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Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase of the

phosphatidylinositol kinase-related kinase family that regulates cell growth, metabolism,

and autophagy. Extensive research has linkedmTOR to several human diseases including

cancer, neurodegenerative disorders, and aging. In this review, recent publications

regarding the mechanisms underlying the role of mTOR in female reproduction under

physiological and pathological conditions are summarized. Moreover, we assess whether

strategies to improve or suppress mTOR expression could have therapeutic potential

for reproductive diseases like premature ovarian failure, polycystic ovarian syndrome,

and endometriosis.

Keywords: mTOR signaling, follicular development, oocyte maturation, ovulation, steroidogenesis,
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INTRODUCTION

Rapamycin is a macrocyclic lactone produced by the bacterium Streptomyces hygroscopicus that was
previously used as an antifungal agent but abandoned soon after because of its immunosuppressive
effect (1, 2). The protein target of rapamycin (TOR) was originally discovered in genetic mutation
studies using Saccharomyces cerevisiae (3) and subsequently found to be the target of the
rapamycin–FKBP12 complex in mammalian cells, which is now referred to as the mammalian
target of rapamycin (mTOR) (4–6). mTOR is sensitive to diverse environmental inputs including
nutrients and growth factors, and regulates various fundamental cell processes including cell
growth, metabolism, differentiation, and autophagy (7). The dysregulation of mTOR has been
observed in many diseases like cancer (8), diabetes (9), neurodegenerative disorders (10), and aging
(10). Further, targeting mTOR is one of the most promising fields for the efficient treatment of
these diseases.

Cellular metabolism comprises the foundation of all biological activities including female
reproduction (11, 12). Recently, accumulating lines of evidence have shown that mTOR-regulated
processes are important for folliculogenesis (13), oocyte meiotic maturation (14), ovarian somatic
cell proliferation and steroidogenesis (15), puberty onset (16), ovarian aging (17), endometrium
changes (18), and embryonic development (19). In this review, the role of mTOR signaling in
female reproduction will be discussed, and the data describing alterations to this pathway under
pathological conditions will be summarized.

BRIEF OVERVIEW OF mTOR SIGNALING

mTOR forms the catalytic subunit of two different multi-molecular complexes known as
mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) (20). mTORC1, characterized
by its sensitivity to rapamycin treatment, consists of mTOR, Raptor, mLST8/GβL, PRAS40,
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and DEPTOR. mTORC2, which is insensitive to acute rapamycin
treatment but is inhibited by prolonged usage (21), is
composed of mTOR, Rictor, mLST8/GβL, DEPTOR, mSin1, and
protor1/2 (22).

mTORC1 plays a vital role in coordinating several cellular
processes to help cells grow and divide. These processes include
protein synthesis, lipid and nucleotide biogenesis, and autophagy
(22). The critical effectors downstream of mTORC1 involving
protein synthesis are p70S6 Kinase 1 (S6K1) and eIF4E Binding
Protein 1 (4EBP1) (23), which deserve special emphasis for
their important roles in female reproduction as described in the
following sections. The cellular pathways upstream of mTORC1
include growth factors, stress, and amino acids (22). Briefly,
numerous growth factor pathways inhibit tuberous sclerosis
complex (TSC) (24, 25), which is composed of TSC1, TSC2,
and TBC1D7 (26), relieve the inactivation of Ras homolog
enriched in brain (Rheb) (27–30), and stimulate mTORC1
kinase activity. Certain incompatible stresses such as hypoxia,
low ATP levels, or DNA damage, activate AMP-activated
protein kinase (AMPK) pathway, which inhibits mTORC1 via
the phosphorylation of Raptor (31) or TSC2 (32–34). For
amino acids, there are two distinct pathways that stimulate
mTORC1, and these are dependent or independent of the Rag
GTPases (35–37).

The most important function of mTORC2 is the
phosphorylation of Akt, which subsequently affects cell growth
and proliferation (38). Moreover, mTORC2 activates several
members of the AGC family, regulating cytoskeletal remodeling
and cell migration (39–41). The cellular pathways upstream of
mTORC2 are insulin/PI3K and mTORC1 (42, 43).

