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The mineralocorticoid receptor (MR) was originally identified as a regulator of blood

pressure, able to modulate renal sodium handling in response to its principal ligand

aldosterone. MR is expressed in several extra-renal tissues, including the heart,

vasculature, and adipose tissue. More recent studies have shown that extra-renal

MR plays a relevant role in the control of cardiovascular and metabolic functions

and has recently been implicated in the pathophysiology of aging. MR activation

promotes vasoconstriction and acts as a potent pro-fibrotic agent in cardiovascular

remodeling. Aging is associated with increased arterial stiffness and vascular tone, and

modifications of arterial structure and function are responsible for these alterations. MR

activation contributes to increase blood pressure with aging by regulating myogenic

tone, vasoconstriction, and vascular oxidative stress. Importantly, aging represents an

important contributor to the increased prevalence of cardiometabolic syndrome. In the

elderly, dysregulation of MR signaling is associated with hypertension, obesity, and

diabetes, representing an important cause of increased cardiovascular risk. Clinical use

of MR antagonists is limited by the adverse effects induced by MR blockade in the kidney,

raising the risk of hyperkalaemia in older patients with reduced renal function. Therefore,

there is an unmet need for the enhanced understanding of the role of MR in aging

and for development of novel specific MR antagonists in the context of cardiovascular

rehabilitation in the elderly, in order to reduce relevant side effects.

Keywords: endothelial dysfunction, mineralocorticoid receptor, vascular stiffness, RAAS, oxidative stress

INTRODUCTION

The mineralocorticoid receptor (MR) is essential for blood pressure regulation and electrolyte and
fluid homeostasis (1). MR activation by aldosterone evolved in response to dramatic changes in
salt stress which occurred during the transition from aquatic to terrestrial life. Indeed, aldosterone
first appeared in tetrapods (2) suggesting that the aldosterone-MR system was necessary to
maintain ion balance during the transition from salt water to land. In mammals, the kidney
maintains osmolarity and extracellular sodium concentration, as well as plasma volume and blood
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pressure (3). Aldosterone is produced by the adrenal glands
and represents the most potent sodium-retaining hormone
in mammals (4). Aldosterone secretion is stimulated under
specific conditions, such as the increase in extracellular K+ ion
concentrations or renin-angiotensin-aldosterone system (RAAS)
activation in response to decreased vascular volume (5, 6).
In addition to its well-established role in the kidney, MR is
expressed in many non-epithelial tissues [i.e., adipose tissue
(AT), heart, endothelial cells, vascular smooth muscle cells,
brain, etc.]. In this context, abnormal MR activation contributes
to relevant cardiovascular alterations by multiple mechanisms
including enhanced oxidative stress, inflammation, fibrosis,
vascular tone, and endothelial dysfunction (7). Importantly, MR
displays a similar affinity for aldosterone and the physiological
glucocorticoids (cortisol and corticosterone) (8). In epithelial
tissues, as well as in endothelial cells (9) and smooth muscle
cells (10), the enzyme 11b-hydroxysteroid dehydrogenase type
2 (11HSD2) is able to convert endogenous glucocorticoids
to inactive metabolites (11), promoting MR activation by
aldosterone. In non-epithelial tissues, where expression of
11HSD2 is virtually absent or extremely low, such as brain,
cardiomyocytes, and adipose tissue, glucocorticoids represent the
major ligand of the MR (12).

Aging is a universal and independent risk factor for
cardiovascular diseases (CVD) including hypertension, coronary
artery disease, congestive heart failure and stroke (13, 14).
According to a report from the American Heart Association
(15), the incidence and prevalence of CVD significantly increases
with age, and about two-thirds of CVD deaths occur in
people aged 75 and older. To date, the influence of aging
on aldosterone secretion and function in humans is not
well-characterized, and the specific role of MR activation in
vascular aging still awaits demonstration. In animal models, MR
contributes to rising blood pressure with aging by regulating
myogenic tone, vasoconstriction, and vascular oxidative stress
(16). Both oxidative stress (17) and inflammation (18) are key
factors in the pathophysiology of age-related cardiovascular
disease in humans. Telomeres length in white blood cells
can be considered as a biomarker of oxidative stress and
inflammation as their progressive attrition, due to cell replication,
is increased by oxidative stress, and inflammation determines
an increase in white blood cells turnover rate. White blood
cells telomeres are shorter in CVD patients. Aldosterone is
known to accelerate cardiovascular aging through processes
that generate reactive oxygen species in several tissues as well
as in white blood cells (19–22) and an inverse relationship
between circulating aldosterone and white blood cells telomeres
length has been documented in normotensive aged matched
men (23).

