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Chemokine receptors are members of the G protein-coupled receptor superfamily.

These receptors are intimately involved in cell movement, and thus play a critical role

in several physiological and pathological situations that require the precise regulation

of cell positioning. CXCR4 is one of the most studied chemokine receptors and is

involved in many functions beyond leukocyte recruitment. During embryogenesis, it plays

essential roles in vascular development, hematopoiesis, cardiogenesis, and nervous

system organization. It has been also implicated in tumor progression and autoimmune

diseases and, together with CD4, is one of the co-receptors used by the HIV-1 virus to

infect immune cells. In contrast to other chemokine receptors that are characterized by

ligand promiscuity, CXCR4 has a unique ligand—stromal cell-derived factor-1 (SDF1,

CXCL12). However, this ligand also binds ACKR3, an atypical chemokine receptor

that modulates CXCR4 functions and is overexpressed in multiple cancer types. The

CXCL12/CXCR4/ACKR3 axis constitutes a potential therapeutic target for a wide variety

of inflammatory diseases, not only by interfering with cell migration but also bymodulating

immune responses. Thus far, only one antagonist directed against the ligand-binding site

of CXCR4, AMD3100, has demonstrated clinical relevance. Here, we review the role of

this ligand and its receptors in different autoimmune diseases.

Keywords: chemokines/chemokine receptors, inflammation, autoimmunity, CXCL12 chemokine, CXCR4 =

chemokine receptor 4, ACKR3

INTRODUCTION

The human chemokine family is defined by almost 50 low-molecular-weight proteins, originally
described as pro-inflammatory cytokines (1). By associating with and signaling through seven
transmembrane G protein-coupled receptors (GPCRs), they activate multiple signaling pathways
in target cells. Chemokines are essential for the spatio-temporal organization of leukocytes (2),
and thereby ensure the correct organization and function of the immune system. Not surprisingly,
dysregulation of chemokine production often results in disease. The chemokine system is complex
and, in some cases, even redundant, with several chemokines that bind the same receptor
with similar affinities and receptors that can bind the same ligand. Moreover, cells can express
simultaneously or during different stages of their life several receptors at the cell membrane (3–7).
This apparent promiscuity is, nonetheless, contentious and raises questions about the relevance of
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one or multiple chemokines or chemokine receptors in a
determined pathological or physiological process. For example,
through binding to CCR7, CCL19, and CCL21 are implicated in
lymph node homeostasis and regulate naïve T cell encounters
with mature antigen-presenting cells (8, 9). It is known,
however, that both ligands promote differential G protein-
coupled receptor kinase (GRK) recruitment to CCR7 and, in
consequence, differentially activate β-arrestins (10, 11). These
chemokines display differential interaction—and docking—
modes for CCR7 leading to stabilization of different receptor
conformations and hereby preferential activation of distinct
intracellular signaling pathways (12).

Despite the crucial role of chemokines in immune function,
efforts, and resources invested in the development of specific
and efficient drugs have yielded poor results. Indeed, only two
drugs targeting chemokine receptors have been approved for
clinical use so far, and they apply to very specific situations: HIV-
1 infection in the case of the CCR5 antagonist maraviroc (13) and
stem cell mobilization from the bone marrow (BM) in the case of
the CXCR4 antagonist AMD3100 (plerixafor) (14).

New findings have demonstrated that the
chemokine/chemokine receptor system is even more complex.
For instance, chemokines are capable of forming dimers
and oligomers (15–17), and can interact with synergy-inducing
molecules (18) and with glycosaminoglycans (GAGs) (17, 19, 20).
It is also known that chemokine receptors are not only
monomeric entities, but also exist as dimers and higher-order
oligomers (21) that also interact with other membrane proteins
(21–24) and exhibit signaling crosstalk with other proteins
(25, 26).

A good example of the complex biology of chemokine
signaling is the ubiquitously expressed CXCL12, which
signals by binding to two receptors, CXCR4 and ACKR3.
The CXCL12/CXCR4/ACKR3 axis plays key roles in
many physiological and pathological processes, including
embryogenesis, wound healing processes, angiogenesis, in
the development and metastasis of tumors and during HIV-1
infection. The available evidence indicates that this signaling axis
is also essential in maintenance of homesostasis and for host
defense, and participates in progression of inflammation. The
present review discusses the role of the CXCL12/CXCR4/ACKR3
axis in inflammation, focusing on its involvement in several
autoimmune diseases.

CXCL12, THE LIGAND

Initially known as stromal cell-derived factor-1α (SDF-1 α) or
preB-cell growth-stimulating factor (PBSF), CXCL12 is probably
the most studied member of the chemokine family (27, 28).
It is a homeostatic chemokine produced in multiple tissues
including lymph nodes (LNs), brain, liver, colon, kidney, testis,
lung, pancreas, skin and placenta, and in different cell types
including stromal cells, osteoblasts, fibroblasts, dendritic cells
and monocytes, among others. Data from Cxcl12-deficient mice,
corroborated by those obtained in mice lacking the gene for
its receptor, CXCR4, reveal its essential role in physiology.

Both mouse models are embryonic lethal with severe defects in
hematopoiesis and in the nervous and cardiovascular systems
(29–31). In adults, CXCR4/CXCL12 participates in the retention
of hematopoietic stem cells in BM, in the traffic of T cell-
precursors to the thymus, and in the clearance of neutrophils in
the BM. In cooperation with CCR7 ligands, CXCL12 participates
in T lymphocyte homing, it assists lymphocyte trafficking across
the high endothelial venules into LNs and Peyer’s patches (32).
CXCL12 directs T central memory cell homing to LNs (33).
Interestingly, a role for CXCL12 in determining the location
of metastasis in different tumors has been reported (34), and
several studies point to its potential as a biomarker (35) in
hepatocellular carcinoma (36), bladder cancer (37) and glioma
recurrence (38), and as a predictor of poor survival in ovarian
cancer (39). CXCL12 also has prognosis potential in non-tumoral
processes such as cirrhosis (40), diabetes (41), and cardiovascular
diseases (42).