mTOR SIGNALING IN FOLLICULOGENESIS

During folliculogenesis, primordial follicles develop to primary,
preantral, antral, and preovulatory stages, and are finally able
to release an oocyte for fertilization (44–47). Primordial follicle
activation, which is the beginning of follicular development after
puberty, determines ovarian reserve and reproductive lifespan
(44). mTOR signaling is involved in these changes. To investigate
the role of mTOR signaling in this process, genetically modified
mice were used in which one or several stages of different cells
could be conditionally modified and specifically distinguished
(Table 1). In this study, different conditional knockout (cKO)
mouse models were named as follows: Gdf9–CRE-mediated cKO
in primordial oocytes and all subsequent oocyte stages, referred
to as “OogKO”; Zp3–CRE-mediated cKO in growing oocytes,
referred to as “OozKO”; Foxl2–CRE-mediated cKO in primordial
follicle granulosa cells, referred to as “pfGCKO”; AMHR2–
CRE-mediated cKO, referred to as “Amhr2KO”; CYP19-CRE-
mediated cKO, referred to as “Cyp19KO.” AMHR2 is mainly
expressed in granulosa cells from preantral and small antral
follicles, with little or no expression in the corpora luteum,
large antral follicles, primordial follicles, and oocytes. Moreover,
AMHR is also expressed in the fetal Müllerian duct mesenchyme
and ovarian surface epithelium (48, 49). CYP-19 expressed in
GCs of antral follicles and luteal cells (50).

mTOR signaling in oocytes is an important mechanism
of primordial follicle activation, but is not necessary for the
transition from primordial to primary follicle. As mentioned,
TSC1 and TSC2 are negative regulators of mTORC1. A specific
deletion of Tsc1 (Tsc1-OogKO) or Tsc2 (Tsc2-OogKO) genes in
mouse oocytes of all stages results in the global awakening of
oocytes at post-natal day (PD) 23 and depletion at 4 months
of age. Enhanced mTOR signaling caused by mutation activates
S6K1 signaling and promotes protein translation, leading to
the overactivation of primordial follicles (51, 52). In particular,
Tsc/mTORC1 signaling in primordial follicles is independent of
PTEN (phosphatase and tensin homolog deleted on chromosome
10)/PI3K (phosphatidylinositol 3 kinase) signaling (52), despite
being proposed to be a PTEN/PI3K downstream pathway in
some cell types (53). Moreover, mTOR was suggested to be the
functional pathway of some drugs that act on primordial follicles.
Drugs such as TGF-βR1 and AMPK inhibitors (54, 55) activate
primordial follicles by stimulating mTOR signaling in oocytes,
and LKB1 restrains primordial follicle activation by suppressing
of the mTOR pathway (56). Despite facilitating the activation
of primordial follicles, mTOR signaling is not indispensable
for the transition from primordial follicles to primary follicles.
In mTOR-OogKO female mice, more primary and fewer large
secondary follicles with normal primordial follicles were shown
in the ovaries at PD23. Further, the long term lack of mTOR
disrupts follicular development, as it was found that there are
essentially no normal follicles and many abnormal follicles that
strikingly resemble testicular seminiferous tubules at 6 months
of age (14). Mice with Raptor depletion in all oocytes (Raptor-
OogKO)were found to exhibit similar follicular development and
female fertility as WT (wild-type) mice (57). Comparing mTOR-
OogKO mouse models, only mTORC1 signaling in oocytes was
found to be inhibited in Raptor-OogKOmice, and compensatory
elevation of PI3K signaling was proposed to the reason for
unaffected follicular development (57).

mTOR signaling in primordial follicle granulosa cells can
either activate primordial follicles or impede their transition
to primary follicles. Similar to Tsc1-OogKO and Tsc2-OogKO
models, mice with a targeted deletion ofTsc1 in primordial follicle
granulosa cells (Tsc1-PfGCKO) present with the premature
awakening of dormant oocytes at PD23 and almost all follicles
are degenerated at 4 months of age (58, 59). Further experiments
showed that the overactivation of mTORC1 signaling in pfGCs
activates KIT in oocytes through KIT ligand (KITL), which
triggers a PTEN/PI3K/AKT (thymoma viral proto-oncogene
1)/FOXO3 (Forkhead box O3) cascade and awakens of dormant
oocytes. As KITL is the key point of follicle activation,
drugs like MAPK3/1 inhibitors could be used to preserve
the ovarian reserve by inhibiting mTORC1–KITL signaling in
pfGCs (60). Raptor-pfGCKO female mice display suppressed
follicle activation at PD13 and PD35, and oocytes eventually
die at approximately 4 months of age (59), indicating that the
KIT-PI3K cascade in oocytes is indispensable for primordial
follicle survival.

Suppressed mTOR signaling in the oocytes of growing follicles
has relatively minor effects on the follicular development but
alters the oocyte transcriptome and proteome. When mTOR is
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TABLE 1 | Ovarian-specific effects of altered mTOR signaling.

