the pancreas, a small cluster of endocrine cells forms

the pancreatic islet, including three key cell types: glucagon-
secreting α-cells, insulin-secreting β-cells, somatostatin-secreting
δ-cells (8) (Figure 2). The pancreatic islet is an important
peripheral endocrine gland for maintaining blood glucose level
and energy homeostasis. To adjust energy fluctuation caused by
food intake, circadian rhythm or physical activities, the islet is
sensitive to signals which are regulated by the hypothalamus
as well as to other circulatory signals such as nutrients and
hormones. Human islet GPCRmRNAprofiling has identified 293
islet GPCRs that respond to 271 different endogenous ligands, of
which at least 131 ligands are present in islet cells (9). However,
the majority of islet GPCRs have unknown effects on pancreatic
hormone secretion. Readersmay refer to other reviews for the full
list of islet GPCRs discovered in humans and their comparative
analysis with mouse islet GPCRs (9, 10). Besides GPCRs, other
receptor types such as tyrosine kinases are also able to regulate
pancreatic responses. It should be noted that signal crosstalk and
transactivation linkages between GPCR and non-PCR pathways
constitute yet another layer of signaling complexity in energy
homeostasis (11).

GPCRs for Sensing Circulatory Inputs
There are numerous GPCRs in the pancreas that can detect
circulatory nutrients and related hormones, and the major
examples are listed in Table 1. A few examples will be discussed
to illustrate the role of GPCRs as circulatory signal sensors
that induce subsequent autocrine/paracrine interactions in the
pancreas. One of the best-known incretin hormones is glucagon-
like peptide 1 (GLP1), which is secreted by the intestinal L-
cells upon food consumption and circulates throughout the
body, including the pancreatic islet which expresses GLP1
receptor (GLP1R). GLP1R is coupled to Gs proteins to
control the secretion of insulin, glucagon, and somatostatin
that facilitate glucose disposal. The activation of GLP1R on
mouse β-cells induces a robust up-regulation of insulin-like
growth factor 1 (IGF1) receptor, which triggers the IGF1/IGF2
receptor autocrine loop associated with an increase of Akt
phosphorylation, with the Akt pathway bestowing an anti-
apoptotic effect (25). GLP1R expressed on β- and δ-cells
can also direct the paracrine regulations by activating the
secretion of insulin and somatostatin, respectively, to inhibit
glucagon secretion by α-cells. Gastric inhibitory polypeptide
(GIP), another incretin hormone which acts on the Gs-coupled
GIP receptor (GIPR), mediates similar responses as GLP1 but
its mechanism of action is less understood (12). In addition,
GIP can induce the production of interleukin-6 (IL6) by
α cells, which in turn stimulates the production of GLP1
and insulin secretion by β-cells, forming another paracrine
loop (24).

Interestingly, apart from circulatory hormones, energy
sources like free fatty acids (FFAs) can also act as signaling
molecules. FFAs are obtained from dietary fat. Depending on
the length of the carbon chain, FFAs bind to a multitude of
GPCRs which are known as FFA receptors (FFARs), including
G protein-coupled receptor 41 (GPR41) and GPR43 that bind to
short chain FFAs, GPR84 for medium chain FFAs, GPR40 and
GPR120 for long-chain FFAs, and GPR119 for long-chain FFAs
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FIGURE 1 | Schematic diagram of endocrine, autocrine, and paracrine communications in energy homeostasis. Circulating molecules such as neurohormones,

hormones and nutrients are derived from CNS, endocrine organs and tissues, and small intestine. These molecules in blood are circulated to different parts of the

body. The molecules diffused into endocrine organs act as circulatory inputs (1), which then bind to receptors on target cells and trigger the secretion of autocrine and

paracrine factors, so as to foster communications between the same or different cell types (2). As a result of signal integration from various autocrine/paracrine

factors, hormone secretions from endocrine cells are adjusted, and hormonal outputs are released into the circulation (3), which can further influence other organs and

tissues to maintain homeostasis.

