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Protease-activated receptors (PARs) belong to the G protein-coupled receptor (GPCR)

family. Compared to other GPCRs, the specificity of the four PARs is the lack

of physiologically soluble ligands able to induce their activation. Indeed, PARs are

physiologically activated after proteolytic cleavage of their N-terminal domain by

proteases. The resulting N-terminal end becomes a tethered activation ligand that

interact with the extracellular loop 2 domain and thus induce PAR signal. PARs

expression is ubiquitous and these receptors have been largely described in chronic

inflammatory diseases and cancer. In this review, after describing their discovery,

structure, mechanisms of activation, we then focus on the roles of PARs in the intestine

and the two main diseases affecting the organ, namely inflammatory bowel diseases

and cancer.
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INTRODUCTION

Protease-activated receptors (PARs) belong to the family of G-protein coupled receptors (GPCRs).
Their activation results from the specific cleavage, by proteases, of the amino terminal sequence
that exposes a new N-terminal sequence as a tethered ligand, which then binds intramolecularly
to activate the receptor. PARs are ubiquitous throughout the organism, although predominantly
expressed in vascular, immune, intestinal epithelial cells and the nervous system. Thus, their
activations regulate a set of crucial biological processes involved in physiology and diseases (1, 2).

In the intestine, cleavage and activation of PARs have been largely described in the modulation
of pain (3), but are also linked to inflammation (3) and cancer (4–6). Indeed, the gastrointestinal
tract being an important source of proteases, PARs might play crucial roles in multiple
pathophysiological processes.

In polarized intestinal epithelial cells, these receptors are expressed at both apical and basolateral
sides, suggesting that luminal, circulating and secreted proteases can reach and activate them (7). As
a consequence, proteases coming from either coagulation cascade, inflammatory cells, microbiota,
or intestinal epithelial cells are able to cleave and trigger PAR signaling tomaintain gut homeostasis,
regulate ion exchange, motility, permeability and healing mechanisms, but also lead to visceral
hypersensitivity, inflammation, or cancer when upregulated (8–10).
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PROTEASE-ACTIVATED RECEPTORS

Discovery
Four PARs have been identified, PAR1, PAR2, PAR3, and PAR4,
according to their cloning order (11). Surprisingly, the genes
coding for PAR1, PAR2, and PAR3 are located on chromosome
5q, whereas PAR4 gene is located on chromosome 19p. These
PARs are ubiquitous, with variable expression depending on the
tissues and physiopathological context (12).

The first receptor of this family to be cloned was PAR1,
in 1991. Originally, the authors wanted to identify the
receptors involved in the mechanisms of action of thrombin in
inflammation and haemostasis (13, 14). They ended discovering
a new type of receptor activated, after proteolytic cleavage, by
the protease.

The PARs cloning followed in 1994 with PAR2. After the
isolation of a DNA sequence coding for a G-protein-coupled
receptor from a mouse genomic library, the predicted protein
displayed a structure similar to PAR1 and activated by a
similar mechanism. This receptor was first described activated
by trypsin, but not by thrombin. In addition, the authors
described that an exogenous agonist peptide allowed the receptor
activation, suggesting the importance of the proteolytic cleavage
in this process. This receptor was indeed named PAR2 (15).
Nowadays, it is established that thrombin can actually indirectly
activate PAR2 by transactivation (16). More recently, in a
murine PAR1 KO model, thrombin-induced PAR2 activation
was described to trigger aortic vasodilatation and MAPK
signaling (17).

A similar approach allowed PAR3 discovery in 1997. This
thrombin-activated receptor seems to be a PAR4 cofactor (18). To
date, no exogenous and specific agonist peptide has been shown
able to induce its activation.

Finally PAR4 was discovered shortly afterwards. Both trypsin
and thrombin can activate this receptor (19).