Several recent studies showed that MR expression is
increased in vascular smooth muscle cells of aged animals
(24, 25). Molecular mechanisms have also been uncovered by
which rising vascular smooth muscle cell MR contributes to
increased vasoconstriction with aging (26). Moreover, recent
histopathologic findings have clarified profound alterations of
the zona glomerulosa in adrenal glands with aging, which
together with the increased vascular MR expression, may provide

a further explanation for enhanced cardiovascular risk in the
elderly (27, 28).

In this review, we will focus on the age-related alterations of
MR signaling and aldosterone secretion and will discuss their
specific role in determining increased cardiovascular risk in the
elderly. Finally, we will address the potential relevance of MR
pharmacological antagonism in the elderly, in order to increase
arterial compliance and prevent cardiovascular aging and the
associated morbidity and mortality.

RAAS ALTERATIONS WITH AGING

Several studies have shown that older healthy individuals
display a reduction in renin-angiotensin-aldosterone system
(RAAS) activity, with decreased plasma renin activity and
lower levels of plasma renin and aldosterone under basal
conditions (hyporeninaemic hypoaldosteronism) (29–33). The
decline in plasma renin with age has been attributed to the
effect of age-associated nephrosclerosis (34). Human studies
with small sample sizes suggested that older individuals secrete
less aldosterone than younger ones (35), resulting in a greater
risk for hyperkalemia in older individuals (36), especially when
coupled with the age-associated decline in glomerular filtration
rate (GFR). Accordingly, renin synthesis and release gradually
decrease in aging rats, resulting in lower levels of plasma renin
(37). Moreover, older subjects also show an impaired ability to
trigger adequate responses to RAAS stimuli, such as orthostatic
hypotension, potassium infusion or sodium depletion (29, 38).

These age-related RAAS alterations have been attributed
to different mechanisms occurring with aging, namely: (i)
glomerulosclerosis and reduction in functional nephrons (39–
41); (ii) impaired function of juxtaglomerular apparatus
(e.g., reduced sympathetic stimulation of the juxtaglomerular
apparatus) (39); (iii) reduced renal production of kallikrein (a
serine protease contributing to the synthesis of active renin); and
(iv) reduced angiotensinogen synthesis by the liver (39, 42).

Importantly, age-related changes in RAAS activity lead older
individuals to reduced ability to reabsorb sodium and reduced
renal tubular potassium excretion, resulting in higher risk for
volume depletion, hyponatremia and/or hyperkalemia (36). Of
note, the risk for hyperkalemia is further enhanced under specific
conditions, such as metabolic acidosis, reduction in GFR, or
use of drugs inhibiting renal tubular potassium excretion [i.e.,
angiotensin converting enzyme (ACE) inhibitors, angiotensin
II (Ang II) type 1 (AT1) receptor antagonists, MR antagonists,
non-steroidal anti-inflammatory drugs (43)].

Recent reports clarified the histopathological changes
occurring in adrenal glomerulosa cells with aging (27). The
development of specific antibodies against aldosterone synthase
(CYP11B2—the enzyme required for the final step of aldosterone
production) recently allowed the detection of non-neoplastic
foci of CYP11B2-expressing cells in the adrenal, referred to
as aldosterone-producing cell clusters (APCC), which are
commonly observed in normal human adrenals. Interestingly,
recent studies revealed that the classic continuous CYP11B2
expression pattern within adrenal zona glomerulosa is gradually
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lost with aging, whereas accumulation of APCC in adrenal
glands is frequently observed with advancing age. A direct
evidence that APCC autonomously secrete aldosterone still
awaits demonstration; however, aging is characterized by the
transition from a physiological aldosterone regulation to a
pattern of renin-independent aldosterone secretion, which could
be sustained by increased number in APCC (28), and may
account, at least in part, for the increased cardiovascular risk
observed in the elderly (27).

Finally, it has been also shown that aging is associated
with a decline in 11HSD2 activity, which results in renin
suppression and cortisol-mediated MR activation (44), thus
providing another potential mechanism for enhanced MR
activation with aging.

Together, previous studies from both humans and animals
provide evidence of altered RAAS activity and secretion with
aging, which play a pivotal role in pathogenesis of CVD.