FIGURE 2 | A schematic diagram showing the autocrine and paracrine interactions between pancreatic α-, β-, and δ-cells that regulate the insulin output. Glucagon

and acetylcholine from α-cell (beige), and somatostatin from δ-cell (blue) are stimulatory and inhibitory signals for hormone secretion, respectively, that can act in both

autocrine and paracrine manners via their receptors (GCGR for glucagon; M1R, M3R, and M5R for acetylcholine; SSTR2 and SSTR5 for somatostatin). The insulin

output from β-cell (green) is adjusted by an integration of paracrine signals from both α- and δ-cells within the niche.

and cannabinoid (26). These FFARs are differentially distributed
in tissues and they signal through different G proteins for energy
homeostasis. For example, GPR40 (also known as FFAR1) is

expressed in human islets at levels comparable to those of GLP1R.
At fasting glucose level, palmitate can enhance the secretion of
glucagon and insulin via GPR40 on α- and β-cells (27), and this
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TABLE 1 | Examples of GPCRs in the pancreatic islet for receiving circulatory inputs.

GPCR Family Ligands Transduction mechanism Functions References

GHSR1a Rhodopsin Ghrelin Gq/11;

Gi/o; G12/13

• Inhibit insulin secretionb (12)

GPR40 Rhodopsin Long-chain carboxylic acid Gq/11;

Gs; Gi/o

• Stimulate glucagon secretionc

• Enhance insulin secretiona
(13, 14)

GPR119 Rhodopsin N-oleoylethanolamide Gs • Enhance insulin secretionc

• Stimulate β-cell replicationc
(15, 16)

ChemR23 Rhodopsin Chemerin Gi/o • Stimulate glucagon secretionc

• Enhance insulin secretiona
(17)

MT1 Rhodopsin Melatonin Gi/o;

Gq/11

• Stimulate glucagon secretiona

• Enhance insulin secretionb
(18)

MT2 Rhodopsin Melatonin Gi/o • Stimulate glucagon secretiona

• Enhance insulin secretionb
(18)

α2AAR Rhodopsin Adrenaline; Noradrenaline Gi/o;

Gs

• Inhibit insulin secretionb (19)

β1AR Rhodopsin Adrenaline; Noradrenaline Gs;

Gi/o; β-arrestin ½

• Stimulate glucagon secretiona

• Stimulate somatostatin secretiona
(19, 20)

β2AR Rhodopsin Adrenaline; Noradrenaline Gs;

Gi/o; β-arrestin 1

• Stimulate glucagon secretiona

• Stimulate somatostatin secretiona
(19, 20)

β3AR Rhodopsin Adrenaline; Noradrenaline Gs;

Gi/o

• Enhance insulin secretionb (21)

PAC1 Secretin PACAP Gs; Gq/11 • Enhance insulin secretionb

• Stimulate glucagon secretiona
(22, 23)

GLP1R Secretin GLP1 Gs • Inhibit cytokine-induced apoptosis of β-cellsc

• Inhibit glucagon secretionb
(14)

GIPR Secretin GIP Gs • Inhibit cytokine-induced apoptosisc

• Induce insulin production regulated by inflammationb
(14, 24)

The GCPRs expressed in the pancreatic islet receive circulatory signals and exert their functions on hormone-secreting cells, initiating the autocrine and/or paracrine regulations between

pancreatic cells. The primary transduction mechanisms are listed at the first row followed by secondary transduction mechanisms (if any).
a Initiate both autocrine and paracrine regulations.
b Initiate paracrine regulations.
c Initiate autocrine regulations.

positive regulation is primarily mediated via the Gq/11 signaling
pathway (28). In contrast, GPR119 is expressed predominantly in
β-cells. The binding of long-chain FFAs to GPR119 can increase
the intracellular cAMP levels via Gs stimulation of adenylyl
cyclase (AC) and promotes glucose-stimulated insulin secretion
(29). Another example of organ crosstalk is between islet and the
adipose tissues, which is mediated by adipose-derived signaling
molecules (adipokines). Chemerin, one of the adipokines,
was found to regulate glucose-stimulated insulin secretion
and improve glucose tolerance via its receptor ChemR23 in
mouse. The transduction mechanism of ChemR23 is coupled
to the Gi/o pathway, while the functional relevance of the
other two receptors of chemerin (GPR1 and CCRL2) remains
unclear (17).