Structure
The genes encoding the PARs consist in two exons. The exon 1
generates a larger N-terminal sequence than most GPCRs that
includes the site of cleavage. The exon 2 codes for the receptor
itself (20). PARs have seven transmembrane domains (TM), with
an N-terminal domain of 17–26 amino acids, a pro-domain of
11–30 amino acids, 3 intracellular loops (ICL) and 3 extracellular
loops (ECL), and a C-terminal domain of 13–51 amino acids.
PAR1 and PAR3 display a “hirudin-like” domain, allowing
a more specific binding for thrombin (13) (Figure 1). These
receptors may also undergo post-transcriptional modifications
(phosphorylation, ubiquitination, etc.). Each receptor can be
stimulated by an activator ligand—TFLLR for PAR1, SLIGKV for
PAR2, TFRGAP for PAR3, and GYPGQV for PAR4—followed
by an amino acid sequence involved in the inhibition of its
self-activation (21).

Mechanisms of Activation
Canonical Activation
Under the action of a protease, the proteolytic cleavage of
the receptor activator ligand within the canonical N-terminal

domain site is irreversible (Figure 2A). This ligand will then bind
to the second extracellular loop of the receptor, resulting in its
conformational change that will induce signaling cascades (22).

PAR1 is cleaved (↓) at its canonical site, LDPR41↓ S42FLLRN,
by thrombin (23).

PAR2 is activated at its canonical cleavage site, SKGR34 ↓

S35LIGKV, by trypsin (15).
PAR3 presents a putative cleavage site for thrombin, LPIK38 ↓

T39FRGAP (18). However, no signal transduction seems to result
from this putative cleavage, and compared to other receptors, no
protease able to activate PAR3 has been yet identified.

PAR4 can be cleaved by thrombin and trypsin, at similar
doses, at this canonical site: PAPR47 ↓ G48YPGQV (19). PAR4
can also be activated by cathepsin G, plasmin, factor X and
kallikreins (24–27).

Table 1 gives examples of activating proteases as well as
synthetic peptides and tethered ligand sequences, but also
the sites of expression and the induced effects for each of
the PARs.

Non-canonical or Biased Activation
Then, the notion of biased activation, characterized by a
stimulation of the receptor on different sites than the canonical
cleavage site, called “non-canonical sites,” appeared. This biased
activation causes incomplete or different signaling compared
to the ones observed after canonical activation. Proteases can
activate PARs in a biased way (Figure 2C).

Biased activation was first described for PAR1 signaling (28).
In this study, the authors demonstrated that MMP1 activates
PAR1 via an activator ligand located two amino acids upstream of
the one generated by thrombin (PRSFLLR ligand), but resulting
in the same signaling as the one induced by thrombin. Another
team showed a biased PAR1 activation leading to a different
signaling. Indeed, PAR1 activation by activated protein C via
a non-canonical site favors opposite effects than thrombin,
i.e., anti-inflammatory effect and endothelial barrier protection
(29). PAR1 can also be activated in a biased manner by other
proteases and coagulation cascade actors, such as plasmin,
factor X, granzymes A, trypsins, kallikreins, and cathepsin G
(13, 25, 30–35).

Regarding PAR2, a study demonstrates the role of neutrophil
elastase in MAPK signaling through biased activation of PAR2
(36). PAR2 can also be activated by other serine proteases, such
as tryptase, granzymes, and kallikreins (23, 27, 37). To date, no
studies demonstrating the biased activation of PAR3 and PAR4
have been reported.

Activation by Agonist Peptides
Thus, considering the diversity of elements able to cleave
and activate the PARs, it has not been easy to decipher for
each individual receptor its own mechanisms of activation.
For example, thrombin can activate PAR1, PAR3, and PAR4.
Deciphering the specific signaling triggered by PAR1 via
thrombin is in consequence difficult. In that context, using
synthetic peptide sequences or agonist peptides of 5–6 amino
acids is paramount (12, 13, 38) (Figure 2B).
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FIGURE 1 | Protease-activated receptors structure. These receptors present several domains within their structures: the signal (italics lettering) and pro-peptide

(green lettering) domains, a NH2-terminal domain (NTD), three extracellular loops (ECL1-3), three intracellular loops (ICL1-3), and a COOH-terminal domain (CTD).