Mutant mice Tsc2-OogKO Tsc1-OogKO Tsc1-PfGCKO Tsc1-Amhr2KO Tsc1-Cyp19KO Mtor-OogKO Mtor-OozKO Raptor-OogKO Raptor-pfGCKO

Reference Adhikari et al. (51) Adhikari et al. (52) Zhang et al. (59) Tanaka et al. (49) Huang et al. (66) Guo et al. (14) Guo et al. (14) Gorre et al. (57) Zhang et al. (59)

mTOR signaling Activated Activated Activated Activated Activated Suppressed Suppressed Suppressed Suppressed

Fertility Infertility after

12∼13 weeks of

age

Infertility after

12∼13 weeks of

age

No data Complete infertility ↑pups/litter Complete infertility

(naturally); ↓rate of

fertilization in IVF

Nearly complete

infertility (naturally);

↓rate of fertilization

in IVF

Normal fertility No data

Estrous cycles No data No data No data ↑estrous cycle

length, ↓diestrus

cycle length

No data No data No data No data No data

Sex hormones No data ↑FSH and LH at 3

and 4 months

No data No change in E2

and P4 at diestrus

and estrus

No data ↓E2 and P4 at 6

months

No change in E2

and P4 at 6 months

No data No data

Follicle population

and health

Follicle populations

normal at PD13; all

primordial follicles

activated at PD23

& PD35; almost all

follicles

degenerated at 4

months

Follicle populations

normal at PD5; all

primordial follicles

activated at PD23

& 7 weeks; almost

all follicles

degenerated at 2

and 3 months

Follicle populations

normal at PD10; all

primordial follicles

activated at PD23

& PD35; almost all

follicles

degenerated at 4

months

Follicle populations

normal at 6 weeks;

↓primordial follicles

and ↑atretic follicles

at 12 and 24

weeks; CL normal

↑growing follicles

and antral follicles

at 6 weeks; CL

normal at 6 weeks;

↑CL at 3 and 6

months

↓large secondary

and ↑primary

follicles at PD21;

↓normal follicles at

3 months; no

normal follicles at 6

months

Follicle populations

normal at PD21

and 6 months

Follicle populations

normal at PD35 &

16 weeks; CL

normal at 16 weeks

Follicle populations

normal at PD5;

most follicles stay in

primordial follicles

at PD13 & PD35;

no normal follicles

at 4 months

Ovulation and

oocyte health

No data No data No data ↑naturally released

oocytes but 83%

degenerated

oocytes; same

superovulated

oocytes but 7-fold

increase in

degenerated

oocytes

↑naturally released

and superovulated

oocytes

↓superovulated

oocytes but 78.2%

oocytes display

incomplete

cytokinesis or

improper

progression of

meiosis to MII

Similar

superovulated

oocytes but 65.5%

oocytes display

incomplete

cytokinesis or

improper

progression of

meiosis to MII

No data No data

Embryo

development

No data No data No data ↑E2.5 embryos but

2/3 degenerated

bodies; E3.5

embryos stay in

ampullas

No data ↓progression to

2-cell and

blastocyst stage in

IVF

↓progression to

2-cell and

blastocyst stage in

IVF

No data No data
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specifically knocked out in growing follicles (mTOR-OozKO),
follicular development and the ovulation rate are virtually the
same as those in WT mice. However, the oocyte meiotic
progression and developmental competence of released oocytes
is impaired (14). To explain the impairment, the transcriptome
of fully grown GV (germinal vesicle) oocytes and the proteome
of ovulated oocytes was tested. Here, 85 transcripts and 237
proteins were found to be differentially expressed in Mtor-ZcKO
oocytes. Particularly, down-regulated proteins were involved in
the processes “mRNA metabolic process” and “actin filament
bundle assembly” (14). At the completion of oocyte growth,
transcription is actively silenced and protein translation slows
substantially such that selective proteins are stored during oocyte
growth (61). Thus, these defects, after ovulation, reflect the
differences during folliculogenesis, although follicular growth
appears to be the same between mTOR-OozKO andWT mice.

Activation of mTOR signaling in granulosa cells promotes
follicular development as FSH-stimulated differentiation of GCs
is necessary for follicular growth (62, 63). In GCs in vitro,
activity of hypoxia-inducible factor-1α (HIF-1α) stimulated by
FSH is mediated by mTOR signaling, and HIF-1α is necessary
for FSH-enhanced induction of multiple follicular differentiation
markers and facilitates follicular differentiation to a preovulatory
phenotype (64, 65). There are two mutant mice with stimulated
mTOR signaling at different stages of GCs, presenting with
distinct effects on follicular growth. Tsc1- Cyp19KO mice have
more growing follicles in the ovary, more released oocytes, and
give birth to more pups than control animals (66), indicating
the catalytic role of elevated mTOR signaling. However, Tsc1-
Amhr2KO mice have fewer primordial follicles but more atretic
follicles in the ovary, as well as a similar number of healthy but
more degenerated ovulated oocytes. The number of good-quality
embryos was found to be the same as that in WT animals after
natural mating which was determined by puncturing ampullas
as the oviducts of Tsc1-Amhr2KO mice are blocked (49). As
AMH is only expressed in granulosa cells from preantral and
small antral follicles, it was speculated that increased mTOR
signaling promotes enhanced follicular growth but many of these
are finally atretic without sufficient mTOR in large antral follicles.
Moreover, unhealthy oocytes is probably from previous ovulation
accumulated in the blocked oviducts as healthy oocytes and
embryos were the same as those inWTmice (49). However, these
contentions require more experimental evidence.