The pancreatic islet is additionally regulated by signals
from the central nervous system (CNS). Multiple studies have
demonstrated the roles of circadian clocks in key metabolic
tissues, including liver, pancreas, white adipose, and skeletal
muscle (30). In mammals, the suprachiasmatic nuclei (SCN)
express a robust rhythm of electrophysiological activity that
controls the secretion of melatonin by the pineal gland,
with the diurnal variation in melatonin being crucial for
synchronizing the circadian rhythm (31). The expression of

type 1 and type 2 melatonin receptors (MT1R and MT2R)
in the human islets has been confirmed by molecular and
immunocytochemical approaches (32). Upon ligand binding,
MT1R and MT2R suppress intracellular cAMP production via
Gi/o proteins and reduce insulin secretion. The MT2R can
also inhibit insulin secretion by suppressing the guanylate
cyclase/cyclic guanosine monophosphate (GC/cGMP) pathway
(33). A strong functional link between MTNR1B (encode
MT2R) and type 2 diabetes risk was further established by
Bonnefond et al (34), and an inhibitory effect of melatonin
on somatostatin secretion has recently been demonstrated in
a human pancreatic δ-cell line (35). Like melatonin, other
classical neurotransmitters can also act as neurohormones to
modulate pancreatic responses, and these include noradrenaline
and adrenaline that inhibit pancreatic hormone secretion. Several
subtypes of α2-adrenoceptors (α2AAR, α2BAR, and α2CAR) and
β adrenoceptors (β1AR, β2AR, and β3AR) are known to be
expressed in the pancreatic islet (36). The α2AAR on β-cells
is important for Gi/o-mediated inhibition of insulin secretion.
Although less studied in humans, agonists of α2AAR can
prevent excess insulin release (37) and variants of α2AAR are
apparently associated with type 2 diabetes (38). Contrastingly,
Gs-coupled β-adrenoceptors have opposing effects, resulting in
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TABLE 2 | Examples of GPCRs in the pancreatic islet for regulating pancreatic hormone secretion.

GPCR Class Ligands Transduction mechanism Functions References

SSTR2 A Somatostatin

Cortistatin

Gi/o;

Gq/11

• Inhibit glucagon secretionb (43)

SSTR5 A Somatostatin

Cortistatin

Gi/o;

Gq/11

• Inhibit glucagon secretionb

• Inhibit insulin secretionb
(43, 44)

M1R A Acetylcholine Gq/11 • Enhance insulin secretionb

• Stimulate somatostatin secretionb
(45, 46)

M3R A Acetylcholine Gq/11 • Enhance insulin secretionb

• Stimulate glucagon secretiona
(46, 47)

M5R A Acetylcholine Gq/11 • Enhance insulin secretionb (46)

D2R A Dopamine Gi/o;

β-arrestin 2

• Inhibit insulin secretiona (48)

GCGR B Glucagon Gs;

Gq/11

• Up-regulate glucagon expressionc

• Enhance β-cell function and massb
(49, 50)

GABABR C γ-Aminobutyric acid Gi/o • Inhibit insulin secretiona (51, 52)

mGluR3 C L-glutamic acid Gi/o • Enhance insulin secretionb (51)

mGluR5 C L-glutamic acid Gq/11;

Gs; Gi/o

• Enhance insulin secretionb (51)

The GPCRs exert their functions on hormone-secreting cells via autocrine and/or paracrine regulations. The primary transduction mechanisms are listed at the first row followed by

secondary transduction mechanisms (if any).
aMediate both autocrine and paracrine regulations.
bMediate paracrine regulations.
cMediate autocrine regulations.

enhanced insulin secretion (39). The reduced β2AR expression
may contribute to the age-related decline of glucose tolerance in
mice (40). It has also been suggested that β1/β2ARs can increase
somatostatin levels in mice via a Gs-independent pathway
composed of β-arrestin 1 and ERK1/2 (20). Overall, the available
evidence supports the notion that Gs-coupled receptors facilitate
insulin and somatostatin secretion, whereas Gi-coupled receptors
tend to oppose these responses. However, co-activation of Gi-
and Gq-coupled receptors was reported to have a synergistic
stimulation on cytokine production (41). The mechanism of the
observed synergism is presumably mediated via Gβγ-responsive
isoforms of phospholipase Cβ (PLCβ2/3), which enable Gβγ

dimers released from Gi-coupled receptors to further stimulate
PLCβ2/3 (42). Thus, synergistic action in regulating pancreatic
hormones by GPCRs represents a distinct possibility which
should be examined.