Within each receptor, the sequence of their specific tethered ligand are underlined. The blue lettering represents PAR1 and PAR3 Hirudin-like domains. Pink Cysteines

are the ones forming a disulfide linkage between the transmembrane domain 3 and ECL2. PARs also present several post-translational modifications sites

(N-glycosylation-red N, PAR1 and PAR2 putative palmitoylation sites–Orange lettering, Shadowed and bold lettering, respectively, represent ubiquitination and

phosphorylation sites). Finally within PAR1 CTD, the YKKL motif is involved in the regulation of its trafficking.

Several peptide sequences, with a different number of amino
acids, additional hydrophilic residues or amino acid substitutions
relative to the PAR1 activator ligand sequence, have been
developed to activate PAR1. The most efficient one is in
fact similar to PAR1 activator ligand sequence, TFLLR (39).
Another point is the signaling induced by the agonist peptides.
Indeed, it has been observed that the signaling generated
via an agonist peptide is not identical in all respects to the
one induced by proteolytic cleavage, confirming the biased
activation. For example, several agonist peptides for PAR1 have

shown various effects on signaling triggering platelet activation:
no activation, little activation or complete activation (40). In
addition, the MAPK pathway generated by the activation of
PAR1 via thrombin is not triggered by the SFLLRN-NH2

agonist peptide (41) unless the doses of agonist peptides used
are significantly higher (100-fold) than the commonly used
doses (42).

Regarding PAR2, here again, depending on the peptide
tested, the results are not identical. Indeed, PAR2 activation
via the SLAAAA agonist peptide results in intracellular calcium
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FIGURE 2 | Mechanisms regulating protease-activated receptors activation. (A) Proteolytic cleavage by an activating proteases resulting in the binding of the tethered

ligand to the ECL2, and downstream signaling activation. (B) Binding of an exogenous synthetic agonist peptide on ECL2 without proteolytic cleavage inducing

downstream signaling activation. (C) No or Biased activation by disarming proteases cleaving the N-terminal domain after the tethered ligand either inhibiting the

signal transduction or inducing biased downstream signaling compared to the one induced par the activating proteases. Moreover, disarmed receptors can be

retained at the cell membrane making them available for a future activation by synthetic agonist peptides.

TABLE 1 | PARs expression sites, activating proteases, tethered peptides, and main effects in the intestine.

PAR1 PAR2 PAR3 PAR4

Sites of expression

in the gut

Entero- and colonocytes,

intestinal epithelial primitive cells,

myenteric and submucosal

neurons, fibroblats, smooth

muscles, mast cells, immunes

cells, endothelium, human colon

epithelial cancer cells

Entero- and colonocytes, intestinal

epithelial stem/progenitor cells, myenteric

and submucosal neurons, fibroblats,

smooth muscles, mast cells, immunes

cells, endothelium, human colon epithelial

cancer cells

Detected in

non-identified cells

in the small

intestine

Entero- and colonocytes,

enteric neurons, immune

cells, endothelium,

submucosa

Activating proteases Thrombin, Factor VIIa, Factor Xa,

Trypsin, MMP-1, MMP-2,

MMP-3, MMP-8, MMP-9,

MMP-12, MMP-13, MMP-14,

Neutrophil elastase,

Proteinase-3, Plasmin,

Kallikrein-4,-5,-6, Kallikrein-14,

Granzyme A, B, K, Calpain-1,

Gingipain, cathepsin G

Trypsin, trypsin-2, trypsin-3, trypsin VI,

mast cell tryptase, tissue factor,

matriptase/membrane-type serine

protease I, Factor Xa, Factor VIIa,

gingipain, acrosin, elastase, Thrombin,

Tryptase, Cathepsin G, Cathepsin S,

Neutrophil elastase, Proteinase-3,

Plasmin, Testisin, Kallikrein-4,

Kallikrein-5,-6,-14, Calpain-2

Thrombin, trypsin,

Factor Xa

Thrombin, trypsin, cathepsin

G, Trypsin VI, Factor Xa,

Factor VIIa, gingipain,

Kallikrein 14

Tethered peptide sequences

(human)

