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Type 2 diabetes prevalence is increasing dramatically worldwide. Metabolic surgery is

the most effective treatment for selected patients with diabetes and/or obesity. When

compared to intensive medical therapy and lifestyle intervention, metabolic surgery has

shown superiority in achieving glycemic improvement, reducing number of medications

and cardiovascular risk factors, which translates in long-term benefits on cardiovascular

morbidity and mortality. The mechanisms underlying diabetes improvement after

metabolic surgery have not yet been clearly understood but englobe a complex

interaction among improvements in beta cell function and insulin secretion, insulin

sensitivity, intestinal gluconeogenesis, changes in glucose utilization, and absorption

by the gut and changes in the secretory pattern and morphology of adipose tissue.

These are achieved through different mediators which include an enhancement in gut

hormones release, especially, glucagon-like peptide 1, changes in bile acids circulation,

gut microbiome, and glucose transporters expression. Therefore, this review aims to

provide a comprehensive appraisal of what is known so far to better understand the

mechanisms through which metabolic surgery improves glycemic control facilitating

future research in the field.

Keywords: type 2 diabetes, bariatric surgery, insulin resistance, beta-cell function, glucose absorption, glucose

utilization, intestinal gluconeogenesis, hepato-portal glucose sensing

INTRODUCTION

Obesity has become in the last decades the most prevalent metabolic alteration. The pathogenesis
of obesity is related to multiple biological processes (genetic, neurobiological, hormonal), being
frequently accompanied by psychopathological characteristics (1, 2). Good evidence from meta-
analyses and nonrandomized and randomized clinical trials (RCT) has shown that obesity-
metabolic surgery is the most effective treatment for patients with type 2 diabetes mellitus (T2DM)
(3–12). When compared to intensive medical therapy and lifestyle intervention, metabolic surgery
has shown superiority in achieving glycemic improvement, reducing number of medications and
cardio-metabolic risk factors, which translates in long-term benefits on cardiovascular morbidity
and mortality (3–5, 7, 9–12). Two of these RCTs, extending to 5 years follow-up, have shown that
metabolic surgery induces euglycemia in 31–77% of cases (7, 10). Despite the fact that glycemic
remission rates differ according to the type of surgery, duration of disease and criteria used to define
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remission, it has been consistently shown that over 80% of
patients maintain good postoperative glycemic control despite
reduced or no glucose-lowering drugs (7, 10).

There are different types of metabolic surgery which include
the laparoscopic adjustable gastric band, the vertical sleeve
gastrectomy (VSG), the Roux-en-Y gastric bypass (RYGB), and
the biliopancreatic diversion (BPD) procedure, among other
variants. The most common ones performed worldwide are the
VSG, RYGB, and the gastric band. The mechanisms underlying
glycemic improvement after these procedures have not yet
been fully understood but involve a complex interaction among
improvements in beta cell function and insulin secretion, insulin
sensitivity, intestinal gluconeogenesis, and changes in glucose
utilization and absorption by the gut alongside changes in the
secretory pattern and morphology of adipose tissue. Therefore,
the present review aims to provide a comprehensive analysis
of what is known so far to better understand the mechanisms
through which metabolic surgery improves glycemic control, in
order to facilitate future research in the field.

BETA CELL FUNCTION AND INSULIN
SECRETION

The physiological ß-cell response is characterized by a biphasic
pattern, with an acute initial peak, representing the first phase
insulin secretion, which typically happens within the first
30min after meal consumption. This is followed by a gradually
increasing insulin secretion which draws a smaller hump:
second phase, 30–180min after the oral glucose load (13–15).
Although plasma glucose concentration is the major stimulus of
insulin secretion in the fasting state, gastrointestinal tract-derived
signals, mainly the gut hormones released from the endocrine
cells, play an important postprandial role. This is explained by
the known “incretin effect,” where an enhanced insulin secretion
can be observed when a glucose load is given orally as compared
to intravenously. This incretin effect can contribute to as much
as half of the insulin secretion after a meal (16). This gut-
dependent nutrient-induced insulin secretion is mainly driven by
two incretin gut hormones: glucagon-like peptide 1 (GLP-1) and
glucose-dependent insulinotropic polypeptide (GIP) (16, 17).