GPCRs for Mediating Autocrine/Paracrine
Regulations
Upon receiving various input signals, islet cells in turn
secrete autocrine/paracrine molecules, a great number of which
modulate the activity of neighboring cells through GPCRs
(Table 2). Almost all endogenous GPCR ligands identified in the
pancreas activate more than one type of receptor in the islet (9),
suggesting that a ligand is able to trigger a variety of GPCRs
present on multiple cell types, thereby diversifying the signaling
event and inferring a robust paracrine regulatory mechanism.
Among all the endocrine cell types within the islet, the paracrine
interactions between α-, β-, and δ-cells have been proposed for
a long time, with the somatostatin-secreting δ-cells providing
essential negative feedback to both insulin and glucagon release,
while the glucagon-secreting α-cells positively regulate insulin

and somatostatin secretion (Figure 2) (53). Among the five
human somatostatin receptor subtypes (SSTR1−5), only SSTR1,
SSTR2, and SSTR5 show high expression levels in islet cells.
SSTR1 and SSTR2 are selectively expressed on β-cells and α-cells,
respectively. SSTR5 is highly expressed on both β- and δ-cells, and
is moderately expressed on α-cells (54). Inhibition of glucagon
and insulin secretion from the islet is primarily mediated by
SSTR2 (43) and SSTR5 (44), respectively. Although all SSTRs are
Gi/o-coupled, SSTR2 and SSTR5 can additionally signal through
Gq/11 proteins. However, the Gq/11 transduction mechanism
in regulating pancreatic hormone secretion remains to be fully
elucidated. One potential pathway may involve the activation
of nuclear factor κB (NFκB) which regulates inflammation
and cell survival. This is in agreement with the demonstrated
ability of SSTR2 to activate NFκB via Gq family proteins (55),
and that NFκB has been implicated in fatty acid-induce β-cell
dysfunction (56). In contrast, α-cells work as a positive regulator.
Acetylcholine released by α-cells stimulates insulin secretion
by β-cells via the muscarinic M3 and M5 receptors (M3R and
M5R), as well as somatostatin secretion by δ-cells through M1R
(46). Interestingly, M1R, M3R and M5R are all coupled to the
Gq/11 pathway. Apart from the paracrine feedback system, α-
cells have a glucagon autocrine feedback loop. Glucagon secreted
by the α-cells can upregulate its own expression, the process
of which is mediated by the glucagon receptor (GCGR) via
Gs-dependent signal transduction (49). Since the release of
glucagon is stimulated by a lack of glucose, this kind of positive
feedback may help to optimize the hormonal output response
under less favorable energy conditions. In general, pancreatic
hormone secretion is modulated by intracellular cAMP level.
Stimulation of cAMP production by Gs-coupled receptors leads
to hormone secretion, while activation of Gi/o-coupled receptors
oppose this effect.
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GPCRS FOR REGULATING ENERGY
HOMEOSTASIS IN THE BRAIN

The brainmodulates the endocrine system in response to external
environment. The effect of circulatory hormones, in turn, can
regulate brain chemistry and function. Similar to peripheral
endocrine glands, stimulation of the brain by circulatory inputs
can trigger a sophisticated autocrine/paracrine feedback network
to generate an integrated output signal that regulates the
body. However, the feedback network is more complex in
the brain, and thus more difficult to determine the particular
type of GPCR that stimulates or suppresses the release of
hormones or neurotransmitters, as synaptic signal transduction
and membrane potential need to be taken into account, the
latter of which can be modulated not only by Gα subunits, but
also by Gβγ dimers. Examples of GPCRs for regulating energy
homeostasis in the brain are listed in Table 3.