CXCL12 also interacts with GAGs through a cluster of basic
residues—the BBXB motif (43). The interaction with GAGs
is necessary for the in vivo activity of certain chemokines
(17), contributing to the complexity of the system (19). It
increases the local concentration of chemokines, presents the
ligand to the receptors, and allows the formation of chemokine
gradients (17). The existence of partial overlap between GAG
and receptor binding sites on CXCL12 suggests that chemokine
oligomerization may allow simultaneous binding (15). However,
recent data suggest that binding to CXCR4 competes with
CXCL12 dimerization, which argues against GAG-mediated
presentation (20). Although CXCR4 was initially described as the
unique receptor for CXCL12, CXCL12 also binds the atypical
receptor ACKR3, also known as CXCR7 (44). This receptor
does not activate G proteins, but interacts with β-arrestins (45),
indicating that it is likely to be more than just a scavenger
receptor for CXCL12.

CXCR4/ACKR3, THE RECEPTORS

CXCR4 Expression and Function
Originally known as leukocyte-derived seven-transmembrane
domain receptor (LESTR) or Fusin, CXCR4 was first described
as an orphan GPCR that facilitates HIV-1 fusion with target
cells—hence the name “Fusin” (46). CXCL12 is the unique and
specific chemokine for CXCR4 (47). Its binding promotes the
activation of heterotrimeric Gαβγ proteins, and the subsequent
activation of multiple signaling pathways controlling calcium
mobilization, actin polymerization, cytoskeletal rearrangements,
gene transcription, and receptor internalization (48–51), cell
proliferation, cell survival, and even apoptosis (52–55).

CXCR4 is an homeostatic receptor that is widely expressed
both in embryonic and in adult tissues (1). As previously
indicated, data from Cxcr4-deficient mice correlate with those
observed in Cxcl12-knockout mice (29–31, 56), showing
defects in hematopoiesis and in nervous and cardiovascular
development. The importance of the CXCR4/CXCL12 axis is
reflected not only by the fact that both knockout mice are
embryonic lethal, but also because the ligand and the receptor
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are highly conserved members of chemokine and chemokine
receptor families during evolution (57).

CXCR4 is ubiquitously expressed in the hematopoietic system,
although its expression level is quite variable among cell types.
As with other chemokine receptors, CXCR4 is important in
leukocyte trafficking and arrest in specific niches, both under
homeostatic and pathological conditions, by recruiting cells
to sites of inflammation. During antigen-presenting cell/T cell
contact, CXCR4, among other chemokine receptors, is recruited
to the pSMAC (peripheral SupraMolecular Activation Cluster)
where it contributes to the integrin activation needed to generate
a productive immunological synapse and proper T cell activation
(25). CXCL12/CXCR4 are thus key elements for the adaptive
and innate immune response and also for BM organization
and maintenance (58). Indeed, CXCR4 and CXCL12 are largely
responsible for hematopoietic stem cell migration (59), homing
(60–63), and survival (64, 65) in BM.

CXCR4 is also expressed in several non-hematopoietic tissues,
such as lung, liver, kidney, gastrointestinal tract, adrenal gland,
ovary, and brain. The importance of CXCR4 in adult tissues
has been demonstrated using conditional Cxcr4-knockout mice,
which have served to assign an important role of CXCR4
in regulating central nervous system development (66), and
vasculature development in the gastrointestinal tract (30) and the
kidney (67).

CXCR4 and CCR5, are the primary co-receptors for HIV-
1 entry into target cells. Indeed, HIV strains are classified
as X4- or T-tropic and R5- or M-tropic depending on the
chemokine receptor used for cell infection (68). In newly infected
individuals HIV-1 entry occurs mainly through CCR5 and CD4,
they are M-tropic R5 strains which predominate in the acute
and asymptomatic phases of HIV infection. CD4+ T helper type
1 (Th1) cells, which express high levels of CCR5 (69, 70), are
implicated in maintaining the asymptomatic status (71, 72). The
viral use of CXCR4 emerges later in disease and correlates with
the phase of immunological deficiency and AIDS progression
(73, 74).

Inherited heterozygous autosomal dominant mutations in the
CXCR4 gene cause WHIM syndrome (75, 76), a severe combined
immunodeficiency disease characterized by susceptibility
to human papilloma virus infection, which causes warts,
condyloma acuminata and carcinomas. These patients can suffer
neutropenia, B cell lymphopenia, hypogammaglobulinemia
which is related to recurrent infections and BM myelokathexis
characterized by myeloid hyperplasia and increased numbers of
mature, senescence neutrophils in the bone marrow (75). The
mutations in CXCR4 result in a stop codon that eliminates
the last 10–19 amino acids at the C-terminus, or alter
specific key residues for receptor phosphorylation in this
domain. In all cases, mutations impair CXCR4 internalization
(48, 77), sustaining its activity and enhancing G protein- and
β-arrestin-dependent signaling.