ROLE OF THE MINERALOCORTICOID
RECEPTOR IN VASCULAR DYSFUNCTION
WITH AGING

Aging is associated with structural, mechanical and functional
alterations in the vasculature that are characterized by augmented
vasoconstriction, reduced elasticity and distensibility, vascular
stiffening, and impaired endothelial function (14, 45). These
aging-related vascular changes contribute to cardiovascular
disease and may be reversible; therefore, elucidating the
mechanisms driving vascular aging has substantial potential to
identify new therapeutic targets to prevent or reverse vascular
aging, thereby attenuating the high CVD burden in the rapidly
growing elderly population.

In addition to the traditional role of renal MR in regulating
blood pressure by promoting sodium retention in the kidney
(46), accumulated data in the past two decades indicate
that MR is also expressed in the vasculature, including the
smooth muscle cells, that contribute to vascular structure and
vasoconstriction, and the endothelial cells, that contribute to
barrier function and inflammation and thrombosis when injured
(9, 10, 26). Substantial evidence support that MR in vascular
cells contributes to CVD [reviewed elsewhere (47, 48)]. Animal
studies have demonstrated that treatment with MR antagonists
ameliorates vascular remodeling and dysfunction in the setting
of CVD risk factors, including aging, western diet-induced
obesity and hypertension, without significantly altering blood
pressure (49–52), suggesting direct effects of MR antagonism
on the vasculature. In clinical studies, MR antagonist treatment
reduced vascular stiffness in elderly patients particularly with
hypertension (53, 54).

MR expression increases in the vasculature with aging. Krug
et al. found that MR gene expression is higher in aortas from
aged rat (30 months of age) than in aortas from adult rat (8
months of age), and that MR protein expression was increased
with aging in isolated rat aortic smooth muscle cells (24).
More recent studies have similarly shown increased MR gene
expression in mouse mesenteric resistance arteries with aging

(25). To investigate the specific role for vascular smooth muscle
cells MR in age-related mechanical and functional changes in the
vasculature with aging, mice with smooth muscle cell-specific
deficiency of MR (SMC-MR-KO) have been generated (26).
Using these mice, McCurley et al. found that the moderate rise
in blood pressure with aging in mice is prevented in SMC-
MR-KO mice, without defects in renal function. Compared to
aged MR-intact mice, 12 month-old SMC-MR-KO mice also
showed decreased myogenic tone, vasoconstriction, and voltage-
gated calcium channel expression, and decreased oxidative stress
both at baseline and in response to Ang II (26). These findings
indicate a direct contribution of smooth muscle cells-MR to
increased vasoconstriction, vessel tone, and oxidative stress in
aging vessels, which may contribute to the inexorable rise in
blood pressure with aging. Further exploration of the mechanism
by unbiased global miRNA expression profiling in mouse aortas,
identified microRNA (miR)-155 as the most down-regulated
miRNA in the aging vasculature. Interestingly, such down-
regulation was prevented in SMC-MR-KO mice (25). DuPont
et al. further demonstrated that MR transcriptionally represses
the miR-155 host gene promoter. Thus, the increase in vascular
MR expression with aging was associated with repression of miR-
155 and increased expression of miR-155 target genes including
the L-type calcium channel (LTCC) subunit Cav1.2 and the
Ang II type 1 receptor (Agtr1), which are known to contribute
to vasoconstriction and vascular oxidative stress with aging.
These aging effects were prevented in SMC-MR-KOmice further
supporting this as a mechanism by which smooth muscle cells-
MR contributes to increased vasoconstriction, vessel tone and
oxidative stress during aging (25).

