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Based on the work in the Central Nervous System with discoveries of allosteric

receptor-receptor interactions in homo- and heteroreceptor complexes representing a

major integrative mechanism in synapses and extrasynaptic regions, it is proposed that

a similar mechanism may exist in the immunological synapses. We discuss a putative

additional molecular mechanism for the ability of the inhibitory T cell signaling proteins

CTLA-4 and PD-1 and the adenosine A2AR to diminish T cell activation leading to

enhancement of cancer development. We suggest that in the same immunological

synapse involving T cells and antigen presenting cells multiple heteroreceptor complexes

may participate and be in balance with each other. Their composition can vary between

functional states and among different types of T cells. The T cell receptor (TCR) and

its accelerators, strongly enhancing T cell activation, can be under inhibitory control

by T cell signaling proteins CTLA4 and PD-1 and also the adenosine A2AR through

inhibitory allosteric receptor-receptor interactions in different types of heteroreceptor

complexes. As a result, inhibitory tumor induced immunosuppression can develop due to

a dominance of the inhibitory signaling causing a brake on the TCR and/or its accelerator

and the cancer immunotherapy becomes blocked.

Keywords: A2AR-TCR heteroreceptor complexes, allosteric receptor-receptor interactions, immunosuppression,

T cell, cancer immunotherapy

UNDERSTANDING THE MECHANISMS OF CANCER THERAPY
BASED ON PROTEIN BRAKES ON T CELLS

The first phase of precision medicine in the treatment of cancer derived from the characterization
of mutations that induced or inhibited intracellular signaling routes leading to the development of
cancer (1). It produced a specific treatment of cancer in most patients having the mutation but with
the drawback that the clinical responses were of limited duration. The second phase was produced
by advancement of immunology at the molecular level which made it possible to improve our
understanding of the complexity of the immune mechanisms. As a result, the impact of activation
of T cells for cancer therapy was introduced.

Nobel laureates James Allison and Tasuku Honjo discovered cancer therapy by inhibition
of negative immune regulation (2, 3). Their discoveries led to a new principle for immune
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therapy. Allison found that the T cell protein receptor CTLA-4
operates as a brake on T cell function which is activated by the
T-cell receptor and the T-cell accelerator receptor, their combined
activation leading to a strong immune response. Thus, there
is a balance between inhibitory and activating T cell receptors
regulating T cell function. Such a balance is observed also in
the heteroreceptor complexes in the synapses and extrasynaptic
regions in the CNSmodulating synaptic function in brain circuits
[see below and (4)]. Experiments performed by the Allison group
suggested that altering this balance toward the activation of the
T-cell function by removal of the inhibitory receptor signals may
lead to a new cancer immunotherapy (5).

In parallel, the Honjo group discovered a protein (PD-1)
located on the immune cells which they identified to be
an immunoinhibitory receptor and acted as a brake on the
stimulatory T cell immunoreceptors (3, 6).

This pioneering work by the two groups led to clinical trials
based on the use of antibodies against the two immunoinhibitory
receptors CTLA-4 and PD-1 which resulted in successful cancer
immunotherapy, especially after PD-1 blockade, and combined
blockade of the PD-1 and CTLA-4 (7, 8). It should also be
noted that in our work in the brain we have proposed that
cocaine addiction can be caused by cocaine induced formation
of pathological A2AR-D2R-Sigma1R heteroreceptor complexes
(9). They may represent long term memories involving a strong
and permanent brake on D2R protomer signaling with A2AR
protomer and the Sigma1R working together to produce the
brake on D2R signaling and recognition (9).

Our theory on the molecular basis of learning and memory
(9–12) may also be mentioned in view of its relevance for long-
lived memory T-cells identified through increased expression of
the interleukin 7 receptor (13). The molecular reorganization
of the postsynaptic homo- and heteroreceptor complexes
can produce a transient molecular engram that represents
a short-term memory. The consolidation of the reorganized
receptor complexes may lead to a permanent molecular
engram. The consolidation can involve the transformation of
parts of the receptor complexes into soluble molecules that can
bind to the transcription factors and modulate their activity
into forming adapter proteins that can consolidate the receptor
panorama formed. It may maintain the new signaling.