The current understanding of T2DM is based on a concept
of a gradual failure of pancreatic β-cell function in the context
of increasing insulin resistance. Once the pancreas is not able to
compensate for this insulin resistance, hyperglycemia ensues and
the deterioration of the residual ß-cell reserve is accelerated. This
β-cell dysfunction is characterized by the loss of sensitivity (i.e.,
the slope of the insulin secretion/plasma glucose dose-response
relationship or the ability to acutely increase insulin release with
increasing glycaemia) and an impaired insulin secretion (i.e.,
total insulin output in response to a nutrient stimulus) (18, 19).

Metabolic surgery (Figure 1) partly restores the dysfunction
of the β-cell (19–21). The acute insulin response a surrogate of
β-cell sensitivity increases after RYGB, BPD, and VSG or gastric
banding (19, 22). This can be observed when using oral tests
[oral glucose and mixed meal tolerance tests (OGTT, MMTT)],
where an earlier and enhanced post-prandial increase in insulin

concentration can be observed as compared to the pre-operative
response (22). However, as there is a concomitant improvement
in insulin sensitivity, less insulin is required to maintain
euglycemia and, therefore, a decrease in the total area under
the curve for insulin is observed after all types of procedures
(23). The underlying physiological mechanisms are not yet well
understood. Several contributors have been proposed in this
regard, such as caloric restriction, the removal of glucose toxicity
(which can enhance glucose sensing), the improvement in insulin
resistance (which decreases the β-cell workload) or changes in
gastrointestinal tract-derived signals (i.e., incretin hormones)
(24). The enhanced GLP-1 secretion is believed by many to
be an important weight loss-independent factor contributing to
the postoperative improvement seen in β-cell function following
VSG, RYGB, and BPD (20, 22, 23, 25–29). Indeed, antagonism
with exendin-(9-39) (Ex-9) of the GLP-1 receptor results in
a blunted insulin response after a meal and higher post-
prandial glucose concentrations (30). However, these findings
are not universal. Some studies also blocking GLP-1 by Ex-9
administration (humans) or in animal models by developing
GLP-1 receptor deficient or knockout mice for instance have
found different results. When Ex-9 was administered after RYGB
surgery, despite observing a worsening in glycemic control, it
did not recapitulate the glucose tolerance observed at baseline
(31). This is in agreement with another human study comparing
RYGB patients with a group undergoing an intensive lifestyle
modification therapy where the glucose tolerance deterioration
during Ex-9 infusion was similar in both groups (31). Moreover,
in GLP-1 knockout mice following surgery the improvements
observed in glycemic control, weight or eating behavior did
not differ from those observed in wild-type mice (31). Despite
supporting the important effect of GLP-1 on glucose-mediated
insulin secretion, these findings point out at the relevance of
other factors as responsible for the sustained improvement in
glycemic control following metabolic surgery. Therefore, some
researchers support calorie restriction as the main responsible
factor for the acute improvement in the β-cell function seen after
metabolic surgery, which reduces glucose levels and therefore the
glucose toxicity (32–34). Undoubtedly, the combination of the
GLP-1 release with caloric restriction enhances β-cell function in
the early post-operative period. This is further achieved through
the beneficial effects of weight loss and euglycemia on the β-cell.
Nonetheless, it is worth noting that the most important predictor
of the degree of postoperative improvement in β-cell dysfunction
is the preoperative pancreatic reserve itself: the more “exhausted”
the β-cell is before surgery, the less likely a patient is to achieve
glycemic remission postoperatively (20, 21, 28, 35).

INSULIN SENSITIVITY

In physiological conditions, when glucose homeostasis is in
equilibrium, hepatic glucose production, and renal glucose
clearance are balanced with glucose utilization due to the insulin
effect in the different tissues. After a meal, insulin release is
produced in order to firstly suppress hepatic glucose production
to then enhance glucose uptake into peripheral tissues. Hence
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FIGURE 1 | Effects of metabolic surgery on glucose homeostasis. Diabetes remission results from improvements in β-cell function, insulin sensitivity, and changes

within the adipose tissue and the gut. Red arrows, represent an inhibitory effect; Green arrows, represent a stimulating effect.

insulin sensitivity is a reflection of how a given peripheral
insulin concentration accelerates glucose disappearance. Thus,
in insulin resistance states, higher levels of plasma glucose are
observed with higher insulin levels required to compensate for
the hyperglycemia.