While considered a homeostatic receptor, the expression of
CXCR4 can be modulated by different pathological conditions.
For example, CXCR4 is overexpressed by many tumor types,
including breast (34), ovarian (78), prostate (79), melanoma
(80), and neuroblastoma (81), among others. Also, the elevated

expression of CXCR4 in metastatic lesions correlates with tumor
progression and with preferential metastatic sites of the primary
tumor (82–84). Studies in mice show that CXCR4 is a good
target in cancer as its blockade impairs the spread of cancer
cells and metastasis in several cancer models (34, 85, 86). The
CXCL12/CXCR4 axis is also involved in tumor growth, tumor
cell interactions with the microenvironment (87), vasculogenesis
and angiogenesis (88). In this setting, hypoxia has been related
to the upregulation of CXCR4 expression, suggesting that this
receptor is involved in tumor progression (89, 90).

Inflammation has also been identified as a relevant factor for
CXCR4 modulation, as TGF-β1 (91), VGEF (90), and bFGF (92)
are reported to upregulate CXCR4 expression, whereas other
cytokines such as IL-5 (93), IFNα and IFNγ (94) downregulate
its expression. Overall, these data illustrate the involvement of
the CXCR4/CXCL12 axis in the development and progression
of immunodeficiency and inflammatory diseases and cancer, and
underline its interest as a target for therapeutic intervention.

ACKR3 Expression and Function
ACKR3, also known as RDC1 and CXCR7, was first identified
as an orphan GPCR, and was later described as a high-affinity
receptor for CXCL12 and CXCL11 (44, 95). Instead of having
the canonical DRYLAIV motif, which is involved in coupling
to G proteins, it contains the sequence DRYLSIT (96) and
is, accordingly, included in the group of “atypical chemokine
receptors” (ACKR)—hence the name “ACKR3.” It acts as a
scavenger receptor for CXCL12 (97, 98), but also triggers the β-
arrestin pathway (45), and can be also implicated in modulating
CXCR4 functions by forming heterodimers (99, 100).

In adults and under homeostatic conditions, ACKR3 is not
expressed at the cell surface of human or mouse leukocytes
in peripheral blood (101), but is expressed in B cells and
dendritic cells in secondary lymphoid organs (102). ACKR3 is
also expressed in several non-hematopoietic cells, for example,
in endothelial and mesenchymal cells and in neurons. Reflecting
its importance in embryonic tissues, Ackr3-knockout mice die
perinatally and show severe defects in cardiovascular, kidney, and
brain development, but not in hematopoiesis (100).

In the presence and absence of ligands, ACKR3 continuously
recycles between the cell membrane and the endosomal
compartment. Ligands trigger a moderate increase of ACKR3
internalization which concours with a marked uptake and
degradation of CXCL11 and CXCL12, thus supporting its
scavenging role (98). As also occurs for CXCR4, ACKR3
surface expression is increased in pathological situations, both
in leukocytes and endothelial cells. In a prostate cancer model,
CXCL8 increases the expression of mRNA and protein levels
of ACKR3 (103); IL-1β triggers ACKR3 expression in HUVEC
cells (104); and other external factors such as lipopolysaccharides
associate with ACKR3 upregulation in the pulmonary epithelium
modulating microvascular permeability during acute pulmonary
inflammation (105). Although the mechanisms are not fully
elucidated, in vitro and in vivo studies have described that
higher levels of ACKR3 correlate with increased cell proliferation
and invasive migration, that is with tumor growth and
metastasis (106–108).
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Similar to CXCR4, ACKR3 is implicated in some autoimmune
diseases, such as rheumatoid arthritis (104), inflammatory bowel
disease (109), and experimental autoimmune encephalomyelitis
(EAE) (110, 111).

CXCR4/CXCL12 STRUCTURE

While the sequence identity among chemokines varies greatly
(15–90%), there is a high level of conservation in their tertiary
structures, as revealed by nuclear magnetic resonance and X-ray
crystallography (16). The structure of CXCL12 was first described
in 1997 using nuclear magnetic resonance spectroscopy (112). Its
67 residues present a typical chemokine folding with an eight
residue-long N-terminus followed by a central body assembled
by three antiparallel β-strands forming a β-sheet covered by an
α-helix. CXCL12 presents a high percentage of basic residues
dispersed along the N-terminus and the main body that are
important for the binding to specific residues in the receptor.
A two-step binding site model has been proposed (112, 113)
for the interaction between CXCL12 and CXCR4, with a first
interaction of the central body of the chemokine with the N-
terminus of CXCR4 in the Chemokine Recognition Site 1 (CRS1),
allowing the ligand to obtain an optimal orientation on the
receptor, which enables the N-terminus to penetrate deep into
the receptor and bind to the CRS2 region. This structure may
shift between monomers and dimers depending on the solution
conditions, a fact that might affect CXCL12 activity. In addition,
a non-dissociating CXCL12 dimer that binds CXCR4, induces
Ca2+ mobilization, but does not mediate in vitro cell migration
has been described (114), suggesting specific functions associated
with distinct ligand conformations.

The first high-resolution structure of CXCR4 was published
in 2010 (115), with five independent receptor structures reported
in complex with two antagonists, the small molecule IT1t and
the cyclic peptide CVX15; thus, all the structures presented an
inactive state conformation. As described for other GPCRs (116,
117), CXCR4 displays the canonical 7-helix bundle arrangement
crossing the membrane, linked by three extracellular loops
(ECL1–3) and three intracellular loops (ICL1–3). Also, it
contains a long N-terminus composed of 34 residues and a C-
terminus where the VIII typical helix was not clearly defined. A
more recent structure of CXCR4 has been reported in complex
with the viral chemokine vMIP-II (118), with very similar
features to those described previously.