mTOR SIGNALING DURING OOCYTE
MEIOTIC MATURATION

Immature oocytes maintain meiotic arrest until
stimulation, which could comprise LH in mammals or
progesterone/insulin/IGF-1 in frogs, and then resume the
meiotic cell cycle. The following events include nuclear envelope
breakdown (NEBD), chromatin condensation, first meiotic
spindle formation (metaphase I, MI), and the first polar body
extrusion (metaphase II, MII) (67, 68). During these processes,
the localization of mTOR changes with time. mTOR is observed
in the cytoplasm at the GV stage, around the chromosomes

at NEBD, and on the spindle during MI–MII stages (69). To
distinguish mTORC1 and mTORC2, raptor and rictor are also
localized separately. Raptor co-localizes with mTOR on the
spindle but rictor is expressed on the spindle poles of MI oocytes
(69), indicating that mTORC1 and mTORC2 have different
contributions to meiotic division.

Oocyte meiotic maturation encompasses the activation of
translation and increases in overall protein synthesis, which
has a close relationship with mTORC1 signaling. mTORC1
takes part in protein synthesis relying on S6K1 and 4EBP1.
S6K1 relays the signal comprising the decision of whether
to prepare for mRNA translation (70). 4EBP1 contributes
to overall cap-dependent translation. Specifically, formation
of the cap-binding protein complex is inhibited when hypo-
phosphorylated 4EBP1 binds eIF4E (70). Although both signals
are downstream of mTORC1, they exhibit divergent expression
with respect to species variation. Moreover, rapamycin also
displays different effects. In Rana dybowskii oocytes, S6K1
activity increases after progesterone stimulation and rapamycin
blocks progesterone-induced oocyte GVBD in a dose-dependent
manner (71). In Xenopus, although S6K1 and 4EBP1 are
stimulated by progesterone or insulin, oocyte meiotic maturation
and the activation of overall protein synthesis are unaffected
by rapamycin (72, 73). This phenomenon could be explained
by the effect of Xenopus oocytes’ cap-independent translation
mechanism (74), but whether rapamycin has other effects on
oocytes has not been explored. In mammalian oocytes, 4EBP1
becomes gradually phosphorylated during meiotic maturation,
which was shown in bovine, porcine, and murine models (75–
77). S6K1 is already highly phosphorylated at the GV stage and
significantly decreases in murine oocytes (76, 78), which occurs
to conserve energy for costly cell cycle processes (79). In mouse
oocytes, mTOR-4EBP1-eIF4E inhibitors including rapamycin
and eIF4E antibodies do not block meiotic progression, but
lead to abnormalities in spindle morphology and chromosome
alignment, in turn resulting in chromosomal aneuploidy (78).
This indicates that the disruption of mTOR signaling only
downregulates the translation of specific mRNAs involved in
spindle assembly and chromosomal alignment but does not
influence overall translations (78). Other mechanism could
explain other translation-associated effects (80).

Moreover, the actin cytoskeleton mediates various vital
functions during oocyte meiotic maturation (81, 82), which is
related to mTORC2 signaling (39). mTORC2 functions upstream
of Rho GTPases to regulate the actin cytoskeleton (39), which
participates in various events during meiotic maturation (81).
Upon disrupting both mTORC1 and mTORC2 with prolonged
rapamycin treatment or an mTOR antibody in mouse oocytes,
spindle migration and asymmetric division are inhibited (83),
which was found to be actin-dependent (81, 82).

mTOR SIGNALING IN OVARIAN SOMATIC
CELLS

The expression of mTOR and associated signaling components
in granulosa cells (GCs), theca-interstitial cells (TICs), and
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luteal cells is well-documented. These cells respond to many
factors to proliferate and produce steroid hormones. Of these
factors, gonadotropins such as follicle stimulate hormone (FSH),
luteinizing hormone (LH), and human chorionic gonadotropin
(hCG) have the most important role.