SFLLRN SLIGKV TFRGAP GYPGQV

Effects in the gut Apoptosis, cell proliferation,

motility, increased permeability,

ion secretion, smooth muscle

contraction and relaxation,

inflammation, prostaglandin

release

Apoptosis, cell proliferation, motility,

increased permeability, ion secretion, ion

channel activation, smooth muscle

contraction and relaxation, inflammation,

prostaglandin and eicosanoid release,

neuropeptide release, amilase secretion,

neuronal hyperexcitability, visceral

hypersensitivity, motor functions

Motor functions, colon

cancer cell proliferation

release, MAPK pathway signaling and receptor internalization
(43), whereas the SLAAAA-NH2 agonist peptide only induces
intracellular calcium release (44). An activator sequence,
SLIGKV, resulting in intracellular calcium release in rat and
human cell lines was then validated (45–47). Next, further studies
have allowed to design a more potent PAR2 agonist peptide
by adding a seventh or eighth amino acid, leucine type (48).

However, although these agonist peptides are stable, they display
low bioavailability and low solubility.

No PAR3 specific agonist peptides have been generated.
Indeed, the peptides designed with that aim, such as TFRGAP-
NH2, seem actually to activate PAR4. An explanation could be
a PAR3 and PAR4 dimerization as described in response to
thrombin (49, 50).

Frontiers in Endocrinology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 717

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Sébert et al. PARs in Intestinal Inflammation and Cancer

Regarding PAR4, the agonist peptide GYPGQV-NH2

specifically activates the receptor, causing contractility of the
aorta and longitudinal gastric muscles in the rat (51).

Disarming
PARs activation can be inhibited by disarming the receptor.
Indeed, some proteases can prevent the canonical proteolytic
cleavage by a proteolytic cleavage upstream of the activator ligand
sequence of the receptor (Figure 2C). A second mechanism
involves proteolytic cleavage within the receptor sequence to
prevent signaling induction (52–54). For example, kallikrein 14
(KLK14), trypsin, cathepsin G, elastase, and plasmin disarm
PAR1 (27, 31, 52, 55, 56). The disruption of PAR2 can be achieved
by plasmin, PR3, elastase, and cathepsin G (57, 58).

Co-activation of PARs
PARs can also be activated through co-activation or
transactivation. Indeed, the hirudin-like domain present on
the PAR1 and PAR3 sequences allows increasing the affinity
of these receptors for thrombin, helping in turns to activate
PAR4, which does not have such a domain (Figure 3). One
study reports that the only expression of PAR3 in COS7 cells
does not induce any signaling in response to thrombin, while
co-transfecting PAR4, allowed an inositol triphosphate signaling

as if they only expressed PAR4, but at a lower dose of thrombin.
PAR4 co-activation with PAR3 was then confirmed (49). PAR3
binds thrombin through its exosite I, allowing the active site of
thrombin to remain free and to activate other PARs. PAR3 then
changes the conformation of thrombin and increases its affinity
for PAR4. This mechanism has been described by crystallography
(59). Activation of PAR4 via PAR1 has also been confirmed. By
FRET, a study evidenced the heterodimerization of PAR1 and
PAR4 in response to thrombin, this heterodimerization leading
to an increased platelet aggregation compared to the one induced
by PAR4 alone (60).