CXCL12 binding to CXCR4 promotes conformational
changes in the transmembrane domains governed by a chain of
“signaling” residues present along the transmembrane α-helices
identified by mutagenesis studies [(51); Figure 1A]. CXCL12
binding to the CRS2 region facilitates the interaction of the first
two N-terminal residues of the ligand, K and P, with a group
of residues mainly present at this domain in the receptor to
engage and trigger signaling [Figure 1A, blue and green residues;
(112)]. Next, eight residues present in the transmembrane (TM)
segments TMVI and TMVII (Figure 1A, orange residues),
which form a continuous rod through the receptor, connect
the signal initiation with the next residues (Figure 1A, red).

This connection is critical for signaling since these residues are
components of the microswitch allowing G protein coupling. Of
note, residues F248 to V242 in TMVI are in contact with almost
all the conserved motifs present in the GPCRs that are crucial for
signaling, including motifs CWxP in TMVI, NPxxY in TMVII,
DRY in TMIII, and Y(x)5KL in TMV. This assigns a role for
these residues in controlling the transition between active and
inactive states, by enabling helix and side chain translations, as
described using mutational studies of this hydrophobic bridge in
different receptors (120–122).

The ability of GPCRs to homo- and heterodimerize has been
described (123) and the crystallographic structures of CXCR4
highlight the regions implicated in these interactions (115, 118).
The implicated residues are located mainly at the extracellular
portion of helices V and VI in the case of the CXCR4:IT1t
complex (Figure 1B, pink residues) and at the base of helices
III and IV in the CXCR4:CVX15 complex (Figure 1B, cyan
residues). These residues differ from those previously described
in models of GPCR dimerization, where contacting residues
were allocated in helices I and IV (124, 125). The functional
implications of these differences for the CXCR4 life cycle remain
unclear, but since there is a low sequence identity in the
dimerization region among dimerizing GPCRs, it might be a
feature specific to CXCR4. A novel region for allosteric regulation
of CXCR4 oligomerization has also been described (21). Residues
located at the N-terminus of TMVI (Figure 1B, orange residues)
were mutated and the receptor remained able to dimerize but
not to form large nanoclusters after ligand binding. This mutant
receptor was able to trigger some calcium flux and to promote
cell adhesion but could not trigger cell migration, suggesting
that receptor nanoclustering is essential for complete CXCR4-
mediated functions.

CXCL12-MEDIATED SIGNALING
PATHWAYS

CXCR4 exists in the plasmamembrane as a monomer, dimer, and
higher-order oligomers. It can also interact with other chemokine
receptors (i.e., ACKR3, CCR5, and CCR2) and other cell surface
proteins such as the TCR, CD4, tetraspanins, and other GPCRs
(21, 50). This wide variety of interactions predicts a high signaling
potential and diversity for CXCR4.

Like most GPCRs, CXCR4 was initially believed to act as
monomer. Resonance energy transfer techniques revealed that
CXCR4, as with other chemokine receptors, forms homo- and
heterodimers (21), even in the absence of ligand stimulation.
Defining the contribution of different receptor conformations
to functional response is a challenging endeavor. Recent studies
using advanced microscopy techniques indicate that CXCR4
and also CCR7 form ligand-induced higher-order oligomers
that are critical for receptor function (21, 126). Nevertheless,
ligand-induced oligomerization is solely capable of mediating
signaling, as blocking the formation of CXCR4 oligomers
diminishes the functional response (21). Overall, these data
indicate that CXCR4 exists in multiple conformations and
highlight the importance of receptor oligomers for full receptor
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FIGURE 1 | Structure of CXCR4. Models created using the Swiss-Model web server (119), with PDB 3oe8 as a reference for CXCR4 and PDB 1a15 for CXCL12,

which was superposed to vMIP-II present in PDB 4 rws to build a CXCR4:CXCL12 complex. (A) Ribbon representation of a CXCR4 monomer in complex with a

surface representation of CXCL12. Residues implicated in CXCL12 signal transmission are depicted as colored spheres corresponding to the specific state of signal

transference showed by the pink arrowhead indicating the direction of the CXCR4:CXCL12 axis signal transit. Blue colored residues are part of the CXCL12 binding

site that contact the green colored residues responsible for the initiation of the signal transmission toward the cytoplasm. Subsequent signal propagation through a

hydrophobic bridge, in orange, allows conformational changes in TMVII inducing translation of specific residues (red spheres), depicted by an arrow, that will act like a

microswitch and position the G-protein binding residues (pink) in an active conformation. [Adapted from Wescott et. al. (51)]. (B) Cartoon representation of the CXCR4

dimer. Residues contacting between monomers are shown by pink spheres for CXCR4:IT1t complex, cyan for CXCR4:CVX15 complex and orange for oligomerization

inhibition after mutating residues 239–246 in TMVI (21).

function. While binding experiments at equilibrium showed
negative cooperativity between the subunits of a receptor dimer,
supporting high-affinity binding of only a single chemokine
molecule per receptor dimer (127), the stoichiometry of these
receptor conformations with the ligands is still unclear.

As occurs with other GPCRs and their ligands, CXCL12
engagement with CXCR4 triggers conformational changes in the
latter promoting the dissociation of GTP-loaded heterotrimeric
G proteins (16); the GTP-loaded Gα subunit and the Gβγ

heterodimer then activate downstream effectors. For CXCR4,
as for chemokine receptors in general, signaling is abolished
by pertussis toxin, indicating the involvement of Gαi in the
signal cascade (128). However, chemokine receptors can be also
coupled to Gαq or Gα11 in a cell- and stimulus-dependent
manner (129–131).