mTOR signaling regulates GC proliferation in response to
FSH stimulation and TIC proliferation stimulated by LH/hCG.
As the mTOR pathway regulates meiotic processes, meiosis is
also modulated by mTOR based on its effects on cell cycle
regulatory protein synthesis (84). Under in vitro FSH stimulation,
rat GCs increased and mTOR signaling is enhanced in a dose-
dependent manner (85). Further, proliferation can be improved
by increasing of cyclin D2 mRNA expression, which regulates
the progression of the cell cycle (86). Rapamycin was found
to suppress these process significantly (85). Further studies
proved that FSH uses a cAMP/PKA (protein kinase A)/ERK-
dependent pathway to stimulate mTOR signaling (85). It is worth
mentioning that immortalized rat GCs are arrested in the G1
cell cycle stage by applying rapamycin, which also reveals mTOR
functions in the cell cycle (87, 88). The proliferation of rat
TICs in vitro is stimulated by LH/hCG and is mTOR-dependent,
which was shown based on the expression of proliferative
markers like CDK4, cyclin D3, and PCNA. In contrast to
GCs, the proliferation of TICs occurs via the cAMP/PI3K/AKT
cascade, and not the PKA/ERK pathway (89). Similarly, insulin
also stimulates TIC proliferation via activation of the mTOR
pathway (90).

mTOR signaling also participates in steroidogenesis. In TICs,
the inhibition of mTORC1 by rapamycin (20 nM) was found to
reduce the expressionCyp11a1,Hsd3b1, andCyp17a1mRNA and
the production of androstenedione in response to hCG. CREB
(cAMP response element-binding protein) acts as downstream
of S6K1 and mediates changes in gene expression in response
to gonadotropin (15, 91). In human granulosa lutein cells, pre-
treatment with rapamycin (20 nM) inhibits the hCG-induced
upregulation of Cyp11a1, Hsd3b1, and Star mRNA and the
production of progesterone in vitro (92). However, in bovine
luteal cells, despite being activated by LH, mTOR signaling
does not contribute to corpus luteum (CL)-derived progesterone
synthesis (93).

Although mTOR signaling is speculated to be involved in
luteal cell autophagy, further experiments disproved this. CL
regression occurs if fertilization does not occur, and an important
mechanism underlying the function of the CL is luteal cell
autophagy (94). Although mTOR signaling is presumed to play
a part in CL regression and stimulating the response to PGF2α
(95), an important mediator of CL regression through increased
ERK1/2 activity (96), another study suggested that luteal cell
autophagy is induced by enhanced ERK1/2 activity and is
independent of mTOR activity (97).

mTOR SIGNALING IN PUBERTY ONSET,
FERTILITY, AND OVARIAN AGING

mTOR signaling is highly expressed in the hypothalamus
(98), and affects puberty onset when it is suppressed. After

blocking central mTOR signaling via the intracerebroventricular
administration of rapamycin in rats, puberty onset was found
to be inhibited, which presented as decreased LH and estradiol
levels, delayed vaginal opening, and atrophied ovaries and uterus
(16). AsmTOR signaling stimulates protein synthesis and inhibits
autophagy in the presence of nutrients (98), hypothalamic
mTOR signaling was proposed to play a part in the metabolic
regulation of female puberty. The mechanism underlying the
role of mTOR in puberty onset was implied by the fact that
rapamycin suppresses arcuate nucleus (ARC) Kiss1 levels (16),
the upstream regulator of GnRH release, which controls puberty
onset (99). Interestingly, mTOR signaling seems to regulate
Kiss1 neurons indirectly, as pS6 (the downstream of mTOR
and S6K1) is not expressed in Kiss1 neurons (100). However,
AMP-activated protein kinase (AMPK), another energy sensor
activated by conditions of energy insufficiency (101), appears
to be expressed in Kiss1 neurons, and has a putative role
in the interplay between mTOR signaling and puberty onset
(102). Although the significant effects of rapamycin on puberty
onset were determined in animal experiments, patients clinically
treated with rapamycin before menarche were found to have a
similar menarche time as patients administered rapamycin post-
menarche (103). The difference could be explained by the fact
that rapamycin administered orally has little effects on mTOR
signaling in the brain (104), although rapamycin is believed to
cross the blood–brain barrier (105), and reduce depression and
anxiety (106, 107).

Rapamycin disrupts menstruation and ovulation, leading
to infertility both in animals and humans. As mentioned,
mTOR signaling is indispensable for follicular development and
the effects of rapamycin on fertility are easily demonstrated.
Rapamycin impedes ovulation and affects menstruation in
vivo. Mice exhibit irregular estrous cycles when administered
rapamycin (5 mg/kg every other day or 2 mg/kg every day, i.p.)
(17, 108). Serum analysis also revealed that progesterone (P4)
is decreased dramatically (108). Further, ovarian morphological
assessments demonstrated an increased number of primordial
follicles and a decreased number of all growing follicles
and the CL. During a superovulation regiment, the injection
of rapamycin (5 or 50 mg/kg body weight for 4 days,
i.p.) led to a dose-dependent decrease in the numbers
of eggs released (88). Moreover, rapamycin-treated mice
had no pregnancies during the mating trial (17). In the
clinic, patients administered rapamycin present with similar
phenomena. Rapamycin increases the risk of oligomenorrhea
and/or ovarian cysts in patients with tuberous sclerosis complex
(103), transplantation (109), and autosomal dominant polycystic
kidney disease (110). In addition, the percentage of patients who
experienced at least one menstrual irregularity was determined to
be as high as 38.4% in the tuberous sclerosis complex study with
112 patients (103). Interestingly, all disturbances in menstruation
returned to normal 2 months after stopping treatment (108),
indicating that the function of rapamycin does not persist.