Themechanisms underlying the improvements seen in insulin
sensitivity differ depending on the timing of assessment: early
vs. late postoperative period. Within days, an improvement
in glycemic control and insulin sensitivity can be observed.
Most of the studies have shown that this early improvement
is secondary to an increase in hepatic insulin sensitivity as
indicated by a reduction in endogenous glucose production (25,
36). In contrast, peripheral insulin sensitivity, including skeletal
muscle and adipose tissue, does not change during the early
postoperative period, but improves gradually thereafter, exerting
a close correlation with weight loss (25, 37). This is consistently
seen after all metabolic surgery procedures (38). The exception
is the BPD, after which an improvement in both, hepatic and
peripheral insulin sensitivity since early stages and to a greater
extent compared to weight-matched controls undergoing other
obesity interventions can be observed (19, 39).

The increase in hepatic insulin sensitivity is due to a decrease
in liver fat content secondary to an increase in lipolysis,
which mobilizes fatty substrates to circulation and forces lipid
oxidation (37). Interestingly, this can be also achieved with short-
term caloric restriction independently of weight loss (40, 41).
Therefore, the improvement in hepatic insulin sensitivity seen
early after surgery could be just the result of postoperative

calorie restriction. Several studies comparing different surgical
procedures (VSG, RYGB) vs. a very low-calorie diet (VLCD)
have shown that metabolic surgery does not reduce hepatic
insulin sensitivity beyond the improvements achieved with
caloric restriction (33, 34, 42, 43). However, none of these studies
accounted for surgical stress. For instance, C-reactive protein,
considered a marker of inflammation, infection or surgical stress
quickly increases after any surgery, reaching maximum levels
2–3 days postoperatively. This also happens after metabolic
surgery even after non-complicated procedures (44). So, the fact
that metabolic surgery had the same improvement in insulin
sensitivity as the VLCD means that metabolic surgery may be
adding a small additional benefit as the observed just with
calorie restriction.

In the late postoperative period, between 3 and 6 months
after surgery, weight loss exerts an important role, and is the
main driver of the additional improvement in insulin sensitivity.
At this stage, an improvement in peripheral insulin sensitivity,
which occurs after substantial weight loss takes place and that
correlates with the magnitude of weight loss can be observed
(19, 25, 36, 37, 39, 45). For instance, a 30% reduction in body
mass index predicts a 50% increase in insulin sensitivity as
seen in the European Group for the Study of Insulin Resistance
(EGIR) cohort among others (19, 39, 46). As mentioned before,
BPD surgery is the exception to this statement as it can rapidly
improve both, hepatic and peripheral insulin sensitivity before
significant weight loss occurs, although the mechanisms are not
yet completely understood (47).
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The long-term improvement in insulin sensitivity and body
weight achieved after metabolic surgery has been mainly
ascribed, in VSG, RYGB, and BPD, to the postprandial increase
in anorexigenic gut hormones (i.e., GLP-1, peptide YY, and
oxyntomodulin), favoring enhanced satiety to a meal which
ultimately leads to reduction in calorie and food intake (48).
The exception here is gastric banding, after which no increase
in anorexigenic hormones takes place (49, 50). The gastric band
appears to enhance satiety through neural mechanisms and the
subsequent weight loss is the main mediator contributing to
the increase in insulin sensitivity after it (49). The increase in
gut hormones secretion has been explained through different
mediators depending on the type of surgery. In the case of
RYGB or BPD, the bypass of the small bowel, bile acids
or changes in the gut microbiome have been postulated as
possible mediators (51). It has been shown that bile acids
indirectly regulate glucose through the G-protein-coupled bile
acid receptor, Gpbar1 (TGR5) receptor expressed on L-cells,
causing release of GLP-1 upon binding (51–53). With regards
to gut microbiota changes, it is still uncertain whether it
is directly related to the improvement in glycemic control
following surgery. However, if a fecal transplant from healthy
volunteers is performed to individuals with metabolic syndrome,
an improvement in insulin sensitivity can be observed which
correlates with an increased population of butyrate-producing
gut microbiota (54). Moreover, some studies have shown that
gut microbiota transplantation from RYGB-treated subjects to
non-operated ones, results in weight loss and decreased adiposity
(55, 56). Nevertheless, in none of these studies glucose nor
insulin tolerance was measured (55, 56). Therefore, more studies
are needed in order to elucidate to what extent and by which
mechanisms the gut microbiome improves glucose metabolism
after metabolic surgery. On the other hand, VSG does not have
an effect on bile acids circulation. The increase in gut hormones
release seem to be secondary to an increase in gastric emptying,
which induces a fast transit of nutrients into the small bowel
that stimulates gut hormones secretion (57), although the exact
mechanism remains unknown (28).