Smoothmuscle cells-MRwas also recently found to contribute
to vascular structural changes with aging that determine vascular
stiffening (16), a prominent consequence of aging in humans
that correlates with risk of cardiovascular events (14, 45,
55). Although multiple CVD risk factors accelerate vascular
stiffening, aging itself is associated with vascular stiffening
that can occur independently and may even contribute to the
development of other risk factors including hypertension (55–
57). An important cause of vascular stiffness is excessive vascular
fibrosis and reduced elasticity (45). Comparison of vascular
stiffness with aging in MR-intact mice revealed increased aortic
stiffness in 12 month- and 18 month-old mice compared to 3
month-old mice, along with increased fibrosis in aorta, carotid
arteries and renal arterioles. These aging-associated increases in
vascular stiffness and fibrosis were mitigated in SMC-MR-KO
mice (16). Gene expression profiling in aortas revealed that MR
deletion in smooth muscle cells induces a distinct anti-fibrotic
gene profile in the aging vasculature, including downregulation
of well-characterized pro-fibrotic genes such as connective tissue
growth factor (CTGF), matrix metalloprotease-2 (MMP2), and
bone morphogenetic protein-4 (BMP4) (16), that contribute to
vascular fibrosis (14, 45). These findings indicate a role for
smooth muscle cell-MR in vascular aging as a transcriptional
regulator that activates pro-fibrotic genes with aging, consistent
with prior studies showing that aldosterone activates pro-fibrotic
genes in mouse vessels (58) and in human coronary artery
smooth muscle cells (10). Moreover, long-term treatment of aged
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mice with MR antagonist prevented the progression of vascular
stiffening, reduced vascular fibrosis and induced a similar anti-
fibrotic gene signature as smooth muscle cell-MR gene deletion
(16). A small cohort study in humans also showed that MR
antagonism treatment for 1 month reduced fibrotic biomarkers
in the serum from elderly patients compared to placebo treatment
(16). Altogether, the available preclinical data reveal that MR
expression in smooth muscle cells of the vasculature increases
with aging and induces structural, mechanical, and functional
changes in vessels that contribute to vascular stiffness and
to rising blood pressure with age (Figure 1). Mechanistically,
smooth muscle cell-MR contributes to functional and structural
alterations of vessels with aging through the role of MR as a
transcriptional regulator of genes associated with vascular tone,
oxidative stress and fibrosis. Although larger and longer clinical
studies in elderly humans are warranted, these findings support
the potential benefits of MR antagonism to treat vascular aging
and associated morbidity with aging.

To our knowledge, the specific role of MR in other vascular
cells, such as endothelial cells, myeloid cells, fibroblasts, or
perivascular adipose cells, has not been directly investigated
in the setting of aging. However, studies have demonstrated
that endothelial cell-specific MR deficiency or MR antagonists
treatment in mice prevents hormone- or diet-induced increases

FIGURE 1 | Diagram represents signaling for the contribution of

mineralocorticoid receptor (MR) in smooth muscle cell (SMC) to vascular

aging. Rises in SMC-MR expression with aging suppress miR-155, leading to

the up-regulation of angiotensin type 1 receptors (AgtR1) and L-type calcium

channels (LTCC), resulting in increased calcium influx and reactive oxygen

species (ROS) production. This signaling causes enhanced vasoconstriction

and oxidative stress. Also, increased MR in SMC with aging contributes to

transcriptional activation of pro-fibrotic genes, leading to increased vascular

fibrosis. These structural and functional changes with aging via MR in SMC

result in hypertension and vascular stiffening. CTGF, connective tissue growth

factor; MMP2, matrix metalloproteinase-2; BMP4, bone morphogenetic

protein-4; TGFβ, transforming growth factor beta; Col1a1, collagen type-1

alpha-1; Col3a1, collagen type-3 alpha-1; Cav1.2, calcium channel;

voltage-dependent; L type, alpha 1C subunit.

in endothelial cell stiffness, oxidative stress, leukocyte adhesion
and the associated decrease in nitric oxide (NO) production
(59, 60), which are prominent features of age-related vascular
dysfunction (48). In addition, although smooth muscle cell
MR does not contribute to atherosclerosis (61), endothelial
cell MR has recently been implicated in vascular inflammation
in mouse models of atherosclerosis, specifically in males (62).
Prior studies have also implicated MR expressed by myeloid
cells in atherosclerosis, in vascular inflammation, fibrosis and
remodeling as well as T-cell MR in hypertension (63–65). Thus,
MR in other cells contributes to important vascular phenotypes
that are known to be associated with vascular aging, supporting
the need for future studies to investigate directly the roles for
non-smooth muscle cells MR in vascular aging.

ROLE OF MINERALOCORTICOID
RECEPTOR IN MYOCARDIAL
DYSFUNCTION WITH AGING

The aging heart is characterized by various functional and
structural changes, partially resembling some of the features
observed in animal models of increased MR activation (66),
such as inflammation, oxidative stress, collagen accumulation
and fibrotic remodeling (66–68). A growing body of evidence
has suggested an important contribution of aldosterone and
MR activation to cardiac remodeling and heart failure (69,
70). MR expression was first detected in cardiomyocytes and
endothelial cells of atria and ventricles almost 30 years ago
(71). In the myocardium, MR is also expressed in cell types
other than cardiomyocytes, including coronary vasculature and
macrophages (71, 72). Interestingly, experimental studies have
shown that mice with cardiomyocyte-specific overexpression
of MR display oxidative stress-mediated coronary endothelial
dysfunction and increased expression of pro-fibrotic markers
(e.g., CTGF) (67, 69, 73). Wilson et al. demonstrated that
rats exposed to mineralocorticoids excess undergo a series of
inflammatory and oxidative stress responses before the onset of
myocardial hypertrophy or fibrosis (74). A recent publication
by Kim et al. indicates that smooth muscle cell-MR deletion
attenuates aging-associated increases in cardiac stiffness. The
increase in cardiac systolic stiffness with aging correlated with
the degree of aortic stiffness, suggesting that cardiac benefits of
smooth muscle cell MR deletion in mice may be secondary to the
prevention of vascular stiffening (16).