The inhibition of mTOR signaling can also prolong ovarian
lifespan. Compared to that in control rats, rapamycin-treated rats
have a 2-fold increase in the number of primordial follicles after
10 weeks of treatment with rapamycin (5 mg/kg every other day,
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i.p.) (17, 111). These results indicate that rapamycin can protect
the ovarian reserve and extend ovarian lifespan. An interesting
experiment also showed that a transient 2-weeks regimen
of rapamycin facilitates the sufficient extension of ovarian
lifespan in mice regardless of the age at treatment initiation
(108). Although improvements in oocyte quality and the
ovarian microenvironment were demonstrated experimentally,
this requires more exploration to identify the relationship
between treatment time and the extension of ovarian lifespan.

mTOR SIGNALING IN THE ENDOMETRIUM

The endometrium undergoes cyclical and rhythmic changes
under the influence of complex autocrine, paracrine and
endocrine signaling (112). Further, this is a process involving
cell proliferation, differentiation, apoptosis, autophagy, and
decidualization, in which mTOR signaling plays a role. Estradiol-
17β (E2) and P4 are the most important factors orchestrating
cell division and differentiation of the endometrium. E2 regulates
protein synthesis and DNA synthesis in uterine epithelial cells
through the PKC (phospho-kinase C)/ERK/mTOR pathway,
which finally manipulates cell proliferation. However, P4 inhibits
only the E2-induced DNA synthetic response without affecting
mTOR signaling, indicating another pathway responsible for
P4 inhibition (18). The suppression of mTOR signaling also
promotes human endometrial stromal cell (ESC) apoptosis
via autophagy induction, which is mediated by S6K1 and
can be determined based on LC3-II expression (113, 114).
Decidualization, the transformation of endometrial stromal cells
into specialized secretory decidual cells (115), is affected by
nm23 via the PI3K-Akt-mTOR signaling pathways in mouse
ESCs and human ESCs (116). Based on the vital roles of mTOR
in modulating the endometrium, its influence on endometrial
receptivity, which renders the endometrium suitable for embryo
development (117, 118), is easily understood. Experiments
have shown that activation of the ERK1/2-mTOR pathway is
one mechanism through which fludrocortisone affects uterine
receptivity in mice (119).

In addition, the mTOR pathway also participates in
implantation. Levels of mTOR in the pregnant mice are
higher than those in non-pregnant mice. Moreover, the levels are
increased from PD3, reach a maximum on PD5, and then decline
thereafter (120). Stimulation of the PI3K/PKB/mTOR/NO
signaling pathway by dietary arginine supplementation can also
enhance embryo implantation (121). mTOR is also indispensable
for placentation in the porcine uterine tissue based on its
important function during translation (122, 123).

mTOR SIGNALING DURING
POST-FERTILIZATION EVENTS

mTOR signaling is essential for embryonic development both
in vivo and in vitro. In Drosophila melanogaster, cell size and
embryonic lethality are reduced when TOR or S6 kinase is
silenced (124, 125). In mice, disruption of mTOR completely
results in the death of embryos shortly after implantation,

which was attributed to impaired cell proliferation in both
embryonic and extraembryonic compartments. This was proven
by in vitro experiments in which both the inner cell mass
(ICM) and trophoblasts fail to proliferate in mTOR-deleted
mouse blastocysts (19). When mTOR is disrupted partly, mutant
embryos die at midgestation coitum, which is accompanied
by failed telencephalon cell growth and rotation around the
embryonic body axis (126, 127). Different from that with mTOR,
mice deficient in S6K1 are viable and smaller in body size,
which could be explained by the fact that S6K1 only represents
one part of mTOR signaling (128). Drugs that inhibit mTOR
signaling impair blastocysts growth, but the effects are reversible.
When treated with rapamycin (200 nM), growth of the ICM
is not inhibited, but trophoblast outgrowth of blastocysts is
impeded (19). Interestingly, the proliferation of embryonic stem
cells is also refractory to rapamycin. An insufficient number
of rapamycin receptors or the existence of mTORC2 could be
the reason for this (19). Another exciting discovery is that the
inhibition of both mTORC1 and mTORC2 complexes using
INK128 or RapaLink-1 results in a diapause state of blastocysts.
Diapause is a reversible pausing state triggered by unfavorable
conditions (129, 130).When the inhibition is relieved, blastocysts
can give rise to live, fertile mice (131).

