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Epigenetic profile is the link between the regulation of nuclear gene expression and

the environment. The most important factors capable of significantly affecting the

cellular environment are the amount and quality of nutrients available. Mitochondria

are both involved in the production of some of the molecules capable of directly

affecting the epigenome and have a critical role in the conversion of nutrients into

usable energy. Carbohydrate and fats are converted into ATP, acetyl-CoA, SAM, and

NADH. These high-energy substrates are, in turn, capable of driving the epigenetic

profile. We describe substances capable of affecting this mechanism. On the other

hand, nutritional interventions capable of reducing calories or significantly impairing

the normal Acetyl-CoA production or the SAM-SAH ratio also impact chromatin

methylation and histone modification, suggesting a critical role of mitochondria on

nutrient-dependent epigenetic profile.

Keywords: mitochondria and metabolism, nutrition and epigenome, calorie restriction and epigenome, FMD and

epigenome, nutrients and epigenome

INTRODUCTION

The analysis of the non-genetic factors network, capable of affecting the lifespan of living
organisms, revealed nutrition as a major determinant of longevity. On the other hand, many studies
found the environment to be an epigenome driver. The predicted existence of a link between
nutrition-dependent modulation of longevity and environment-dependent reprogramming of
epigenomes has also been demonstrated (1–5). Recent advances suggest that nutrition can affect
the epigenome through 2 general mechanisms: either directly, thanks to substances, which interact
with the enzymes responsible for “writing” or “erasing” the epigenetic profiles; or indirectly through
metabolic rewiring. The latter can be induced by calorie restriction, fasting, fasting mimicking diet,
time restricted feeding, or ketogenic diet. These extreme diets are capable of producing massive
cellular reprogramming via partially unclear molecular cascades. Interestingly, both mechanisms
converge on mitochondria, which produce many factors and substrates essential for epigenetic
modifications and are at a crossroads of cellular energy metabolism (Figure 1).

NUTRIENT CAPABLE TO DIRECTLY AFFECT THE EPIGENOME

Choline, methionine, and folate (see Table 1) deficiencies are responsible for DNA
hypomethylation (6) in several species including humans. During embryogenesis, folate has
a critical role in the establishment of the epigenome, while in adults, folic acid deficiency is linked
to the development of several cancers, such as brain, lung, colorectal, cervix, ovary, and breast
cancer (7, 8). On the contrary, a diet rich in folate, vitamins B12, B2, and B6, increases methylation
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FIGURE 1 | Effect of nutrients and diets on mitochondria and epigenetic.

of L1s sequences (long interspersed nucleotide elements) in
peripheral blood mononuclear cells, resulting in a decreased
risk of developing cervical intraepithelial neoplasia in humans
(9). Folate, choline and methionine metabolism are part of the
universal metabolism known as one carbon metabolism (1-C).
It has an essential role in nucleic acid, methionine and serine
biosynthesis. Enzymes of the 1-C metabolism are present in both
cytosol and mitochondria with specific roles. While the enzymes
and cofactors responsible for homocysteine re-methylation to
methionine are localized into the cytosol, the mitochondrial
5,10-methylene-THF dehydrogenase links the 1-C metabolism
to NADH availability (10). The observed crosstalk between
cytosol and mitochondria is strengthened by the observation
that respiratory chain deficiency triggers the expression of serine
synthesis genes, thus feeding the 1-Cmetabolism (11, 12). It must
also be noted methionine is an essential amino acid, but it is
also the major methyl donor molecule through its adenosylated
product S-adenosylmethionine (SAM). SAM, the reactive methyl
carrier, is second only to ATP as an enzymatic cofactor for cellular
abundance and has a critical role in epigenome establishment
and maintenance (13, 14). Interestingly, the effect of folate
deficienciesmay be reverted by its supplementation. For example,
the hypermethylation of the PPARα promoter, induced by
folate deficiency during pregnancy, can be reversed by folate
supplementation in neonate rats and sheep (15).

Finally, diet methionine concentration can affect the ratio
between s-adenosyl methionine and s-adenosyl homocysteine
(SAM/SAH), impacting methylation reaction both on DNA and
on histone proteins of rodents and humans (16).