Gαi inhibits adenylyl cyclase, promoting a reduction of
cAMP and activating Src-related kinases, MAPK, PI3K, small
GTPases and PLC-β (phospholipase C). In turn, PLC-β activation
generates the second messengers diacylglycerol (DAG) and
inositol 1,4,5-triphosphate (IP3), which are required for cell
proliferation and migration. Some reports indicate that Gβγ

also activates PLC-β (50, 132). Gαi also triggers biphasic PI3K
activation, a pathway related to cell migration, proliferation, and
survival (133). PI3K can also be activated directly by the Gβγ

dimer (134), and PI3K catalytic subunits have a Ras-binding
domain, which can be recognized by small GTPases (such as Ras).
Both, the PI3K signaling cascade, which includes Akt and mTOR
proteins, and the MAPK pathway, have important roles in actin
reorganization and cell migration (53, 135, 136).

Other mechanisms activated by CXCR4/CXCL12 are G
protein-independent, i.e., activation of GRK family proteins. It
is known that GRK2, GRK3, and GRK6, and also PKC, are
implicated in phosphorylation of serine/threonine residues in the
CXCR4 C-terminus, which contributes to CXCR4 desensitization
(137, 138). The phosphorylated residues of the CXCR4 C-
tail trigger β-arrestin recruitment, thereby simultaneously
promoting the uncoupling of G proteins (139), and resulting in
β-arrestin-dependent receptor endocytosis.

Different regulatory mechanisms for CXCR4 have been also
described (49). CXCL12 triggers a rapid ubiquitination and
degradation of CXCR4 (140). The process requires a GRK6-
mediated phosphorylation of several serine residues at the C
terminal end of CXCR4 (141) and receptor internalization
(142). Other regulatory mechanisms involve the ability of
CXCR4 to associate with other receptors, and a role for
ACKR3/CXCR4 heterodimers regulating CXCL12-mediated G
protein signaling has been described (99). Indeed, in glioblastoma
cells, ACKR3/CXCR4 crosstalk affects major signaling pathways
related to cell survival, proliferation, and migration (143).

CXCR4 also interact with other chemokine receptors,
with different functional consequences—as illustrated by its
interaction with ACKR3. CXCR4 can form heterodimers with
CCR5, and together with the TCR of CD4+ cells, modulates HIV
infection (23, 144). Examples of other non-chemokine receptors
known to interact with CXCR4 include the cannabinoid receptor
CB2, with implications for tumor progression (145). Also, the
delta opioid receptor forms heterodimers with CXCR4 andmight
modulate pathological processes (22).
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TABLE 1 | Summary of CXCL12-mediated effects on cells in autoimmunity.

Disease Target cells Effects References

Psoriasis Macrophages Cell migration (146)

Lymphocytes Cell migration (146)

Endothelial cells Angiogenesis (146)

Keratinocytes Proliferation (147)

Multiple

sclerosis

Mononuclear cells Limits cell migration (148)

Regulatory T cells Polarization (148)

Rheumatoid

arthritis

Leukocytes Cell migration retention

in inflamed areas

(91, 149)

Endothelial cells Angiogenesis (150)

Chondrocytes Necrosis release of

proteases

(151, 152)

Osteoclasts Attraction,

differentiation,

activation resistance to

apoptosis

(153, 154)

Lupus Leukocytes Cell migration (155)

Epithelial cells Cell migration (156)

Treg cells retention in bone

marrow

(157)

T cells Chemorepulsive favors

autorreactive T cell

balance

(158)

β-cells Differentiation,

anti-apoptotic

protection

(54, 159)

Endothelial cells Angiogenesis (160)

Progenitors Cell recruitment (160)

IBD T cells Cell migration (109)

CXCL12/CXCR4/ACKR3 IN AUTOIMMUNE
DISEASES

Autoimmune diseases result from pathological immune
responses against self-antigens. The clinical manifestations
are initiated after tissue infiltration of immune cells, which
trigger the uncontrolled attack. Because of its central role in the
control of immune cell trafficking, the chemokines, produced
by stromal cells, tissue cells, and activated cells of the innate
immune system, are essential molecules in the development
of autoimmune responses. Although CXCL12 was originally
classified as a homeostatic chemokine, it also plays an important
role during inflammation (see Table 1). Here, we review the
involvement of the CXCL12/CXCR4/ACKR3 axis in some of the
most prevalent autoimmune diseases: psoriasis (146), multiple
sclerosis (161), rheumatoid arthritis (162), lupus (155), type I
diabetes (T1D) (163), and inflammatory bowel disease (164, 165).

Psoriasis
Psoriasis is a chronic inflammatory disease affecting the skin.
It affects 2 to 3% of the population worldwide (166). It
is characterized by epidermal thickening linked to enhanced
proliferation and aberrant terminal differentiation of epidermal
keratinocytes. It also shows accumulation of inflammatory

leukocytes—in particular dendritic cells, macrophages, and T
cells (167)—and pronounced inflammatory angiogenesis, leading
to vascular remodeling (168). Immune cell infiltration predicts
an important role of chemokines in psoriasis as well as in
other inflammatory skin diseases such as atopic dermatitis and
mastocytosis. Indeed, comparative gene expression profiling
showed significantly higher expression of CCL4, CCL20, CXCL8,
and CXCL2 in skin lesions of patients with psoriasis as compared
with atopic dermatitis, and the opposite was found for CCL13,
CCL18, and CCL27, reflecting the distinct infiltrating cell types
in the two conditions (169, 170). Especially relevant is the
expression of CX3CL1 (fractalkine), whose receptor CX3CR1 has
been identified as a psoriasis susceptibility gene (171), and is
known to attract specific subtypes of T cells and immature mast
cells to the inflamed skin (172).