From Circulatory Inputs to Neuroendocrine
Signals
In the case of energy homeostasis, it is important for the
brain to sense the level of metabolic substances in order
to regulate energy usage. In the CNS, the hypothalamus is
considered as an essential area where the nervous system and
the endocrine system meet. Metabolic signals such as glucose,
insulin, cholecystokinin (CCK), pancreatic polypeptides (PP),
and peptide YY (PYY), and ghrelin have all been found to
modulate the activities of the hypothalamic arcuate nucleus
(ARC), hence altering food intake and metabolism (68). Among
these signals, ghrelin has received intense interest as it can
upregulate food intake while the majority acts in the opposite
manner (68). Circulatory ghrelin is mainly produced by the
gastric X/A-like cells of oxyntic stomach mucosa under hunger
situation (69). Ghrelin receptor type 1a (GHSR1a) is highly
expressed in the ARC and ventromendial nucleus (VMN) of
the hypothalamus (70). By activating phospholipase C (PLC)
via Gq/11 protein, GHSR1a triggers the release of neuropeptide
Y (NPY) that exerts paracrine effects (which will be discussed
later). The heteromerization of GHSR1a with other GPCRs
further broadens its downstream responses. Various studies have
demonstrated that GHSR1a specifically forms dimers with the
SSTR5 (71), dopamine D1 and D2 receptors (D1R and D2R) (72,
73), melanocortin-3 receptor (MC3R), and 5-hydroxytryptamine
receptor 2C (5HT2cR) (74). The protomers within these dimers
exhibit different signaling effects that range from facilitation,
inhibition, and even modification of the pathways (75). Thus,
heteromerization of GHSR1a represents a putative mechanism
to regulate food intake and energy balance. Ghrelin treatment is
also found to alter the dopamine and acetylcholine receptor gene
expression in the mesolimbic reward circuitry (76). In contrast
to ghrelin, many circulatory signals tend to down-regulate the
energy intake. PYYs are stimulated during meal intake by the
presence of nutrients (especially fat) in the small intestine. The
Y2 receptor (Y2R), which is coupled to Gi/o and Gq/11 proteins,
is critical in mediating the effects of PYY3−36 on reducing
adiposity and feeding (77). The expression of Y2R can be found

throughout the CNS, within the nodose ganglion and on vagal
afferents, thus the feeding effects of PYY3−36 is possibly mediated
through central, vagal activation, or a combination of both (77).
The pattern of c-fos neuronal activation following peripheral
administration of PYY3−36 further suggests the involvement of
Y2R in the ARC (77).

GPCR-Mediated Autocrine and Paracrine
Regulations in the Hypothalamus for
Energy Homeostasis
Within the hypothalamus, ghrelin can be synthesized by different
hypothalamic nuclei including dorsomedial, ventromedial,
paraventricular nucleus (PVN), and the ARC. In the brain,
ghrelin mainly acts on the presynaptic terminals of NPY neurons
and stimulates the activity of arcuate NPY as demonstrated
by electrophysiological recordings (78). NPY neuron is known
to inhibit the release of pro-opiomelanocortin (POMC) from
POMC neurons using neurotransmitter GABA, at the same time
it can stimulate the secretion of melanin-concentrating hormone
(MCH) and hypocretin/orexin from the lateral hypothalamus
via NPY. The inhibition of POMC together with the secretion of
MCH and hypocretin/orexin appears to increase food intake and
reduce metabolic rate by acting on the PVN of hypothalamus.
This network of paracrine regulation adjust metabolism through
multiple output pathways that eventually enhance appetite
(68). All NPY receptors in the human hypothalamus, including
Y1R, Y2R, Y4R and Y5R, activate the Gi/o-signaling pathway.
Depression of Ca2+ channel and increasing G protein coupled
inwardly rectifying potassium channel (GIRK) currents are
also observed upon G protein activation by NPY (79). The
Y1R expressed in the ARC has been suggested to mediate the
hyperphagic effect of NPY (60), while the ARC NPY expression
is negatively regulated in an autocrine manner via presynaptic
Y2R and Y4R present in NPY neurons (62, 63). The perifornical
part of the lateral hypothalamus, which is considered as the
feeding center, contains a high density of Y5R that mediates
NPY-induced hyperphagia (60). Besides, NPY neurons produce
another orexigenic peptide, the agouti-related peptide (AgRP),
as an endogenous antagonist to the MC3R and MC4R (80).
MC3R and MC4R are Gs-coupled receptors present in various
hypothalamic nuclei which mediate the neuronal circuits to
reduce food intake and increase energy expenditure (81, 82), and
their endogenous agonist, α-melanocyte stimulating hormone
(α-MSH), is synthesized by POMC neurons in the ARC using
precursor POMC protein (81). An example of autocrine and
paracrine interaction between the NPY neuron, the POMC
neuron, and their downstream effector neuron is shown
in Figure 3. Additionally, the POMC neurons can produce
another anorexic peptide known as CART or cocaine and
amphetamine related transcript (81). Although the receptor
for CART remains to be characterized, the activation of Gi/o