Resveratrol (3,5,4
′
-trihydroxy-trans-stilbene, see Table 1) is

the most studied anti-aging compound and is involved
in histone modification and DNA methylation. Resveratrol

supplementation increases longevity in simple model organisms
and in mammals (17, 18). At the molecular level, it regulates
SIRT1 (19, 20) and FOXO deacetylation affecting cells survival
(21). The major in vivo effects are increased insulin sensitivity
(22), anti-inflammatory effects, inhibition of NF-κB, thus
inhibiting the development of cancer in cellular models
of breast and prostate cancer (23, 24). Resveratrol has
many interconnections with mitochondrial metabolism. Its
supplementation increases mitochondrial mass (25, 26). SIRT1-
dependent deacetylation of PGC-1α results in biogenesis
of mitochondria (27, 28), which in turn co-activates the
nuclear respiratory factors (NRF-1 and NRF-2), resulting in
mitochondrial biogenesis (29). There isn’t a general agreement
on the mechanism by which resveratrol acts but some hints
suggest the involvement of mitochondrial complex III (30–33).
Alternatively, AMPK could be the link between resveratrol and
SIRT1 through NAD+ concentrationmodulation (34, 35). SIRT1
is also activated by quercetins, and catechins in different model
systems (36, 37).

Curcumin is a polyphenol extracted from the spice Curcuma
longa, known as a natural anti-inflammatory agent. Dietary
curcumin reduces mitochondrial ROS production (see Table 1)
and improves markers of aging in wild-type mice. It is involved
in different epigenetic modifications: it regulates H3 and H4
acetylation, DNMT1 and, with a mechanism that involves
miRNA, SP1, and PTEN. Its most relevant effect is the inhibition
of NF-κB (38). In mice it prevents heart-failure through HATs
inhibition, HDACs and p300 degradation induction (39, 40).
Interestingly, a homozygous deletion of the mitochondrial
uncoupling protein 2 UCP2–/– reverses this effect in mice
(41), thus suggesting the active role of mitochondria in this
mechanism. In a rat model and in endothelial cell cultures, nitric
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TABLE 1 | Bioactive foods and their role on epigenenome and mitochondria.

Bioactive food component Food source Epigenetic functions Effects on mitochondria

Curcumin Curcuma longa SIRT1 activation, H3 and H4

acetylation, DNMT1

inhibition, HAT, and HDAC inhibition

↓ mtROS

Mitochondrial biogenesis

Mitophagy

Genestein Soybeans DNMT inhibition, DNA methylation Modulation of enzymes

↑ Mitochondrial mass

Improvement of mitochondrial function

Resveratrol Berries, peanuts, grapes,

wine

SIRT1 regulation, alteration of histone

acetylation, FOXO deacetylation

Mitochondrial biogenesis

↑ Mitochondrial mass

Folate Legumes, eggs, leafy green

vegetables, beets, citrus fruits,

Brussels sprouts, broccoli, beef liver,

cereals

DNA methylation ↑ NADPH

Mitochondrial biogenesis

Methionine Animal proteins DNA methylation ↓ mtROS

↑ Cox I activity

↑ Mitochondrial respiration

Choline Salmon, eggs, meats, shrimp,

broccoli, green peas

SIRT3 activation UPRmt induction

Modulation of ketone body and fatty

acid metabolism

Lycopene Tomatoes DNA methylation Improvement of mitochondrial function

↓ oxidative damage

Sulforaphane Cruciferous vegetables ↓ DNMT1/3 expression, ↓ HDAC,

hTERT inhibition

Improvement of mitochondrial function

Mitochondrial biogenesis

oxide synthase (eNOS), AMPK phosphorylation, upregulated
UCP2, and reduced ROS production are observed after curcumin
supplementation, while inhibitors of either AMPK or UCP2
abolish the curcumin effect (41).

Tea polyphenols and catechins are scavengers of free radicals
and singlet oxygen. Their efficacy in the prevention and
treatment of many diseases has been demonstrated. They affect
apoptosis and provoke cell-cycle arrest in human cancer cell lines
(42). Epigallocatechin prevents UV-induced carcinogenesis of the
mouse skin (43), while epicatechins and catechins have shown
anti-aging effects in C. elegans (44).These substances have many
epigenetic targets: H3 and H4, NF-κB, IL-6, SUZ12/HAT, HDAC,
HMT, P16INK4a, RNRβ, RECK1, hTERT, WIF-1, RXRα, RXRβ,
CDX2/DNMTI, and Bcl-2. Epigallocatechin binds to the catalytic
region of DNMT1 and inhibits its activity (45). Furthermore, it
leads to a decrease in DNMT1, DNMT3a, DNMT3b, and HDAC
levels, whereas, it increases the acetylation of histones H3 and
H4 at specific sites (46). It has recently been demonstrated that
isoflavones stimulates mitochondrial biogenesis and improves
mitochondrial function in diabetes, chronic heart failure and
renal injury, as well as in aging of rodents (47–49).