In view of the above, it seems possible that integration in
the T-cells not only involves changes in the signaling of the
inhibitory and facilitatory immunoreceptors and integration
of their intracellular pathways, but also their integration in
immune synapses with the antigen presenting cells including
the tumor cells. Based on the work in the CNS [see book
edited by Fuxe and Borroto-Escuela (14)] it seems likely that
integration in the immune system also involves the dynamic
formation and operation of homo-and heteroreceptor complexes
(Figure 1). The T cell receptor and the T cell accelerator receptors
enhancing the immune response may form heteroreceptor
complexes with the immunoinhibitory receptors CTLA4 and
PD-1 inhibiting the immune responses in which the major
integration of immune and transmitter/modulator signals take
place (Figure 1). Multiple heteroreceptor complexes may be
formed. The integration is proposed to be brought about through

allosteric receptor-receptor and receptor-protein interactions
which may be highly dynamic and dependent on the ligand
concentrations for each receptor and the number of receptors
and adapter proteins expressed in the immune synapses.

In parallel to the work above, the highly exciting work
performed by Sitkovsky et al. (16–18) took place on the role
of adenosine A2ARs in tumor-induced immunosuppression. It
seems likely that also the A2AR can participate in some of these
heteroreceptor complexes in the immune synapse and play an
important role by favoring inhibition of the immune response
(Figure 1). It will be of value to test if the A2AR antagonists
may also enhance the immunotherapeutic actions of anti-CTLA4
and/or anti-PD-1 therapies.

INTEGRATION OF SIGNALING IN THE CNS
SUPPORT THE ABOVE HYPOTHESIS:
EXISTENCE OF ALLOSTERIC
RECEPTOR-RECEPTOR INTERACTIONS
IN SYNAPTIC AND EXTRASYNAPTIC
HETERORECEPTOR COMPLEXES
INCLUDING GPCRs

The Nobel Laureates Robert Lefkowitz and Brian Kobilka
discovered the structure and function of the GPCRs (19). GPCRs
of the different types were shown to form heteromers which
means that they can physically interact with each other in the
cytoplasm and/or in the plasma membrane (20–27). When the
GPCRs are of the same type they are called homomers (20, 23, 28,
29). The term heteroreceptor complexes is used to describe that
the receptor assemblies are built up of different receptors with
unknown stoichiometry in combination with adaptor proteins.
The latter can participate in the allosteric interactions between
the receptors which can involve scaffolding functions to e.g.,
guide the receptors toward each other (9, 30, 31). The allosteric
receptor-receptor interaction is a major mechanism in the
heteroreceptor complexes. It develops when the binding of a
ligand to an orthosteric or an allosteric site of one receptor
protomer (present in an heteromer) via direct receptor-receptor
interactions produces a change in another receptor protomer
(present in the same heteromer) with regard to receptor binding,
pharmacology, signaling, and/or trafficking (27, 32, 33).

The allosteric receptor-receptor and receptor-protein
interactions result in highly diverse and biased signaling of the
heteroreceptor complexes through changes in e.g., receptor
recognition, G protein coupling involving switching between
different G proteins. GPCRs interact not only with each
other but also with ionotropic receptors (34, 35) and tyrosine
kinase receptors (36–38). Reciprocal antagonistic or enhancing
allosteric interactions can develop upon single or combined
activation of the receptor protomers. The receptor interface
of the various heteroreceptor complexes are currently being
investigated and involve conserved amino acids that form hot
spots that help bind the two interfaces together (39–41). Methods
are presently being developed to determine the stoichiometry
of the homo- and heteromers in cellular models and in tissues
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FIGURE 1 | Illustration of a putative additional molecular mechanism for the ability of the inhibitory T cell signaling proteins CTLA-4 and PD-1 and the GPCR A2AR to

diminish T cell activation leading to the enhancement of cancer development. The immune synapse between the antigen-presenting cell (APC) and T cell is shown. In

the left part the accelerator costimulatory signaling protein CD28 in the plasma membrane of the T cell is shown being contacted by its activating protein B7-1linked to

the plasma membrane of the APC. It is illustrated that that the inhibitory T cell proteins CTLA-4 and PD-1, activated by its ligands PD-L1 and PD-L2, may both