mTOR signaling also takes part in mammalian embryonic
differentiation, during which embryonic stem cells and
pluripotent stem cells grow into the endoderm, ectoderm
and mesoderm (132). Interestingly, mTOR signaling presents
different functions in mouse embryonic stem cells and human
pluripotent stem cells. In mice, the activation mTOR induces
mouse embryonic stem cell differentiation. Increasing mTOR
activity via withdrawal of the cytokine leukemia inhibitory
factor from mouse embryonic stem cell culture can induce
mouse embryonic stem cell differentiation (133, 134). Further,
a decrease in mTORC2 activity, resulting from the knockdown
of calcineurin, impairs mesoderm differentiation (135). In
contrast to that in mouse embryonic stem cells, mTOR inhibition
promotes human pluripotent stem cell differentiation. The
knockdown of Raptor in human pluripotent stem cells induces
mesendoderm differentiation (136), and the same effect occurs
when treating human pluripotent stem cells with rapamycin
(137). The mechanism underlying this difference between mice
and humans is not understood, and additional studies are needed
to explore this, as the cell populations are similar (138).

ROLES OF mTOR SIGNALING IN FEMALE
REPRODUCTIVE PATHOLOGY

As mTOR signaling affects many processes associated with
reproduction, manipulating this pathway to preserve fertility
has been explored in preclinical studies. The pharmacologic
downregulation of mTOR protects the ovarian reserve in the
presence of ovarian toxic drugs in animal models (139), as mTOR
is related to primordial follicle activation. In fact, anticancer
therapies such as genotoxic or antimitotic agents hardly impair
most oocytes in primordial follicles. However, when the ovary
is repeatedly exposed to chemotherapy, primordial follicles are
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activated and grow to replace damaged growing follicles (140,
141). Thus, regimens to counteract follicle activation could
prevent premature ovarian failure induced by toxicity. It was
also confirmed that mTOR inhibitors can promote follicular
quiescence and prevent premature ovarian failure when used
in cyclophosphamide-induced and cisplatin-induced ovarian
dysfunctional animal models (139, 142, 143).

Activating mTOR signaling is a vital mechanism used in
primordial follicle growth activation (PFGA) (144), which has
great potential to assist reproduction. PFGA is an explored

technology that is expected to provide benefits for patients with
diminished ovarian reserve or malignant tumors. One problem
with hormonal stimulation strategies used clinically is that they
cannot fully utilize most follicles remaining in the ovary such as
primordial follicles but largely rely on the population of growing
follicles. Thus, a critical step to fully exploit the ovarian follicle
is to overcome the mechanism resulting in the growth-arrest of
primordial follicles (144). mTOR activators (phosphatidic acid,
propranolol) can induce the awakening of primordial follicles
in the human ovarian cortex such that more mature follicles

TABLE 2 | Role of mTOR signaling in female reproductive cells and organs.

Cell type Proposed function Species Proposed mediator References

Oocyte Folliculogenesis Mouse No data. (14, 49, 51, 52, 57)

Maturation Mouse, porcine, bovine eIF4E, Rho GTPases (39, 75–78, 83)

Ovarian aging Mouse No data. (17, 111)

Granulosa cells Folliculogenesis Rat, mouse HIF-1α (49, 64–66)

FSH induced-proliferation Rat Cyclin D (85, 86)

Luteal granulosa cells Steroidogenesis Human; not applicable for bovine Cyp11a1, Hsd3b1, Star (92, 93)

Autophagy (proven to unrelated) Rats - (95, 97)

Primordial follicle granulosa cells Folliculogenesis Mouse KITL (59)

Theca-interstitial cells LH/hCG induced proliferation Rat CDK4, Cyclin D, PCNA (89)

Steroidogenesis Rat CREB, Cyp11a1, Hsd3b1, Cyp17a1 (15)

Hypothalamus Puberty onset Mouse Kiss 1 (16)

Embryo Embryo development Mouse No data (19, 128–131)

Embryo differentiation Mouse, human No data (133–138)

Endometrium Proliferation; apoptosis; autophagy Mouse, human No data (18, 112–116)

Implantation Mouse NO (120, 121)

Placentation Porcine No data (122, 123)

FIGURE 1 | Involvement of mTOR in several processes linked to female reproduction. The impressive events are presented involving mTOR in primordial follicle

activation, oocyte meiotic maturation, somatic cells, endometrium, and post-fertilization events. AKT, Protein kinase B; E2, Estradiol-17β; 4EBP1, eIF4E Binding

Protein 1; ERK, Extracellular signal regulated kinase; KITL, KIT ligand; mTOR, Mammalian target of rapamycin; mTORC1, mTOR complex 1; P4, Progesterone; PI3K,

Phosphoinositide 3-kinase; PKA, Protein kinase A; PKC, Protein kinase C; S6K1, p70S6 Kinase 1.
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can be obtained in combination with other primordial follicle
activators (145, 146).