Suphorafene induces cell-cycle arrest and apoptosis in mice
cancer cells by epigenetic mechanisms (2, 17, 50, 51). A
similar effect has been detected for lycopene (52), quercetin
(53), and ellagic acid (contained in pomegranate, walnuts, and
almonds) (54). Low doses of suphorafene are related to hTERT
inhibition and to the reduction in DNMT1 and DNMT3a
expression levels (16, see Table 1). Furthermore, suphorafene
determines deacetylase down-regulation in melanoma cells in
vitro, inhibiting their growth and proliferation (55). Interestingly,
sulphoraphane has been demonstrated to enhance ROS and

mitochondrial membrane depolarization in human ovarian
cancer cell lines (56).

Genistein, contained in soybeans, take part in modulation
of chromatin structure and DNA methylation; histones SIRT1,
p21, p16, PTEN, p53, FOXO3A, and hTERT are its epigenetic
targets (57, 58), which, in turn, are key regulators of cell-
cycle regulation and cell survival. A recent study shows
that supplementing Laying broiler breed hens with genistein
can alter lipid metabolism in the offspring chicks through
epigenetic modifications that upregulate PPARδ expression,
improving antioxidative capability and growth performance
(59). In addition, genistein induces in mitochondria, and
modulation of enzymatic activity of components of the oxidative
phosphorylation system (see Table 1).

NUTRIENTS INDIRECTLY AFFECTING THE
EPIGENOME

Calorie restriction and the ketogenic diet, as well as fasting
and fasting-mimicking diets are nutritional interventions capable
of significantly affecting longevity in a wide range of living
organisms. The ability of CR to modify the epigenome is
suggested by many observations. CR protects against age-related
DNA methylation changes as described in different mammalian
tissues: Kidney (60), blood (61), liver (62), hippocampus (63),
and cerebellum (64) being the most affected in mice and rats.
Expression studies of genes coding for proteins involved in
mitochondrial function revealed increased expression of PGC1α,
TFAM, eNOS, SIRT1, and PARL genes after 6 months of calorie
restriction in humans (65). In addition, PGC-1α activation
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by NAD+-dependent Sirt1 deacetylation connects OXPHOS
and calorie restriction (66, 67). PGC-1α and the other two
members of this gene family are transcriptional activators (PGC-
1α, PERC, and PGC-1β), which affect the transcription of genes
involved in mitochondrial energetics modulating thermogenesis,
fat oxidation and mitochondrial biogenesis (68, 69). Assumption
of very low amount of carbohydrate with high or adequate
protein content (ketogenic diets) will force the body to produce,
mainly in the liver, ketone bodies which can be subsequently used
by many extra-hepatic tissues (e.g., nervous system) as energy
sources in place of sugar. This condition can also be transiently
triggered by fasting or the fasting-mimicking diet and possibly
by calorie restriction. The ketogenic diet has been proposed
as an adjuvant therapy for cancer patients based on the idea
that most of the cancer cell metabolism is based on high rate
glycolysis (known as the Warburg effect). Normal cells are also
capable of using glucose as an energy source but can also rely
their metabolism on the ketone bodies produced in the liver
tissue when glucose concentration is scarce. On the contrary,
cancer cells have lost this ability and base their biosynthetic
pathways on glucose only. The reduced glucose availability
will also provoke a reduction in circulating insulin. Therefore,
the insulin dependent (IRS)/RAS/RAF/MEK/MAPK and the
RAS/PI3K/AKT/mTOR transduction cascades are turned off
(70). This causes downstream reduction of phosphatidylinositol
triphosphate (PIP3) production, PI3K and AKT, as well as a
drop in MAP kinase activity, and unphosphorylated forkhead
box O transcription factor (FOXO) is forced to remain in the
nucleus. Nuclear FOXO acts as transcription factor promoting
the transcription of hundreds of genes, including mitochondrial
glutathione peroxidase, superoxide dismutase 2, and catalase.

Even though chronic calorie restriction delays the growth of
many cancers in mice, it imposes weight loss and possibly also
immunosuppression, making it infeasible for cancer treatment.
In addition, the avoidance of malnutrition is not an easy task for
most of the subjects under calorie restriction. On the contrary,
complete fasting or a low calorie diet capable of mimicking the
effects of fasting (fasting mimicking diets, FMDs) consecutively
for 2–7 days have a profound effect on cellular metabolism
and cause only a transient loss of weight. Re-feeding is in fact
normally accompanied with weight regain unless it is otherwise
desired. Fasting for 2–4 days, known as Short Term Fasting (STF),
is capable of inducing multiple metabolic changes, blood sugar
reduction, drop of circulating IGF1, increased IGF1BP/IGF1
ratio and transient ketone bodies increase. From a metabolic
point of view, these nutritional interventions all have the
induction of ketosis in common. Many conditions are capable of
forcing Ketone bodies oxidation to become a significant part of
the mammalian energymetabolism, including diets with very low
carbohydrate, strong endurance exercise without carbohydrate
supply, fasting, starvation, the neonatal period, pregnancy, and
likely calorie restriction. The concentration of ketone bodies
normally ranges from 100 to 250µM in healthy adults and
rises up to ∼1mM after prolonged exercise or 24 h of fasting.
A higher concentration of ketone bodies is observed in some
pathological conditions like diabetic ketoacidosis, where ketone
bodies can rise up to a harmful 20mM (71–75). The mammalian