The presence of angiogenesis in psoriatic lesions has led to a
focus on chemokines with angiogenic properties, in particular
CXCL12 (173), which is expressed in the skin (174) and is
upregulated by the angiogenic factor VEGF-A (175). Elevated
mRNA levels of both CXCL12 and CXCR4 have been found
in lesions of psoriatic skin (176). In a model of imiquimod-
induced skin inflammation in VEGF-A transgenicmice, blockade
of CXCR4 inhibited skin inflammation, and was associated
with reduced angiogenesis and inflammatory cell accumulation,
including dermal CD4+ T cells, intra-epidermal CD8+ T cells
and macrophages (146). Other reports have shown a beneficial
role of the CXCL12/CXCR4 axis in psoriasis. For example, in a
mouse model of IL-23-induced psoriasiform dermatitis, specific
depletion of Cxcr4 in keratinocytes led to increased keratinocyte
proliferation and enhanced the effects of proliferative Th17
cytokines (147). Psoriasis is nonetheless a human-specific disease
and therefore most experimental mouse models do not fully
summarize all the characteristics present in humans.

Multiple Sclerosis
Multiple sclerosis (MS) is the most common autoimmune disease
affecting the central nervous system (CNS). It is characterized
by chronic inflammation, demyelination, and neurodegeneration
(177), triggering CNS dysfunction, visual disorders, and motor
deficits. The prevalence of MS varies with country, but it is higher
in Europe and North America (178). As in other autoimmune
diseases, MS is a multifactorial disease caused by a combination
of different factors, genetic predisposition, environment, viral
infections that activate the immune system, and an uncontrolled
autoimmune inflammation (179), but the pathogenesis is still not
well-understood. Cell extravasation into the brain parenchyma
is needed to provoke tissue damage; however, the existence of
the blood brain barrier and the blood-cerebrospinal fluid (CSF)
barrier makes the pathogenesis of CNS disease different from
other inflammatory diseases (180). Immune cell activation occurs
primarily in cervical lymph nodes (181), but autoimmune T
cells require myeloid cell-mediated re-stimulation in the CNS to
survive and trigger the disease (169, 182–184). The encounter
between activated T cells and antigen-loaded myeloid cells along
the abluminal surfaces of subpial vessels confers competence to T
cells to invade the parenchyma and to mediate disease (184).
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Chemokines, their receptors and adhesion molecules
orchestrate leukocyte trafficking in the CNS (170). Ccr6-deficient
mice did not develop experimental allergic encephalitis (EAE)
although Ccr6-deficient T cells were efficiently primed in vivo,
and their effector functions were unaffected (185). Studies have
identified P-selectin, α4 integrins and CCR6 as the promoters
of lymphocyte migration into the CSF (186). Accordingly, the
ligand for CCR6, CCL20, is constitutively expressed by epithelial
cells of the choroid plexus in mice and humans, indicating that
T cells must cross the blood-CSF barrier to initiate EAE (181).
However, a significant albeit minor fraction of cerebrospinal T
cells in healthy humans express CCR6, suggesting that additional
molecules are needed to support this trafficking (169).

CXCL12 is constitutively expressed in the adult CNS, and is
rapidly up-regulated under some pathological situations such as
HIV-1-associated dementia, brain tumor, or neuroinflammation
(187–193). Due to the local hypoxia, during ischemia, the
transcription factor hypoxia-inducible factor-1 (HIF-1), which
regulates CXCL12 gene expression in endothelial cells is activated
(194). CXCL12 is detected in the CSF of patients with MS
(161, 195, 196), and its levels are high on astrocytes in
active lesions, throughout the lesion areas as well as on
some monocytes/macrophages within vessels (196, 197). During
the induction of EAE, CXCR4 blockade promotes loss of
the typical intense perivascular cuffs, which is then replaced
with mononuclear cell infiltration of white matter (198). This
observation concours with the increased levels of IFNγ and other
cytokines associated with monocyte and microglial activation,
demyelination, and with stronger clinical severity of the disease
(199). The available evidence thus indicates that CXCL12 restricts
the intraparenchymal migration of mononuclear cells during
autoimmune disease at the CNS. A molecule derived from
CXCL12, P2G-CXCL12, diminished the progression of EAE
(200). A similar effect was obtained using another variant of the
N-terminal domain of CXCL12, obtained as a result of phage
display, LGGG-CXCL12 (201).

In EAE, ACKR3 expression increases at the infiltration sites on
endothelial barriers, indicating that its scavenger role on CXCL12
is essential for leukocyte entry into the CNS parenchyma (111).
A specific antagonist of ACKR3, CCX771, prevents immune cell
infiltration into the CNS improving the clinical signs of EAE and
preserves axonal integrity (202). ACKR3 has also been implicated
in migration of activated microglia cells, an effect linked to
amelioration of clinical severity (203).

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is one of the most common
autoimmune disorders and affects 1% of the population
(204). It is characterized by persistent inflammation driven by
proliferating fibroblasts in the synovial tissue, as well as T and
B cell, neutrophil, and monocyte trafficking into the joint (205,
206). Cells invading RA pannus lesions express proinflammatory
cytokines, chemokines, and matrix metalloproteinases that
contribute to progressive cartilage and bone destruction (207).
The RA pannus also shows strong neovascularization (208),
particularly in the early stage of the disease (209), which might
facilitate cell extravasation into the synovium. The etiopathology

of RA has been difficult to define; however, as in other
autoimmune processes, genetic predisposition, environmental
factors, and an uncontrolled immune response are clearly
implicated (206).