Polycystic ovarian syndrome (PCOS) is a multifactorial
endocrinopathy that affects reproduction and metabolism (147,
148).Many conclusions involving the relationship between PCOS
and mTOR signaling are paradoxical and complex. For example,
in a DHEA-induced PCOS mouse model, the expression of
mTOR and p-mTOR (serine-2448) in the ovary was found to
be higher than that in normal mice, but S6K1 is decreased
in the DHEA-treated PCOS mouse ovary. With respect to
this, the authors speculated that insufficient S6K1 activation
causes an arrest in follicular development but they could not
explain the discrepancy in expression between mTOR and
downstream signaling (149). In another study, mTOR protein
levels in luteal GCs of PCOS patients were the same as those
in healthy women. However, less mTOR protein expression is
observed in luteal GCs with PCOS compared to that in healthy
patients upon stimulation with insulin (150). Therefore, further
experiments are needed to delineate the accurate expression
of mTOR in PCOS. Another characteristic linking PCOS and
mTOR is metabolic disorder during PCOS. Rapamycin was
found to enhance insulin sensitivity and improve serum lipid
profiles after long term treatment (151). Thus, rapamycin
is expected to be used to eliminate metabolic syndrome
with PCOS despite potential adverse effects on fertility and
short-term metabolism.

Endometriosis, a gynecological disease caused by the
dislocation of endometrial cells, is characterized by inflammation
and to progesterone resistance (152). Inadequate responses
to progesterone in eutopic and ectopic endometrial cells and
tissue contribute to increased cell proliferation (153), in which
mTOR is involved. The ectopic endometrium of patients with
endometriosis exhibits increased phosphorylation of mTOR
compared to that in the eutopic endometrium (154–156).
Moreover, the inhibition of mTOR can suppress endometriotic
foci in a rat/mouse model of endometriosis (157, 158) and
promote human endometriotic cell apoptosis via autophagy
induction (113, 159). In addition to the ectopic endometrium,
aberrant decidualization in the eutopic endometrium of women
with endometriosis impairs implantation partially through the
activation of PI3K/AKT (160, 161). As mTORC2 is downstream
of AKT, it can be postulated that mTOR is activated in the eutopic
endometrium, but this requires experiments for confirmation.

CONCLUSIONS

mTOR signaling plays a vital role in regulating female
reproduction, which has been demonstrated based on data from

genetic, pharmacological, and clinical studies (Table 2, Figure 1).
mTOR signaling participates in various process that occur
in the ovary, including ovarian reserve, follicle development,
oocyte meiotic maturation, ovarian aging, and proliferation and
steroidogenesis of ovarian somatic cells, among others. There are
two impressive functions of mTOR signaling in the ovary. First,
elevatedmTOR expression in both oocytes and primordial follicle
GCs activates the primordial follicle, which has great potential
for applications of ovarian reserve protection and PFGA. Second,
suppressing mTOR hinders oocyte meiotic maturation, which
could limit the use of mTOR-suppressing drugs for fertility-
related diseases. In addition to that in the ovary, mTOR appears
to be crucial for hypothalamus functions, endometrium changes,
and embryo development. Finally, preclinical evidence suggests
the possibility of applying mTOR modulators to ameliorate
fertility issues associated with POF, PCOS, and endometriosis.

Although rapamycin and catalytic mTOR inhibitors are
already successfully used to prevent the rejection of transplants or
treat some types of cancer, many studies are needed to translate
experimental results to clinical use for female reproductive
diseases. On one hand, mTOR seems to be much more than
a simple positive or negative trigger of female reproduction.
Under physiological conditions, mTOR is regulated by different
factors in a joint effort to determine the outcome of several
processes including folliculogenesis, ovulation, endometrium
changes, or embryonic development. On the other hand, the
complete inhibition of mTOR would cause severe dose-limiting
toxicities based on the indispensable role of mTOR in most
human tissues. Thus, it has yet to be determined if it is worthwhile
to cure non-life threatening diseases with an mTOR inhibitor
(162, 163). Future work should focus on the development of
tissue-specific therapeutics to avoid drawbacks associated with
effects on unrelated tissues. Overall, mTOR clearly plays an
important role in female reproduction. However, much work is
needed to fully understand the mechanisms underlying the role
of mTOR in female reproduction and to completely unlock the
therapeutic potential of this signaling pathway.
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