(shown) or separately (not shown) directly contact CD28 to form a putative receptor complex. Through an inhibitory allosteric receptor-receptor interaction, the

signaling of the CD28 becomes inhibited involving e.g., inhibition of phosphoinositide 3-kinase (PI3k) activation by CD28. To the right it is illustrated how the ligand

bound PD1 may directly allosterically inhibit the T cell receptor (TCR) of the T cell, activated by the peptide bound major histocompatibility complex (pMHC). This may

lead to reductions of TCR signaling through putative formation of a TCR-PD-1 complex. In addition, PD-1 L1 and L2 activation may also enhance the activity of protein

tyrosine phosphatase 2 (SHP2) causing a reduction of phosphorylation of the TCR contributing to inhibition of TCR signaling. In the center of the immune synapse the

adenosine activated adenosine receptor A2AR is proposed to directly interact with the TCR in the plasma membrane of the T cell to bring down its activation by

pMHC through allosteric mechanisms. It is known that sustained activation of ERC produces strong T cell activation (15). It is therefore possible that in addition to the

putative formation of TCR-A2AR heteroreceptor complexes, the A2AR induced activation of the AC-CREB pathway may also counteract the activation of the TCR by

blocking sustained activation of ERK. This figure serves to indicate that the molecular mechanisms involve not only integration of the signaling pathways and their

modulation of the signaling receptors involving changes in protein phosphorylation but also the allosteric integration in heteroreceptor complexes of the T cell through

allosteric receptor-receptor and receptor-protein interactions. The balance of the heteroreceptor complexes with each other in the same T cell may also have a

relevant role for the T cell function and help determine the state of the T cells.

to know if we deal with dimers or higher order oligomers
based on super-resolution and spatial intensity distribution
methods (42–45). Early on higher order homo and heteromers
were postulated to exist (46) and have now been demonstrated
(47–49). The affinity of the receptors for each other and their
relative amounts in the membrane domain studied will have a
significant role in the heteromerization process.

Many of the homo and heteroreceptor complexes studied so
far are mainly found in the extrasynaptic and synaptic regions
of the plasma membrane of the neuronal networks using in situ
Proximity Ligation Assay (PLA) and a neuronal marker antibody
(14, 50). However, they can also exist in e.g., the astroglia
based on PLA and astroglial markers like antibodies against glial
fibrillary acidic protein. Furthermore, A2AR-D2R interactions
in astroglia can modulate the gliotransmitter glutamate release
from striatal astrocyte processes (51). Furthermore, cannabinoid

receptors as well as the CB1-CB2 heteroreceptor complex have
been demonstrated in activated microglia (52, 53).

These mechanisms in the brain are of particular interest for
understanding the ability of A2AR antagonists or A2AR gene
deletion to remove tumor-induced immunosuppression from
tumor-reactive CD8+ T cells (17, 18).

POSSIBLE MECHANISM FOR THE A2AR
MEDIATED BRAKE ON
IMMUNOSUPPRESSION OF T CELLS

Already in 1997 Sitkovsky et al. found that A2AR mediated
signaling inhibited T cell activation (54). In 2012 the Sitkovsky
group also obtained indications that the immunosuppressive
functions of CD4 (+) CD25 (+) FoxP3 (+) regulated T cells
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involve A2AR signaling (16). Finally, in a highly significant
paper in 2018 this group obtained evidence that tumor-
reactive CD8(+) T cells can be liberated from tumor-induced
immunosuppression by A2AR antagonists and by A2AR but
not A2BR gene deletion (18). The hypoxia developed in
the tumor microenvironment leads to increased expression
of ectonucleotidases with enhanced formation of adenosine
and activation of the A2AR involved in producing the
immunosuppression. The A2AR may work together with the
transcription factor HIF 1A, which is stabilized by hypoxia, to
produce immunosuppression (18). Themechanism for the A2AR
induced immunosuppression is proposed to be the increased
formation of cAMP formed from the Gs coupled A2AR which
activates intracellular pathways to inhibit the activation of
the intracellular pathways of the T cell receptor (TCR). The
existence of such a mechanism is supported by the ability
of the A2AR antagonist to increase the extracellular levels of
Interferon gamma. The release of pro-inflammatory cytokines is
an important part of the signaling function of the T cell receptor
in the T cells (18).