Chronically inflamed non-lymphoid tissues can host highly
organized aggregates of ectopic lymphoid structures. These
structures usually appear during the course of persistent
infections, transplant rejection, cancer and autoimmune diseases
such RA (210). The process occurs in response to mediators
of inflammation such as chemokines, cytokines, and bioactive
lipids produced by tissue-resident cells, and is able to regulate the
recruitment and organization of lymphocytes.

Synovial fibroblasts and monocytes/macrophages are the
main source of the inflammatory chemokines expressed in
the inflamed RA joints (211, 212), of which CXCL8, CXCL5,
CXCL10, CCL5, and CCL20 are primarily involved in the
selective recruitment of immune cells. Especially significant to
this process is CXCL8, which is released by osteoclasts in response
to anti-citrullinated peptides antibodies, and attracts neutrophils,
leading to bone erosion and pain (213). By acting in an autocrine
or paracrine manner, the chemokines also activate fibroblasts in
the RA synovium (214).

Synovial fibroblasts and endothelial cells also express CXCL12
(149), and the local presence of IL-15 and TGFβ enhances CXCR4
expression by immune cells (91). These observations support
the hypothesis that the CXCL12/CXCR4 axis retains activated
immune cells in the inflamed joint, thus contributing to the
chronic inflammation. Indeed, CXCL12 expression correlates
with bone erosion (215). CXCL12 attracts osteoclast precursors
and stimulates their differentiation and bone-resorbing activity,
upregulates the production of some metalloproteases, and
confers resistance to apoptosis in osteoclasts (153, 216).
In addition, in vitro experiments demonstrate that CXCL12
promotes chondrocytes necrosis, suggesting a role of this
chemokine in cartilage damage.

CXCL12 has also been implicated in synovial
neovascularization (91). As in tumors, the presence of hypoxia
in inflamed joints activates HIF-1, inducing VEGF and CXCR4
expression (90). In addition, ACKR3 has been associated with
angiogenic processes in RA synovium (104), although its role in
the pathogenesis of RA has been less studied.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a multisystem
autoimmune disease characterized by circulating autoantibody-
autoantigen complexes and infiltration of different types of
leukocytes, promoting inflammation, and organ damage (217).
Lupus nephritis is a major cause of morbidity and mortality in
up to 60% of patients with SLE and is characterized by kidney
inflammation (218). While the precise etiological mechanisms of
SLE are unknown, genetic, hormonal, and environmental factors,
as well as immune abnormalities, have been identified (219).
Studies in animal models, also corroborated in humans point
to essential roles of chemokines, including CXCL13, CXCL12,
CXCL9, CXCL10, among others (220).

In several lupus models, CXCR4 expression is increased
in B cells, plasma cells, T cells, neutrophils, and monocytes
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(221), which concurs with the increased CXCL12 expression
in the kidney (222). CXCL12 also affects renal tissue cells. In
glomerulonephritis, CXCR4 is overexpressed in parietal epithelial
cells of the kidney, triggering their migration into the glomerular
tuft where they form hyperplastic lesions (156). Administration
of anti-CXCL12 neutralizing antibodies in NZB/WF1 mice
increases their survival rate, and reduces IgG deposition and
renal inflammation (222). In patients with lupus nephritis,
CXCL12 expression is increased in the tubules and glomeruli of
kidneys (223), and an accumulation of B cells is found in renal
biopsies (224). In accordance, CXCR4 overexpression on B cells
from these patients positively correlates with disease activity and
kidney involvement (225).

Type I Diabetes
Type I diabetes (T1D) is an autoimmune disease caused
by the selective destruction of insulin-producing pancreatic
β-cells following infiltration of the islets of Langerhans by
immune cells (insulitis) (226). This is accompanied by the
progressive loss of glucose homeostasis that induces the classical
early symptoms of the disease, polydipsia, polyphagia, and
polyuria (211). As in other autoimmune diseases, genetic
predisposition, environmental factors, and acute and/or chronic
inflammation caused by acute and/or persistent pathogen
infection are known factors in the development of T1D
(212). Cardiovascular events, including myocardial infarction,
stroke, angina, but also microvascular complications such as
retinopathy, nephropathy, and neuropathy, all associate with
T1D, and cardiovascular disease is the primary cause of death in
patients (212).

Multiple chemokines have been associated with T1D and/or
its complications. In particular, CXCL10 was identified as
the central chemokine expressed in the islet environment of
prediabetic animals and in patients with T1D (227), whereas
CCL5, CCL8, CXCL9, and CX3CL1 are also present but at low
levels (228). The role of chemokines is believed to be related
to immune cell infiltration into the β-islets, which requires the
coordinated action of many proteins involved in cell movement.

Blockade of CXCL12 inhibits insulitis and diabetes
development (157, 163). It was proposed that the retention
of Treg cells in the BM by CXCL12 alters the balance of T
cell subpopulations in favor of autoreactive T cells. However,
an opposite effect of CXCL12 inhibition was also reported,
showing that a population of T cells attracted by CXCL12
protects recipient mice from the capacity of diabetogenic T cells
to transfer diabetes (229). CXCL12 is also chemorepulsive on
diabetogenic T cells, while mediating firm adhesion of normal
T cells (158) and the retention of Treg cells (230). Pancreatic
lymph nodes of NOD mice have reduced levels of Treg cells and
this associates with decreased expression of CXCL12, whereas
the recovery of normal levels of glucose in blood associates
with the restoration of the Treg population in peripheral LNs
(231). In addition, CXCL12/CXCR4 signaling is important for
β-cell differentiation and the genesis of pancreatic islet (54). It
also exerts anti-apoptotic and anti-necrotic effects on β-cells to
protect from diabetogenic agents (159).