Transactivation
PAR1 can also be activated by a mechanism called transactivation
(Figure 4). The first study to highlight this phenomenon dates
back to 1996 (61). Blackhart et al. wanted to characterize the
specificity of PAR1 and PAR2 ligands (SFLLRN and SLIGKV) by
analyzing the cross-reactivity of these receptors. In view of their
sequence similarities, the authors looked at whether the PAR2
agonist peptide could activate PAR1. The results confirmed their
hypothesis. The second step was to see whether thrombin could
activate PAR2 through PAR1, as it is the case with the PAR1
agonist peptide. In this aim, researchers have mutated PAR1
making sure that it is still able to bind to thrombin via the exosite

FIGURE 3 | PAR4 co-activation by PAR3. (A) PAR3 binds thrombin active site via its cleavage site. PAR3 hirudin-like domain (HL) allows a more specific binding to the

protease, on its exosite I (ES). (B) After PAR3 proteolytic cleavage by thrombin, which releases PAR3 N-terminal peptide, the receptor remains linked to the protease

via the HL domain. (C) The active site of thrombin being free, it can bind to PAR4. (D) The PAR3:PAR4 heterodimerization results in a conformational change of both

receptors and their activation, allowing them to couple to the G proteins and transduce signaling.
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FIGURE 4 | PAR2 transactivation via PAR1. PAR1 is clived and activated by

thrombin. In turns, its activating ligand links PAR2 ECL2 leading to the receptor

and downstream signaling activation.

I, but without the thrombin being able to cleave PAR1 and cause
signaling. The mutated PAR1 was then co-expressed with PAR2
in human endothelial cells. This coexpression caused signaling,
similar to that caused by the individual expression of PAR1 and
PAR2 in endothelial cells, after stimulation with thrombin (16).
In order to confirm the activation of PAR2 via PAR1, a PAR1
antagonist was used, resulting in the inhibition of 75% of PAR1-
induced signaling. The fact that the signal could be completely
blocked with the addition of a PAR2 antagonist further supported
this mechanism of activation between the two receptors.

In addition, this transactivation leads to ERK1/2 signaling
(Extracellular signal-Regulated Kinases 1/2) and appears to
be more prevalent during pathological events, such as sepsis
in endothelial cells, chronic inflammation and carcinogenesis
(62–64). FRET and co-immunoprecipitation approaches
allowed to confirmed this mechanism of transactivation by
heterodimerization (63).

PROTEASES ACTIVATING PARs

Proteases, also known as proteinases and peptidases, are
degradative enzymes for protein catabolism that hydrolyse a
peptide bond to generate amino acids (65). The genes coding
for proteases represent 2% of the mammalian genome and can
be distributed in five groups depending on their mechanism of
hydrolytic cleavage: serine-, metallo-, cysteine-, aspartate-, and
threonine proteases. Serine-, Metallo-, and Cysteine-proteases
are able to cleave and activate PARs, triggering different signaling
pathways, although PAR4 is mainly activated by thrombin, while
PAR2 is cleaved and activated by trypsin.

Matrix Metalloproteinases (MMPs)
MMPs are a group of zinc- dependent endopeptidases known
to degrade and remodel the components of the extracellular
matrix. Depending on their substrate specificities, MMPs
are subdivided into six groups: Collagenases, gelatinases,
stromelysins, matrilysins, membrane-types MMPs, and non-
classified MMPs. Besides the extracellular matrix turn over,
MMPs are involved in other tissue maintenance functions, such

as wound healing, and regulation of a broad range of molecules,
such as chemokines, cytokines, growth factors, cytoskeleton, and
junctional proteins (66). Dysregulation of MMP activity leads
to the development of several pathologies including chronic
inflammatory diseases as inflammatory Bowel Diseases (IBD)
and cancer (67).

Serine Proteases
Theses proteases are enzymes that hydrolyze peptide bonds
within the protein sequence, in which serine serves as
nucleophilic amino acid at the active site. Serine proteases,
the most abundant group of proteases, are widely distributed
in nature and present in the three domains of life (archaea,
bacteria, and eukaryotes) as well as in viral genomes (68).
Widespread throughout the human body, serine protease
are usually endopeptidases that hydrolyse the peptide bond
in the middle of a polypeptide chain. However, some are
exopeptidases cleaving only terminal amino acid residue.
Mammalian serine proteases comprise matriptase, plasminogen
activators, chymotrypsin, trypsin, and proteolytic enzymes
produced by polymorphonuclear cells, such as cathepsin G and
neutrophil elastase. Bacteria from commensal microbiota are also
an important source of proteases present in the GI tract.