Macrophage MR has been also found to play a key
role in mediating cardiac tissue remodeling, stimulating the
pro-inflammatory macrophage M1-like phenotype (known
as “classically activated” macrophages) and regulating the
transcription of different inflammatory and pro-fibrotic markers,
such as tumor necrosis factor α (TNFα) and transforming
growth factor β1 (TGF-β1) (68, 75). MR is also expressed on T
lymphocytes and its overactivation upregulates CD8+ cytotoxic
T cells and T helper 17 (Th17) cells infiltrating in the heart.
Other studies showed that MR antagonism decreases Th17
polarization and induces the T regulatory cells phenotype (76,
77). Interestingly, pharmacological MR antagonism decreased
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the accumulation and activation of CD4+ and CD8+ T cells
in the murine heart and T cells specific MR-knockout mice
displayed reduced cardiac hypertrophy, fibrosis, and dysfunction
(78).Moreover, theMR selective antagonist eplerenone improved
the adverse cardiac effects of aging in spontaneously hypertensive
rats, reducing myocardial fibrosis and improving left ventricular
diastolic function and coronary hemodynamics (79).

MR activation can also affect myocardial electrical function,
potentially causing lethal cardiac arrhythmias associated with
heart failure (70, 80). Gómez et al. demonstrated that the
overstimulation of cardiac MR pathway leads to increased
ryanodine receptor activity and long-lasting and broader
spontaneous calcium sparks, which potentially predispose to
arrhythmias (81). Another study has shown that transgenic
mice with cardiac-selective overexpression of human MR
exhibit a high rate of death due to ion channel remodeling
(reduced outward K+ transient current, increased Ca2+ influx),
which results in prolonged ventricular repolarization and fatal
ventricular arrhythmias in absence of structural cardiac defects.
Importantly, administration of spironolactone in pregnant mice
was able to prevent embryonic and postnatal death in the
offspring, suggesting that offspring lethality was highly related to
MR overexpression and activation (82).

Atrial fibrillation is the most frequent cardiac arrythmias in
the elderly population (83). Interestingly, Tsai et al. found that
atrial MR expression is significantly higher in patients with atrial
fibrillation compared with individuals with normal sinus rhythm.
In the same study, aldosterone increased the expression of α-
1G and−1H subunits of the T-type calcium channel in cultured
murineHL-1 atrial myocytes, leading to increased T-type calcium
current and calcium overload, which was attenuated by the
mineralocorticoid antagonist spironolactone (84). Accordingly,
although there is no evidence showing a direct role of MR
dysfunction in aging causing atrial fibrillation, we can speculate
that increased MR signaling in heart tissue, due to aging, could
represent a causal link between aging and atrial fibrillation.
Further studies are needed to directly explore this possibility.

In summary, accumulating data demonstrate that MR
contributes to aging-associated myocardial dysfunction with cell
type-dependent mechanisms revealed by animal studies, thus
supporting the potential benefits of MR antagonism to treat
cardiac dysfunction, especially in elderly population.

ROLE OF MINERALOCORTICOID
RECEPTOR IN ENDOTHELIAL
DYSFUNCTION AND INFLAMMATION
WITH AGING

Very little is known about the role of aldosterone and MR
activation in the vasculature in the context of healthy human
aging. Healthy endothelial cells secrete vasodilator mediators
which activate signaling pathways inducing smooth muscle cells
to relax and leading to vasodilation (85). Nitric oxide (NO)
is produced by healthy ECs after activation of endothelial
nitric oxide synthase (eNOS). NO represents a major mediator
of endothelial-dependent vasorelaxation (86, 87). In patients

with cardiovascular risk factors, such as hypertension, obesity
and diabetes, extensive data demonstrate that MR activation
contributes to endothelial dysfunction, through impairment of
vasodilation induced by the endothelium (22, 85, 88–91). In
human coronary endothelial cells, MR regulates several genes
involved in inflammation and oxidative stress (9, 10). It is known
that MR activation in endothelial cells contributes to cardiac
inflammation and remodeling by promoting the expression of
vascular cell adhesion molecule 1 (VCAM1), as shown in animal
models of hypertension (92). Moreover, aldosterone-mediated
endothelial MR activation leads to the overexpression of the
intracellular adhesion molecule-1 (ICAM-1), thereby enhancing
leukocyte adhesion to coronary artery endothelial cells (9, 93).
In vivo, MR in the endothelium contributes to ICAM-1 and E-
selectin expression thereby contributing to leukocyte slow rolling
and adhesion to the vasculature, a critical step in the process of
inflammation (62).