The function of CXCL12 as a proangiogenic factor together
with its ability to recruit endothelial progenitor cells accelerates

wound healing in diabetes (232, 233). But the same effects can
promote the progression of retinopathy associated with T1D.
Tissue ischemia and reduced blood flow stimulate aberrant
neovascularization and normal retinal architecture damage,
causing impaired vision. CXCL12 expression is controlled by
HIF-1 (194), and its levels increase as diabetic retinopathy
progresses, contributing to angiogenesis and recruitment of
endothelial progenitor cells to the site of vascular injury (160).
Similarly, during acute renal failure, CXCL12 expression in
the kidney increases triggering progenitor cells homing to the
injured kidney (234), a process that might also occur during the
diabetic nephropathy.

Inflammatory Bowel Disease
Idiopathic Inflammatory Bowel Diseases (IBDs) comprise two
chronic intestinal diseases, ulcerative colitis and Crohn’s disease,
triggered by a dysregulated immune system response to
environmental in genetically susceptible individuals (235, 236).
Evidence suggests that the disease is a consequence of the
inappropriate control of the immune response against enteric
microbiota, which promotes the influx of inflammatory cells
directed by chemokines (237–239).

Both CXCL12 and CXCR4 are expressed by intestinal
epithelial cells (240, 241) and CXCR4 is also expressed in
cells of the lamina propria (242, 243). Both are upregulated in
IBD patients (240, 243) and participate in T cell-recruitment,
mainly of memory Th1 cells (109). Some polymorphisms of the
CXCL12/CXCR4 axis have associated with IBD progression and
disease severity (244). Administration of a CXCR4 antagonist
ameliorated colonic inflammation in a dextran sulfate sodium-
inducedmodel of colitis. The same study showed that the CXCR4
antagonist decreased TNFα and IFNγ production by mesenteric
lymph node cells, whereas IL-10 production was unaffected. The
authors also indicated that these antagonists do not affect the
percentage of mesenteric Foxp3+CD25+ T cells (164). Later,
using the same murine model of colitis, it was demonstrated
that AMD3100 also enhanced epithelial barrier integrity (245).
A recent report has suggested a role of CXCR4 in mesenchymal
stem cells (MSCs) homing to the inflamed intestinal tissues (246).
MSCs play an important role in tissue repair and regeneration
but also have immunoregulatory properties that might contribute
to reduce inflammation (247). ACKR3 is also expressed in
peripheral T cells as well as in those of the lamina propria, but
only peripheral T cells show ACKR3 upregulation during IBD
(248). Regarding the ability of ACKR3 to form heterodimers
with CXCR4 and to modulate its function, it is possible that
ACKR3 upregulation allows a rapid increase of the influx of T
cells to inflamed mucosa. Nonetheless, a direct role of ACKR3
in modulating CXCL12 levels (249) or even in modulating cell
survival should not be discarded (250), although this observation
needs be confirmed.

SUMMARY/PERSPECTIVES

CXCL12 is a ubiquitous chemokine whose expression is regulated
by circadian signals (251) and inflammatory mediators. Based
on its essential role in embryogenesis and in homeostasis, it
has been traditionally classified as a homeostatic chemokine.
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CXCL12 and CXCR4 are essential during hematopoiesis, as they
play an important role in hematopoietic stem cell retention in
BM and in facilitating B cell differentiation. Plerixafor, a CXCR4
antagonist, is currently in use tomobilize hematopoietic stem and
progenitor cells for autologous transplantation, and to increase
the efficacy of chemotherapeutic agents in several hematological
malignancies. CXCR4 and ACKR3 are also important for tumor
growth and dissemination. Accordingly, CXCR4 antagonists,
which impair tumor dissemination, are in clinical trials to
evaluate their use in combined therapies with anti-cancer
treatments. Many inflammatory and autoimmune diseases show
increased expression of CXCL12, suggesting that it could also be
considered an inflammatory chemokine or at least forms part of
a mechanism to maintain the homeostatic balance in diseased
tissues. Indeed, administration of CXCL12 antagonists delays
inflammatory disease onset and/or retards disease progression.

CXCL12 and its cognate receptors are a paradigm of cell-
to-cell signaling; however, their biology is more complex
than originally anticipated. CXCL12 can associate with other
chemokines, as well as with other inflammatory mediators
that modulate its functionality, and is also a target for post-
transductional modifications such as truncation, nitration or
citrullination processes that alter its responses. Also, chemokine
receptors adopt different conformations at the cell membrane:
CXCR4 is present at the cell surface as monomers, dimers (both
homo- and heterodimers), and oligomers. These conformations
increase cell plasticity, and shape the responses to the biological
environment; for example, by forming heterodimers, ACKR3
modulates CXCR4-mediated functions, thereby contributing to
the functional plasticity of CXCL12.

Overall, the data outlined in this review reflect the relevance
of CXCL12 in homeostasis as well as in several diseases such as
cancer or AIDS where its role is well-known, but also highlight

its participation in autoimmune diseases. There, CXCL12 shows
several functions, mediates cell infiltration and retention in
specific tissues, triggers angiogenesis and even, in some cases,
promotes cell proliferation. These effects are sometimes essential
for the development of the disease or for increasing its severity
and therefore justify the search of new antagonists. Compounds
that abolish CXCL12 binding or partially affect some of its
functions without altering others, should be incorporated in the
clinical armamentarium to treat these prevalent diseases.
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