Cysteine Proteases
Most are found intracellularly. Besides their fundamental
functions of catabolism and protein processing, cysteine
proteases mediate other signaling pathways involved in
programmed cell death, inflammation and intestinal mucosa
integrity (epithelium turnover and homeostasis) (69, 70).
Cysteine group comprises caspases, autophagins, calpains,
and deubiquitinases intracellularly, and cathepsins B, K, and
L extracellularly (9) Altered activity of cysteine proteases is
associated with IBD (71).

PARs AND INTESTINAL HOMEOSTASIS

As mentioned above, the colon is highly exposed to proteases,
whether pancreatic, bacterial proteases from resident colon
cells or proteases produced and secreted by epithelial cells
(72). These proteases intervene in a multitude of physiological
and pathological processes, through activation of PARs (72).
Although the roles of proteases in the colonic epithelium are
not fully understood, PARs have been extensively studied with
agonist peptides, even if these peptides do not always reflect in
a precise way the functions of the PARs in the physiology and
the pathology.

In the colon, smooth muscle cells, endothelial cells, enteric
neurons, fibroblasts and immune cells, such as neutrophils,
lymphocytes, macrophages, express PAR1. Originally, PAR1
expression was only reported in cancerous colon epithelial cells,
but not in normal epithelial cells (4). An explanation is that, at
that time, no anti-PAR1 antibody was effective. Since then, our
team has described its, and PAR2, expression in normal human
and murine colonic epithelium by immunostaining (73). The
expression of PAR3 is poorly studied and has never been reported
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in the colon. PAR4 is expressed in colonic epithelial cells, at the
submucosa level (10).

Intestinal Secretions and PARs
One study demonstrated that PAR1 activation on intact cultured
monolayers of intestinal epithelial cells in Using chambers
resulted in chloride ion release, whereas in intact tissues, PAR1
activation would not result in this release (74). This difference
between cultured cell monolayer and tissue would emphasize the
importance of the location of the receptor on the cell. Indeed,
it is thought that the activation of PAR1 on the apical side
(toward the intestinal lumen), would have a protective role,
generating a release of chloride ions, allowing a faster transit and
the elimination of pathogens or at least of their toxins. Activation
of PAR2 also promotes the secretion of chloride ions and is
correlated with diarrhea in inflammatory conditions, as found
in the tissues of IBD patients (75). In addition, other elements,
such as amylase and mucin, are secreted in response to PAR2
activation (52).

Intestinal Motility and PARs
Another colon function is to allow the transit of chime. This
involves a regulation of the intestinal motility. The role of PAR1
and PAR2 in this process was demonstrated by the stimulation
of circular and longitudinal rat colonic muscle layers with either
thrombin, trypsin or agonist peptides. This study showed that
both PAR1 and PAR2 activations result inmuscle contraction and
relaxation (76). The same authors demonstrated that the nervous
system is involved in this regulation by secreting tachykinins (77).

Sensory Function
PAR1 and PAR2 play a role in nociception. Thus, several
studies have reported that colorectal distension performed by
intracolonic administration of trypsin and PAR2 agonist peptide
in rats caused visceral pain (78). PAR2 would have a pro-
nociceptive role. Regarding PAR1, its role seems to be anti-
nociceptive. Indeed, a study showed that the injection of PAR1
agonist into the mouse paw does not induce a response to a
mechanical or thermal stimulus, but still increases the sensitivity
threshold of the perception of pain (79). In addition, PAR1
would inhibit the transmission of nociceptive signals (80).
Intracolonic administration of PAR4 agonist peptide decreased
visceral motility, after colorectal distention and decreased pain
induced by PAR2 activation (81).