Reactive oxygen species have also been suggested to mediate
the detrimental effects of aldosterone in the vasculature through
MR activation (94, 95). Arterial superoxide levels increase with
aging, in part because of the excessive activity of NADPH
oxidase. Increased oxidative stress leads to the inactivation of
nitric oxide (96) and consequent arterial stiffness (97). Several
studies showed that MR activates NADPH oxidase-dependent
superoxide production (22, 90) and MR blockade decreases
NADPH oxidase activity, reduces superoxide formation, and
improves nitric oxide bioavailability (98). Importantly, the
sensitivity of the MR to aldosterone is enhanced in arteries
from aged and/or hypertensive humans (99). In animal models
with enhanced cardiovascular risk, endothelial dysfunction
is driven by aldosterone activation of endothelial cell-MR.
Spironolactone significantly improved endothelial function in
middle cerebral artery in a spontaneously hypertensive rat
model (100). Moreover, pharmacological MR inhibition or
selective deletion of MR in endothelial cells prevented impaired
vasodilation in a model of diet-induced obesity (101) specifically
in females (102). Finally, selective endothelial cell MR deletion in
mice improved endothelial dysfunction upon a challenge of Ang
II induced hypertension (103).

Only few clinical studies evaluated the effects of MR
antagonists on arterial stiffness in hypertensive patients. In two
different studies, eplerenone showed higher efficacy in reducing
arterial stiffness than atenolol and a thiazide type diuretic
(53, 104). On the other hand, a study comparing eplerenone
and amlodipine showed that the aortic pulse wave velocity
decreased similarly in both groups (105). Interestingly, in a
randomized study conducted by Hwang et al. on healthy older
adults free from overt cardiovascular disease, pharmacological
inhibition of MR did not decrease oxidative stress nor lead to
improved arterial stiffness and wave reflections. These findings
suggest that MR may not substantially contribute to oxidative
stress in healthy human aging in the absence of additional
risk factors (106). The same authors also showed that acute
inhibition of MR in healthy aged adults led to impairments in
vascular endothelial function, suggesting that theMRmay induce
beneficial physiological actions in regulating eNOS activity and
flow-mediated endothelium-dependent dilation in healthy aging
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(107). Vascular smooth muscle responsiveness to exogenous
nitric oxide was not influenced by acute MR antagonism in
this population. Similarly, acute MR antagonism did not affect
systemic blood pressure or circulating and endothelial cell
markers of oxidative stress and inflammation (107). Other studies
demonstrated that MR deletion in endothelial cells does not
inhibit endothelium-dependent relaxation in healthy aorta (101),
mesentery and coronary arteries (103). Conversely, in subjects
with CVD risk factors, endothelial dysfunction seems to be
dependent on MR activation. In this regard, studies conducted in
animal models suggest that the specific role of MR activation in
endothelial function depends on endothelial health and integrity
(102, 108). Thus, it can be speculated that MR activation
determines the induction of a vasodilatory response in healthy
endothelium, and a vasoconstriction response (potentially
mediated by smooth muscle cell–MR) when the endothelium is
stressed or damaged.

Aging is associated with a progressive worsening of several
physiological processes, leading to an increased risk of diseases,
particularly at cardiovascular level (13, 14). Aging causes a pro-
inflammatory state, remodeling of the vasculature, endothelial
dysfunction and excessive production of reactive oxygen species
(13, 14, 96, 109), mainly by increased expression and activity
of NAD(P)H oxidase, which is not efficiently countered by
antioxidant enzymes (110, 111). In the elderly, oxidative
stress represents the most important cause of epigenetic
modification (112) of the genes encoding for the antioxidant
enzyme superoxide dismutase (113). In addition, the increased
endoplasmic reticulum stress and proteasome activity elicits the
process of unfolded protein response in vascular smooth muscle
cells, monocytes, and endothelial cells (114). In this particular
context of unhealthy aging, characterized by vascular damage,
endothelial cell-MR activation can amplify cardiovascular
adverse outcomes, exacerbating vascular stiffness through the
induction of augmented reactive oxygen species production,
collagen deposition, and vascular inflammation (9, 94, 95),
resulting in altered vasodilation, endothelial dysfunction, and
atherosclerosis (Figure 2).