GLUCOSE ABSORPTION

After metabolic surgery glucose metabolism changes within the
gut. A lower glucose absorption has been shown to happen
following RYGB and VSG, although the mechanism through
which this happens differs. After RYGB, undigested nutrients
reach the common channel where they meet bile acids and
other digestive secretions enabling nutrient absorption. It has
been shown that glucose absorption is blunted in the alimentary
limb and increases in the common limb secondary to the
altered bile acids traffic (58). Endoluminal glucose is absorbed
through the apical sodium glucose cotransporter 1 (SGLT1),
which incorporates sodium and glucose into the enterocyte
from the luminal side. Therefore, the intestinal absorption of
glucose requires the presence of sodium, which is originated
from bile and other digestive fluids. Thus, after RYGB, there is a
modification in bile acid trafficking that results in the alimentary

limb not being exposed to these digestive fluids, without sodium
present to be co-transported with glucose. In fact, despite SGLT1
expression or function being preserved, bile acids exclusion itself
is sufficient to reduce the intestinal sodium-glucose cotransport
in the alimentary limb (58). In this context, bile acids modulate
the intestinal trafficking of endogenous sodium by decreasing the
endoluminal content of sodium in the alimentary limb (58). This
also explains why glucose uptake in the alimentary limb can be
restored by giving a sodium-rich solution (59). It can be stated
that SGLT-2 inhibitors are for the kidney what metabolic surgery
is for SGLT-1 in the gut. In fact, some studies have already shown
that in patients with T2DM, the inhibition of SGLT1 results
in a reduction in postprandial glucose concentrations and an
improvement in glycemic control (60, 61).

With regards to VSG, a lower glucose absorption in the
small intestine has been shown (59, 62). Following VSG, a
large part of the stomach is removed and therefore, there is
a reduction in the leptin- and ghrelin-expressing cells. Ghrelin
increases appetite, reduces gastric emptying, regulates energy
expenditure and decreases glucose-induced insulin release and
whole-body insulin sensitivity (63, 64). Therefore, after VSG
surgery a negative correlation has been shown between ghrelin
concentrations and insulin sensitivity and secretion (64). Gastric
leptin is produced in the stomach and secreted into the small
intestine, where it is believed to promote glucose absorption by
enhancing the glucose transporter-2 (GLUT2) in the jejunum
(62, 65). A recent study showed that after VSG surgery there was
a decrease in glucose absorption which was enhanced with the
addition of an oral gavage of leptin (62). Therefore, it has recently
been postulated that after VSG, leptin depletion is one of themain
factors contributing to the improvement in glucose homeostasis,
rather than gut adaptation as seen after RYGB (62).