signaling pathway has been observed upon CART application
(83). The paracrine communication between NPY/AgRP and
POMC/CART neurons can further modulate downstream
neuronal activity via GABAergic signaling (84). Overall, with the
participation of GPCRs, the autocrine/paracrine communication
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TABLE 3 | Examples of GPCRs for regulating neuoendocrine functions in brain.

GPCR Class Ligands Transduction mechanism Functions References

GHSR1a Rhodopsin Ghrelin Gq/11;

Gi/o; G12/13

• Modulate reward circuitsb

• Stimulates appetitive processesa
(57, 58)

CCK2R Rhodopsin CCK Gq/11 • Thermoregulationb

• Increase body weight and water consumptionb
(59)

Y1R Rhodopsin NPY; PP; PYY Gi/o • Mediate hyperphagic effectsb (60)

Y2R Rhodopsin NPY; PP; PYY Gi/o;

Gq/11

• Inhibit NPY productiona

• Stimulate POMC productiona
(61, 62)

Y4R Rhodopsin NPY; PP; PYY Gi/o;

Gq/11

• Inhibit NPY productiona

• Stimulate POMC productiona
(63, 64)

Y5R Rhodopsin NPY; PP; PYY Gi/o • Mediate hyperphagic effectsb (60)

MC3R Rhodopsin ATCH; MSHs; ASP; AgRP Gs • Inhibit adiposityb (65)

MC4R Rhodopsin ATCH; MSHs; ASP; AgRP Gs • Mediate hyperphagic effectsb

• Inhibit adiposityb
(64, 65)

CRFR1 Secretin CRH; urocortin 1 Gs;

Gq/11

• Stimulate ACTH secretiona

• Mediate stress responsesb
(66)

MCH1R Rhodopsin MCH Gs; Gi/o; Gq/11 • Meidate orexigenic effectsb (67)

The GPCRs influence energy homeostasis by sensing circulatory inputs and mediating autocrine/paracrine interactions between brain cells. The primary transduction mechanisms are

listed at the first row followed by secondary transduction mechanisms (if any).
aMediate both autocrine and paracrine regulations.
bMediate paracrine regulations.

between the orexigenic NPY/AgRP neuron and the anorexigenic
POMC/CART neuron regulates a variety of physiological and
behavioral events to maintain energy balance.

GPCRS FOR BRIDGING THE
AUTOCRINE/PARACRINE NETWORK AND
FOR SIGNAL INTEGRATION

While an autocrine signal is an amplifier or a brake for message
transmission, a paracrine ligand is a tool to disperse the message
from one cell type to the others. It has been observed that many
ligands can be recognized by multiple GPCR subtypes that are
expressed in different cell types. Hence, once a paracrine signal
is generated in an organ, various cell types could be differentially
activated or inhibited by the same signal via different subtypes of
GPCRs. Using pancreatic islet as an example again, somatostatin
produced by δ-cells can simultaneously target subtypes of SSTRs
on α-cells, β-cells and δ-cells, thereby inhibiting the secretion of
both glucagon, insulin and somatostatin itself (53) (Figure 2).
The biological setting of SSTR distribution indeed bridges the
autocrine/paracrine feedback network. Since multiple cellular
responses can be elicited by the same ligand, it results in a
synchronized signal propagation. Apart from the pleiotropic
regulation by a ligand, some GPCRs recognize more than one
type of ligands so that enabling the integration of diverse signals.
For example, MC3R in ARC can bind MSHs as well as AgRP
with the former acting as agonists and the latter as an antagonist.
Competition between these two ligands for theMC3R population
on the cell surface will ultimately determine the downstream
cellular response (Figure 3). Biased GPCR signaling, wherein an
agonist preferentially triggers a specific downstream pathway,
may offer additional avenues to modulate autocrine/paracrine