In summary, a large body of evidence indicate that
endothelial cell-MR is implicated in the pathological outcomes of
cardiovascular risk factors, which are also highly associated with
aging. Future studies are needed to determine if endothelial cell-
MR plays a direct role in cardiovascular aging in animal models
and humans.

MR ANTAGONISTS IN THE ELDERLY:
CLINICAL STUDIES

MR antagonists are largely used for the treatment of resistant
hypertension and hearth failure (HF) (115), which represent
highly prevalent diseases among older individuals (116, 117).
In this context, several clinical trials demonstrated that
cardiovascular morbidity and mortality are significantly reduced
from the use of MR antagonists in moderate to severe heart
failure with reduced ejection fraction (HFrEF) (118–120). In the
double-blind Randomized Aldactone Evaluation Study (RALES),
1,663 patients with severe HFrEF and an average age of 65

FIGURE 2 | Aging is associated with vascular damage characterized by

inflammation, vascular thickening, arterial stiffness and overproduction of

reactive oxygen species (ROS). In this setting, mineralocorticoid receptor (MR)

activation in endothelial cells can contribute to amplify cardiovascular adverse

outcomes, exacerbating vascular stiffness through the induction of augmented

ROS production, vascular inflammation and collagen deposition, finally leading

to endothelial dysfunction and atherosclerosis. eNOS, endothelial nitric oxide

synthase; NOX4, NADPH Oxidase 4; ICAM1, Intercellular Adhesion Molecule

1; VCAM1, vascular cell adhesion molecule 1.

years were randomly assigned to receive the MR antagonist
spironolactone or placebo. After a mean follow-up period of
24 months, individuals from the spironolactone group showed
a significant improvement in the symptoms of heart failure
and a significant reduction in mortality, the latter attributed to
the lower risk of death from cardiac causes (118). Thereafter,
the Eplerenone Post-AMI Heart Failure Efficacy and Survival
Study (EPHESUS) investigated the effects of the selective MR
antagonist eplerenone on morbidity and mortality among 6,642
patients with an average age of 64 years and HFrEF following
an acute myocardial infarction. After a mean follow-up period
of 16 months, eplerenone significantly reduced the risk of death
and hospitalization from cardiovascular causes and from any
cause, as well as the rate of sudden death from cardiac causes
(120). In contrast with these findings, the Treatment of Preserved
Cardiac Function Heart Failure with an Aldosterone Antagonist
trial (TOPCAT) found that spironolactone did not significantly
reduce the rates of the primary composite outcome of death
from cardiovascular causes, cardiac arrest, or hospitalization
for heart failure in patients with heart failure with preserved
ejection fraction (HFpEF) and a median age of 68.7 years (121).
However, a post-hoc analysis has shown that spironolactone
significantly reduced the TOPCAT primary outcome in patients
with HFpEF from the Americas, suggesting that differences in
demographic characteristics among recruited individuals may
have represented a relevant bias of the study (122). On the
other hand, a meta-analysis of seven randomized controlled
trials evaluating the impact of MR antagonists on cardiovascular
mortality and morbidity outcomes in patients with heart failure
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and/or left ventricular systolic dysfunction aged ≥65 years,
did not confirm significant improvement in clinical outcomes
among patients with HFpEF. However, the same study showed
that MR antagonism improves clinical outcomes in selected
cohorts of older patients withHFrEF (123). Another sub-analysis,
which included 1,767 of the TOPCAT patients and was equally
comprised of men and women, demonstrated that women with
HFpEF had a significant reduction in cardiovascular and all-
cause mortality with spironolactone, while men did not (124).

Interestingly, MR antagonists were also found to exert clinical
benefit in patients with atrial fibrillation. In particular, a clinical
trial on 164 patients aged ≥66 years with recurring atrial
fibrillation showed that spironolactone, administered with β-
blockers, was able to significantly prevent arrhythmic events,
compared to spironolactone untreated patients (125). Recently,
a retrospective cohort study of the contemporary ORBIT-AF
(Outcomes Registry for Better Informed Treatment of Atrial
Fibrillation) registry showed that the use of MR antagonists was
not associated with reduced atrial fibrillation, but showed a trend
toward lower risk of stroke, transient ischemic attack, or systemic
embolism (126). However, the hypothesis that MR antagonists
therapy may reduce residual stroke risk in patients with atrial
fibrillation awaits demonstration in randomized clinical trials.