Intestinal Permeability
Activation of PARs present in epithelial cells leads to changes
in paracellular permeability. Activation of PAR1, in response
an agonist peptide, increases the intestinal permeability via the
apoptotic process through caspase 3, and an alteration of ZO1
expression (82). Moreover, neutrophil proteases, such as elastase
and PR3, via the basolateral activation of PAR1 and PAR2, can
also modulate the intestinal permeability (83). Cenac et al. have
shown that in mouse model, PAR2 activation by trypsin, tryptase,
and chymase (all from serine proteases family) promotes an
increase in colonic permeability displaying inflammation and
disruption on the intestinal barrier integrity (84). These results

have been supported by other studies, which have shown an
alteration on the intestinal permeability using PAR2 agonists
(78, 85). The mechanism of action through PAR2-mediated
modification of intestinal permeability involved the calmodulin
and MLCK. PAR2 agonist, via the calmodulin, increases MLCK
phosphorylation, which leads to epithelial cell cytoskeleton
contraction and the enhancement of the mucosal permeability.
ML-7, an MLCK inhibitor, abolished the disruption of the tight
junctions composition and function (86). Another study revealed
that activation of ERK1/2 by tryptase, in cultured colonocytes,
also phosphorylates MLCK, leading to epithelial cells disruption
(87). Trypsin-3, released by intestinal epithelial cells in response
to LPS, is able to cleave and activate PAR2 to increase the
intestinal permeability (88). Thus, these results also highlight the
involvement of PARs in intestinal inflammation.

Survival and Proliferation
PAR1 and PAR2 have been both described involved in the
stimulation of colorectal cancer cell proliferation (4, 89). In
addition, activation of PAR2 leads to reduced apoptosis of colonic
epithelial cells by activating MEK1/2 and PI3K (90). PAR2
activation also regulates the survival of colonic stem cells in the
organoid model via the GSK3β pathway (73). More recently,
in human colon organoid cultures, we reported that thrombin
significantly reduces the size of budding structures, metabolic
activity and proliferation, while increasing apoptosis. In the
same study, we reported that both PAR1 and PAR4 antagonists
inhibited apoptosis regardless of thrombin doses (91).

PARs IN INFLAMMATORY BOWEL
DISEASES

Inflammatory Bowel Diseases (IBD)
The IBD, Crohn’s disease (CD) and ulcerative colitis (UC), are
chronic diseases causing inflammation of the gut (92). Since the
second part of the last century, IBD has emerged as a public
health challenge worldwide. In North America and Europe, more
than 1.5 million people exhibit these pathologies, respectively
(93). Outside the industrialized countries, the number of people
affected by IBD remains unclear. Recently, the highest reported
prevalence values for UC and CD were reported in Europe and
North America (94). Although the molecular mechanisms of
IBD are poorly understood, recent data suggest that IBD occurs
in genetically predisposed individuals developing an abnormal
immune response to intestinal microbes after being exposed
to specific environmental triggers (95). Moreover, stools from
IBD patients showed increased levels of active proteases, which
are secreted meanly by infiltrated and resident cells, intestinal
epithelial cells or smooth muscle (7). In addition, increased
fecal proteases in IBD might result from both commensal and
pathogenic gut bacteria, which can secrete serine proteases,
cysteine proteases and MMPs (96–98).

PARs in IBD
In the gut, PARs are stimulated by endogenous proteases, such
as pancreas trypsin, cells of the intestinal mucosa (immune
cells including mast cells, epithelial cells including goblet,
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neuroendocrine, and enterocyte cells), or gut microbiota.
Moreover, PARs expressions in the intestinal epithelium are
different between IBD patients and healthy individuals. Colonic
biopsies fromUC andCDpatients exhibited increased expression
PAR1, while PAR2 and PAR4 are just upregulated in UC
conditions. Enhanced levels of these receptors is linked to
its activation-internalization-degradation signaling induced by
proteases released from eukaryotic host cells but also from gut
micro-organisms. Indeed, on neutrophil cells, Candida albicans
induces a TLR2-dependent PAR1 stimulation and expression,
while Aspergillus fumigatus inhibits a TLR4-dependent PAR2
activation and expression (99).