liver uses acetyl-CoA to produce most of the circulating ketone
bodies, which are then used by extrahepatic tissues for terminal
oxidation (71, 74, 76). Ketone bodie’s metabolism is linked to
cytoplasmic and mitochondrial pathways. β-oxidation (FAO),
gluconeogenesis, the tricarboxylic acid cycle (TCA), de novo
lipogenesis (DNL), and sterols biosynthesis are just examples of
pathways interconnected with the availability of ketone bodies.
Excessive production of acetyl-CoA by β-oxidation and/or
depletion of oxalacetate are both capable of triggering liver
ketogenesis. The rate of ketogenesis is not linearly dependent on
hepatic acetyl-CoA concentration (77, 78). However, hepatocytes
aren’t capable of metabolizing the ketone bodies that they
produce. Heart, brain and skeletal muscles can instead rely
on ketone bodie’s metabolism, converting them to Acetyl-
CoA, which in turn fuels TCA cycle for terminal oxidation.
Alternatively, ketone bodies can feed sterol synthetic pathways
as well as lipogenesis or can be excreted in the urine (79–
81). The amount of acetyl-CoA available can modulate histone
acetylation, since this molecule is also the cellular acetyl donor
used during histone acetylation. Increased circulating acetyl-
CoA, which is directly dependent on the rate of its production,
is in fact related to H3K9 acetylation on a genome-wide
analysis. It appears that acetyl-CoA availability can force cells
to enter growth through histone acetylation and consequential
transcription of pro-growth genes (82). In yeast, it has been
clearly demonstrated that acetyl-CoA availability is metabolically
sufficient to trigger histone acetylation (82). Thus, what fasting,
fasting mimicking diet and possibly calorie restriction, as well as
ketogenic diet, all have in common is a reduced availability of
acetyl-CoA, which results in epigenetic anti-growthmodification.
However, the energy reduction consequential to fasting or the
reduced glycolysis, due to both fasting or ketogenic diet, also
affects the available reducing equivalents. NADH will, in fact,
be oxidized to NAD+. The latter is a substrate for the class
III histone deacetylases, which leads to DNA-binding protein
deacetylation with a consequential increase in chromatin positive
charge leading to transcription repression and growth arrest.

Energy availability and specific nutrient supply modification,
such as those obtained by calorie restriction or by fasting
and fasting mimicking diet (see Figure 1), can also modulate
nuclear gene expression through DNA or histone methylation by
S-adenosyl-L-methionine (SAM). In the cytosol, L-methionine
+ ATP can give SAM + Pi + PPi. Thus, energy production
is linked to methylation of lysine and arginine, as well as
cytosine DNA by SAM as already described above. On the
other hand, methionine can be obtained by homocysteine
methylation in a process regulated by mitochondrial metabolism.
The mitochondrial and cytosolic one-carbon metabolisms are
interconnected through the exchange of serine and glycine, which
are modified in both compartments by the activity of methylene-
tetrahydrofolate, thanks to the cytosolic and mitochondrial
serine hydroxymethyltransferases. However, methylene-
tetrahydrofolate is converted to formyl-tetrahydrofolate in
mitochondria, forcing the 1 carbon metabolism to produce
formate instead of serine into the mitochondria, which is
in turn used for purine biosynthesis. Alternatively, serine is
exported to the cytosol. The cytosolic one-carbon metabolism
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uses serine to convert homocysteine to methionine through
methylene-tetrahydrofolate and methyl-tetrahydrofolate, which
can then be used for SAM production. Within mitochondria, the
direction of the synthesis toward serine or formate production
depends on NAD+ availability. Inhibition of OXPHOS
increases the NADH/NAD+ ratio, inhibiting the production
of methylene-tetrahydrofolate and thus serine, methionine and
SAM production (83), while reintroduction of mtDNA into
cancer cells is capable of reestablishing the wild type methylation
status (83, 84), thus confirming the strict relationship between
mitochondrial function and the epigenome profile (Figure 1).

CONCLUSION

We have briefly reviewed the interconnections between
mitochondria and epigenetic profile from the nutrients point of
view. It is now becoming clear that epigenome has a critical role

in cellular metabolism and that its drift may contribute to the
aging process. Since the efficiency and number of mitochondria
may be addressed by pharmacological and dietary approaches
(85–87), we believe that mitochondria may be a potential target
for preventive medicine by dietary, as well as supplemental
treatment, and for next-generation anti-aging drugs.
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