GLUCOSE UPTAKE AND UTILIZATION
WITHIN THE GUT

Despite similar beneficial metabolic effects of VSG and RYGB
surgeries, the changes within the gut differ. It has been shown,
that after RYGB surgery there is a morphological adaptation
of the alimentary limb characterized by mucosal hyperplasia
and hypertrophy. These changes in the intestinal mucosa are
triggered by the exposure to undigested nutrients by the
alimentary limb mucosa and are not found after VSG surgery
(59, 66, 67). There is emerging evidence that this hyperplasia and
hypertrophy produces a reprogramming of glucose metabolism
and increases the metabolic rate in order to meet the higher
energetic demand, which boosts the carbohydrate consumption
by the gut (59, 67–70). This higher metabolic rate and
increased glucose uptake by the alimentary limb can be
demonstrated through the use of [18F]-fluoro-2-deoxyglucose
positron emission tomography-computed tomography where
the remodeled intestine exhibits the second highest glucose
consumption after the brain (59, 67, 70). In fact, a positive
correlation between the intestinal glucose uptake and glycemic
improvement was shown, consistent with an improvement in
whole-body glucose disposal (67). This process is characterized
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by an overexpression of the basolateral glucose transporter-1
(GLUT1), which increases the supply of glucose to the enterocyte
in the same way as has been shown to do to proliferative cancer
cells in response to hypoxia (59). GLUT1 plays an important role
in early intestinal tissue growth and therefore is highly expressed
in the fetus to then disappear progressively (71). Interestingly,
this increase in the glucose utilization by the gut, secondary
to the enhanced intestinal expression of GLUT1 after RYGB, is
independent of weight loss or improvements in insulin secretion
and sensitivity (67). It is worth noting that there is also an
increase in the intestinal glucose uptake in the common limb
driven by an enhancement of apical SGLT1 activity operating
synergistically with the basolateral GLUT1 in order to meet the
higher energy requirements (59, 67). All these findings, place the
gut within the group of organs/peripheral tissues responsible for
increasing glucose disposal after metabolic surgery (59, 67, 70).

INTESTINAL GLUCONEOGENESIS AND
THE HEPATO-PORTAL GLUCOSE SENSING

The glucose release by the small intestine is triggered by
two major gluconeogenesis enzymes: glucose-6-phosphatase
(Glc6Pase) and phosphoenolpyruvate carboxykinase (PEPCK)
(72, 73). When both enzymes are induced, newly synthesized
glucose is released into the portal blood. This is detected by the
hepato-portal glucose sensing which ultimately modulates the
endogenous glucose production by the liver (74, 75). This system
requires the presence of a specific glucose transporter (GLUT-2)
and is potentiated by GLP-1, through which the portal sensing
of glucose appearance suppresses hepatic gluconeogenesis and
modulates whole-body glucose disposal, stimulating the glucose
uptake by peripheral tissues (76–78). Moreover, portal sensing
of intestinal gluconeogenesis induces a reduction in food intake
(74, 79–81). These metabolic effects produced by the hepato-
portal nervous system seem to take place through the autonomic
nervous system around the portal vein which connects to central
hypothalamic nuclei (72, 74, 78).

Along these lines, several studies have shown that after RYGB
surgery, there is an increased expression and activity of the
PEPCK and Glc6Pase enzymes in the distal jejunum and ileum
as compared with gastric banding (72). This translates into
an increased glucose release by the gut to the portal blood
which suppresses hepatic glucose production and food intake
(72). These effects where not observed in weight-matched mice
after gastric banding, which suggests that at least some of the
metabolic improvements seen after RYGB are independent of
calorie restriction or weight loss. On the other hand, whenGLUT-
2 was downregulated in mice undergoing metabolic surgery,
there was an impairment in the hepato-portal sensing, which
affected insulin sensitivity and body weight (72). Therefore, an
increase in the intestinal gluconeogenesis and the stimulation
of the hepato-portal glucose sensor via a GLUT-2-dependent
pathway has been postulated as one of the mechanisms through
which RYGB improves insulin sensitivity and reduces food
intake contributing to the resolution of hyperglycemia. However,
human studies are needed to corroborate this hypothesis.