Based on our work in the brain as discussed above, another
mechanism can also be involved, namely the formation of
A2AR-TCR heteroreceptor complexes in the plasma membrane
in which the A2AR can inhibit the function of the TCR
through allosteric receptor-receptor interactions (Figure 1). It
would be of high interest to determine if such receptor
complexes exist in the immune system leading to inhibitory
and/or facilitatory allosteric receptor-receptor interactions.
This molecular mechanism represents a general integrative
mechanism in the CNS and exist not only in nerve cells but also
in glial cells (11, 55–57). Previously the focus was on integration
in the intracellular signaling pathways from different receptors
and is presently still the only integrative mechanism discussed in
relation to communication in the immune system.

As discussed above, agonist induced activation of the A2AR
protomer leads to a brake on D2R protomer signaling in
A2AR-D2R complexes. Upon activation of the adaptor protein
Sigma1R in this receptor complex, an enhancement of the D2R
brake develops that may contribute to development of cocaine
addiction (9). Higher order receptor complexes may therefore be
considered to exist also in the immune system.

Finally, it may also be considered that A2AR-A2BR
heteroreceptor complexes were demonstrated (58). In these
complexes A2A receptor ligand recognition and signaling was
blocked by A2B receptors. As a result, A2AR ligands may fail to
act in T cells in which the A2AR-A2BR heteromer is the major
population vs. the A2AR-TCR complex.

Based on the work of Sitkovsky and his group it can be
of high relevance to test if also other GPCRs besides A2AR
can be involved in tumor induced immunosuppression or
enhancement. The chemokine receptor 5 (CCR5) is of interest
as pointed out by one of the reviewers. It exists in the plasma
membrane of T cells and can form an heterodimer with CXCR4
as shown with Fluorescence resonance energy transfer (FRET)
(59). Chemokine-binding modulated this heterodimer and the
CCR5 homodimer was specifically vulnerable to internalization
by the protein partner Na+/H+ exchanger regulatory factor 1

(60). Thus, the type of CCR5 complex formed may determine
the degree of CCR5 internalization obtained and thus its ability
to mediate HIV transfection. CCR5 can also form heterodimers
with CCR2b leading to negative binding cooperativity (61).
These results illustrate the diversity of signaling that can develop
with chemokine receptors through the formation of different
types of receptor complexes. It may be proposed that distinct
types of CCR complexes with a special protein composition
may have the ability to form complexes that specifically can
interact with TCR and/or accelerator receptors to reduce or
enhance immunosuppression.

CONCLUSIONS

The blockade by antibodies of the immunosuppressive proteins
appears crucial for success in cancer immunotherapy (5, 7, 18).
Based on the work in the CNS with discoveries of allosteric
receptor-receptor interactions in homo- and heteroreceptor
complexes representing a major integrative mechanism in
synapses and extrasynaptic regions, it is proposed that a similar
mechanism exists in the immunological synapses. In the same
immunological synapse involving T cells and antigen presenting
cells multiple heteroreceptor complexes can participate and be
in balance with each other. Their composition can vary between
functional states and among different types of T cells. It is
illustrated that the T cell receptor (TCR) and its accelerators
strongly enhancing T cell activation may be under inhibitory
control by T cell signaling proteins CTLA4 and PD-1 and the
GPCR A2AR through inhibitory allosteric receptor-receptor in
different types of heteroreceptor complexes. However, higher
order receptor complexes may also be formed where e.g., the
inhibitory T cell signaling proteins CTLA4 and PD-1 can both
participate in further enhancing the inhibition of the TCR and/or
its accelerator (Figure 1). The same can be true for the A2AR
when it is part of a higher order receptor complex in which also
e.g., one of the inhibitory T cell signaling proteins participates.
The cancer cells have the ability e.g., to increase the secretion
of signals that activate the inhibitory T cell signaling proteins or
the A2AR via increasing the levels of adenosine (18). As a result,
inhibitory tumor induced immunosuppression develops due to a
dominance of the inhibitory signaling causing a brake on the TCR
and/or its accelerator. The removal of this brake has markedly
improved immune cancer therapy (7).
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