The recent 2018 ESC/ESH guidelines for the management
of arterial hypertension now recommend that systolic blood
pressure should be targeted to a range of 130–139 mmHg in older
(>65 years) and very old (>80 years) patients (127). Importantly,
recommended treatment of resistant hypertension considers the
addition of low-dose spironolactone (up to 50mg/day) to existing
therapy also in the elderly population, where loop diuretics and
alpha-blockers should be avoided due to their association with
falls (128), extending the possibility of pharmacological MR
antagonism in the aging hypertensive population.

In light of the significant cardiovascular benefits of MR
antagonism in the aging population, their use in clinical setting
is limited by the adverse effects induced by MR blockade
on the kidney, such as hyperkalemia, particularly in older
patients with reduced renal function and by their anti-androgenic
properties (particularly exhibited by spironolactone) which can
induce gynecomastia and erectile dysfunction in men (129, 130).
Therefore, the current use of MR antagonists is restricted to
patients with an estimated glomerular filtration rate>45mL/min
and a plasma potassium concentration of <4.5 mmol/L, in order
to avoid the risk of hyperkalaemia (127). For such reasons, there
is an unmet need for the development of more selective MR
antagonist for heart and vasculature, in order to minimize the
relevant side effects on non-cardiac tissues.

CONCLUDING REMARKS

It is now clear that altered MR function is involved in
the pathophysiology of endothelial dysfunction, atherosclerosis,
oxidative stress, and cardiac remodeling. Altogether, these
conditions are highly prevalent in the aging population and are
deeply involved in the development of ischemic events and heart
failure, common causes of morbidity and death in the elderly.

Several recent studies demonstrated that aging is associated with
important alterations in the aldosterone-MR systemwith changes
in aldosterone production by the aging adrenal and increased
MR responsiveness by the aging cardiovascular system. In
accordance, clinical trials revealed the efficacy of MR antagonism
in improving cardiovascular morbidity and decreasing mortality.
The mechanisms involved in these cardiovascular benefits are
complex and well beyond their well-known blood pressure
lowering effects. It is now clear that systemic pharmacological
antagonism produces direct effects in the vasculature and heart.
However, MR pharmacological blockade in clinical practice has
been limited by the risk of important adverse effects, such
as hyperkalemia and renal dysfunction worsening, which is
particularly frequent in aged individuals. Recently, a novel
class of non-steroidal MR antagonist has been developed (131).
Finerenone belongs to this group of molecules and its MR
selectivity and affinity are higher compared to spironolactone and
eplerenone. Due to these differences, finerenone may potentially
reduce risk of both hyperkalaemia and renal impairment and,
if so, may be safer to use in patients with heart failure affected
by chronic renal dysfunction (132). Specifically, five phase II
clinical trials demonstrated that finerenone is safe in patients with
heart failure and concomitant chronic renal impairment and/or
diabetes mellitus, and neither hyperkalemia nor reductions in
kidney function were limiting factors to its use in over two
thousand patients (133). Such favorable side effects profile is
reached in the presence of similar clinical efficacy compared to
other MR antagonists. Importantly, the addition of finerenone
in patients with diabetic nephropathy resulted in improvement
in the urinary albumin-creatinine ratio (134). ARTS-HF was
the first clinical trial to compare finerenone with eplerenone,
in patients with worsening HFrEF and chronic kidney disease
and/or diabetes mellitus, with a mean age of 71.5 years. In such
vulnerable population, finerenone reduced levels of NT-proBNP
to a similar extent to that of eplerenone, but showed less changes
in serum potassium from baseline to the end of the study in
comparison to eplerenone (135). Importantly, finerenone at a
dose of 10–20mg demonstrated a nominally improved outcome
of a composite clinical endpoint of death from any cause, CV
hospitalizations, or emergency presentation for worsening heart
failure (hazard ratio, HR: 0.56 [95% CI: 0.35–0.90]) compared to
eplerenone in ARTS-HF. Moreover, preclinical studies showed
that finerenone was able to potently block cardiac fibrosis and
macrophages infiltration in a mouse model of isoproterenol-
induced cardiac fibrosis, whereas eplerenone did not show
significant effects (136). Nevertheless, phase III clinical trials will
be crucial to further investigate the efficiency and safety of novel
MR antagonists in the aging population, and studies on different
subgroups of elderly people will help to identify new strategies to
prevent cardiovascular aging, and to reduce the risk of end-organ
damage related to MR activation (137).
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