ADIPOSE TISSUE

It is well-known that adipose tissue dysfunction and an excess
of body fat, specifically its central deposition in the abdominal
viscera decreases insulin sensitivity and β-cell function and
is an independent risk factor for T2DM and cardiovascular
disease (82–85). This is due to the fact that the adipose
tissue is an active endocrine and paracrine organ which
releases numerous hormones, cytokines, and molecules which
not only influence body weight, food intake, and energy
homeostasis but also regulate glucose and lipid metabolism
(86, 87). There is an increasing number of adipocyte-derived
hormones which include leptin, adiponectin, resistin, acylation-
stimulating protein, retinol-binding protein-4, and visfatin,
among others (86, 87). Whilst the existence of as yet unidentified
factors controlling body weight and metabolism should be
noted (88), what we do know so far is that, except for
adiponectin, circulating concentrations of these hormones are
increased in obesity and insulin-resistant states, and decrease
after weight-loss (51, 89). With regards to cytokines, excess
adiposity is characterized by the promotion of chronic, low-grade
inflammation which has been implicated in the development of
T2DM (87).

As mentioned before, following metabolic surgery significant
weight loss takes place. Whilst it would make sense to lose both
fat mass and fat-free mass as seen after conventional dieting, it
has been shown that after surgically-induced weight loss, body
composition improves with a reduction in body fat percentage
alongside a minimal drop in fat-free mass (90). Moreover, not
only there is an overall body fat loss, but the visceral and
intramuscular depot are also reduced (90, 91). This metabolically
beneficial redistribution of fat further contributes to the glucose
metabolism improvement seen after surgically-induced weight
loss: there is an improvement in hepatic insulin sensitivity
mediated by the decreased visceral and total adiposity as well as
by the refrained muscle mass loss which boosts glucose uptake by
the skeletal muscle (91).

But not only body composition improves, adipose tissue
itself experiences several changes which include changes in the
secretory profile, adipocyte, morphology, and glucose and lipid
metabolism. With regards to the adipokines, there is a reduction
in leptin and inflammatory cytokines such as TNF-α and several
interleukins and an increase in adiponectin concentrations,
which translates in a reduction in several cardio-metabolic risk
factors (51, 91–95). Moreover, adiponectin concentrations have
been shown to correlate with the degree of T2DM remission,
being lower in those sub-optimal responders to metabolic
surgery (94).

Adipose-specific glucose disposal is enhanced by insulin. The
insulin receptor is a tyrosine kinase which activation causes the
translocation from the intracellular storage compartment to the
plasma membrane of the insulin-sensitive glucose transporter
4 (GLUT4) (96). The activity of the insulin-stimulated AMP-
activated protein kinase (AMPK) and GLUT4 transporter are
downregulated in patients with obesity and T2DM with the
selective inactivation of its gene impairing insulin-dependent
adipose glucose disposal leading to T2DM (86, 97–99). It has
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been shown that after weight loss the insulin-stimulated kinase
activity is restored (100) and there is an improvement in insulin-
induced signaling and GLUT4 activity in adipose tissue 1-year
post RYGB surgery (101–103). These correlated with plasma
adiponectin levels and whole-body insulin sensitivity assessed
by the hyperinsulinemic euglycemic clamp (101). Several studies
have also shown that adipose cell morphology also changes
after metabolic surgery: there is an increase in the lipolysis
pathways and adipose cell hyperplasia and a reduction in the
size which improves whole-body insulin sensitivity (93, 104, 105).
All these results, support the role of the adipose tissue as one
of the contributors to the glycemic improvement seen after
metabolic surgery.

CONCLUSION

Metabolic surgery is the most efficient treatment for inducing
diabetes remission in obese patients with T2DM. Diabetes
remission results from improvements in β-cell function, insulin
sensitivity and changes within the gut and adipose tissue.
The early improvement seen in postoperative glycemic control
is due to an increase in insulin sensitivity secondary to a
reduction in hepatic endogenous glucose production and caloric
restriction, and an improvement in beta-cell function secondary
to an enhancement in GLP-1 release. The long-term benefits in
glycemic control are in part due to changes in gut hormone
secretion that promote fat mass loss which improves glucose

uptake by peripheral tissues (peripheral insulin sensitivity). On
the other hand, the exclusion of the proximal intestinal segment
after RYGB surgery, changes the gut physiology, affecting glucose
absorption and utilization by the gut which contributes to
the achievement of diabetes remission after metabolic surgery.
Further in-depth understanding of these mechanisms could be
used not only to improve the design and effectiveness of these
procedures but also to accelerate the identification of targets for
drug development.
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