signaling. GPR40 is a pharmacological target to increase insulin
secretion in type 2 diabetes, and a synthetic ligand TAK-872 has
been shown to induce a β-arrestin-biased pathway instead of G
protein signals that are typically elicited by native ligands such
as palmitate and oleate (85). It is generally accepted that biased
agonists have great clinical potentials, but their importance in the
regulation of autocrine/paracrine signaling remains to be fully
appreciated. The ultimate hormonal output from an endocrine
cell is influenced by multiple pathways that are mediated by
different receptors. Pancreatic β-cells express Gs-coupled GLP1R
and Gi/o-coupled SSTR5, and when both GLP1 and somatostatin
are simultaneously presented to the β-cells, GLP1R would give
activation signal while the SSTR5 sends inhibition signal to
adenylyl cyclase (14, 44). The net effect of which represents
an integrated outcome that depends on the relative strengths
of the two signals. Furthermore, a single cell can express over
a 100 types of GPCRs. The overlapping downstream pathways
allow further integration of different messages. Since most
cells express numerous GPCRs that receive ligands including
circulatory hormones and other molecules including autocrine
and paracrine factors, the final outputs from the cell are
hence adjusted by signaling molecules in multiple contexts,
producing more than one type of signal output, with specific
cellular responses regulated by groups of receptors. Therefore,
the cell-specific expression profile of GPCRs contributes to
the incredibly complicated interactions: for cells to implement
the autocrine/paracrine feedback networks, and to integrate
various signals for fine-tuning the output. GPCRs such as
GLP1R, GHSR, and MC4R are popular pharmaceutical targets
for diseases related to energy homeostasis, especially for obesity
and diabetes (86). With recent advancements in structural
determination and computational techniques, it is envisioned
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FIGURE 3 | An example of autocrine and paracrine interactions between NPY neuron (blue) and POMC neuron (green) in the ARC and their downstream effector

neuron (i.e., neuron in PVN; beige). NPY secreted by NPY neuron can trigger Gi signaling pathway to inhibit Ca2+ channel activity and activate GIRK current via its

receptors (Y1R, Y2R, and Y5R) in both autocrine and paracrine manners, thereby inhibiting the release of neurotransmitters. While AgRP and α-MSH secreted by NPY

neuron and POMC neuron, respectively, act as antagonist and agonist of MC3R. The activation of MC3R can reduce food intake via the feeding circuit

in the hypothalamus.

that major strides in our understanding of ligand/receptor
interactions may lead to the identification of novel compounds
that act as orthosteric, allosteric, or biased ligands of GPCRs.
However, it is tremendously important to fully elucidate the
pharmacological capabilities of individual GPCRs in the context
of signaling networks, as adverse drug effects are often associated
with indirect modulations of physiological systems. Hence, a
thorough understanding of the diversity and complexity of GPCR
signaling is critical for successful therapeutic development of
GPCR ligands.

GPCRS MUTATIONS AND PERTURBATION
OF ENERGY HOMEOSTASIS

Since GPCRs are intricately involved in the regulation of energy
homeostasis in both the CNS and peripheral organs, it is not
surprising that mutations of GPCRs are found to be associated
with endocrine diseases (3). For example, the MT2R mutations
in ligand binding and G protein activation are associated
with type 2 diabetes (87), and MC4R deficiency is prevalently
found in obesity (88) (please refer to sections GPCRs for Sensing
Circulatory Inputs and GPCR-Mediated Autocrine and Paracrine
Regulations in the Hypothalamus for Energy Homeostasis,
respectively). The pathogenesis of which may be attributed to
the dysregulation of GPCRs in intercellular communication,
can impair cell-to-cell interactions and the autocrine/paracrine
feedback loops that are critical for maintaining homeostasis. As
illustrated in animal models, mice with GCGR null mutation
(GCGR−/−) display supraphysiological glucagon levels,
increased proglucagon expression and increased pancreatic and
circulating GLP1 (89). The GCGR−/− mice also exhibit reduced
adiposity and leptin levels while having normal body weight,

food intake, and energy expenditure. These disease phenotypes
are associated with postnatal enlargement of the pancreas and
hyperplasia of islets, which is mainly due to α-cell, and to a
lesser extent, δ-cell proliferation (89). Likewise, the ablation of
GCGR delays β-cell differentiation and perturbs the proportion
of β- to α-cells in embryonic islets, inhibits the progression
of α-cells to maturity in adult mice, as well as affecting the
expression of several β-cell-specific genes (90). It has been
noted that an augmentation in both islet number and in the
rate of proliferation of α- or β-cells led to increased cell mass
of the islet (including the δ-cell mass) in those mutant mice
(90). These findings in mice suggest that glucagon participates
in an autocrine/paracrine feedback loop that regulates the
proportion of the different endocrine cell types in islets, the
number of islets per pancreas, and development of the mature
α-cell phenotype. It was subsequently demonstrated that the
overexpression of GCGR increases β-cell mass (89). In humans, a
study reported that a homozygous P86S mutation of the human
GCGR is associated with hyperglucagonemia, α-cell hyperplasia,
and islet cell tumor α-cell hyperplasia (91). This receptor
mutant displayed lower affinity to glucagon and decreased
cAMP production of the cells at physiological glucagon level.
It is likely that the insufficient glucagon signaling perturbs the
negative feedback on α-cell proliferation by other islet cells. In
this case, the disease is not simply due the alteration of their
signaling functions, the influence of malfunction is stepped up
by the disruption of autocrine/paracrine feedback loop, which
eventually affect the endocrine organ and the greater biological
system. Indeed, the engagement of various autocrine/paracrine
regulations in human physiology and pathophysiology has been
well-recognized over the years. The therapeutic implications of
autocrine/paracrine modulators that act on GPCRs are being

Frontiers in Endocrinology | www.frontiersin.org 8 July 2019 | Volume 10 | Article 428

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Tse and Wong GPCRs in Autocrine/Paracrine Signaling

explored in not only endocrine diseases such as obesity and
diabetes (92), but also in cancers (93) and heart failure (94).
A number of studies suggested that drugs that can propagate
autocrine/paracrine signals could further enhance the efficacy of
the therapy. Nevertheless, although GPCRs are one of the most
popular pharmacological targets, very little is known with regard
to the pathophysiological mechanisms of GPCRs that regulate
autocrine/paracrine communications. By better understanding
the roles of GPCRs in autocrine/paracrine regulations, one
might reveal new avenues for therapeutic interventions against
various diseases.

CONCLUDING REMARKS

It is known that GPCRs participate in almost every process
in the regulation of energy homeostasis as well as other
physiological processes that are not mentioned in this review.
In the process of maintaining homeostasis, an intricate network
of autocrine/paracrine feedbacks is often involved. Due to the
pleiotropic property of many GPCR ligands, the diversity of
GPCRs and their subtypes, and the potential involvement of
multiple intracellular signaling pathways and crosstalks, it is
rather difficult to distinguish the physiological roles of autocrine
and paracrine factors in a tissue. Tools like co-culture transwell
system (95) and the more recently established microcavity
platform (96) have been used to study the interactions of
selected cell types, which help to unmask autocrine/paracrine
communications between cells. Moreover, advances in single
cell sequencing techniques enable the identification of GPCR
expression profile on different cell types, thus providing a clear

mapping of possible GPCR autocrine/paracrine pathways, and it
may even be possible to discern between the two mechanisms.
By profiling the expression of GPCRs in various cell types within
a tissue or organ, we may begin to elucidate the complexity of
autocrine/paracrine regulatory pathways under physiological as
well as pathophysiological conditions. Subsequent knockdown
or knockout experiments can then be conducted to confirm the
importance of potential GPCR autocrine/paracrine pathways in
healthy and disease states. Given that GPCRs represent highly
amenable targets for drug development, deciphering their roles
in autocrine/paracrine regulations of human physiology may
provide new insights for treatment regimens against complex
diseases such as diabetes.
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