PAR1
PAR1 stimulation triggers apoptosis of the epithelial cells
within the gut mucosa through a mechanism involving caspase-
3 activation. This excessive apoptosis is associated to a
disruption of the intestinal barrier function, promoting then
the development and/or severity of the colitis (82). PAR1 is
expressed by intestinal epithelial cells but also by endothelial
cells, enteric neurons, myocytes, and immune cells (52). PAR1
expression by intestinal epithelium is linked to the presence
of microbiota (100), and its colonic stimulation leads to colitis
(10, 101). Moreover, deletion or blockage of PAR1 reduce
inflammatory signs and mortality in a murine model of IBD
(102). In addition to an increased PAR1 expression in IBD
patient colons, it has been recently shown that thrombin level is
increased in CD colonic biopsies (103). Moreover, an increased
incidence of thrombosis has been observed in IBD patients (104).
Altogether, these studies evidence a potential role for PAR1 in
IBD pathophysiology, however it is still not clear whether the
intestinal bacteria directly activate PAR1 through the release of
proteases. Nevertheless, this notion has been evidenced by a study
showing that a cysteine protease released by Porphyromonas
gingivalis increases the expression of pro-inflammatory cytokines
through PAR1 activation (105).

PAR2
PAR2 receptor is localized at the apical and basolateral
membranes (84, 106, 107) of the gut epithelium cells and
can be stimulated by trypsin, tryptase, and bacterial proteases
(108). PAR2 is also present in the cells membrane of numerous
immune cells, stromal cells or endothelial cells. Thus, PAR2-
associated inflammation coming from numerous pathways from
either systemic or local locations. Systemically, PAR2 stimulation
promotes the rolling, adhesion and extravasation of leukocytes
(109). Locally at colonic level, activation of this receptor triggers
colitis (7). Additionally, blockage of PAR2 activation reduces
the severity of the colitis induced by either TNBS or a PAR2
agonist (110). All together, the majority of the studies show
that stimulation of PAR2 triggers an inflammatory response.
Nevertheless, one study has evidenced a protective effect of
chronic stimulation of PAR2 in a model of colitis (111). This
protective effect might be the result of a local desensitization, or
anti-inflammatory effects on macrophages (112). Additionally,
although we do not know which of the numerous mechanisms
described for PAR2 stimulation in the intestine triggers colitis

in rodent models, excessive PAR2 stimulation by trypsin and
tryptase has been speculated to mediate colitis in IBD patients.
Moreover, in IBD, PAR2 expression is increased at the membrane
of mast cells, then participating in PAR2-induced colitis (113).
Thus, although, these studies have highlighted the major role
played by PAR-2 in the colitis mediated by mast cells, recent
papers have also reported that proteases coming from gut
micro-organisms could participate to PAR2 activation altering
then colonic homeostasis (96). PAR2 can be also stimulated
by gut micro-organisms either directly by bacterial proteases,
as demonstrated for P. gingivalis (108) or C. difficile (114),
or indirectly by the release of host cells proteases triggered
by bacteria stimulation (37). Moreover, as antibiotic treatment
diminished intestinal PAR2 expression, this suggests that, in
addition to its activation, PAR2 expression can also be regulated
by the gut microbiota (115).

Altogether, these studies report the role for PAR2 in IBD
pathophysiology. However, the most important source of the
proteases activating PAR2 to promote IBD is largely unclear.

PAR3
The biological importance of PAR3 is not fully demonstrated.
Thus, PAR3 does not exhibit, as the other PARs, a C-terminal
intracytoplasmic tail. However, as described previously, PAR3
could play a role as co-factor or co-receptor for PARs and/or
other receptors. Although PAR3 mRNA has been evidenced in
the gut, no study has reported its involvement in intestinal
inflammation (18).

PAR4
PAR4 expression has been detected in the gut (19) and
on colonocytes (116). It can be cleaved and then activated
by several proteases including thrombin, trypsin and by the
neutrophil granule protease cathepsin G (24). PAR4 stimulation
on leukocyte has been reported to promote their rolling
and adherence, then suggesting a pro-inflammatory role (79).
Moreover, colonic exposure to PAR4 agonists increases the
paracellular permeability of the colic epithelium, suggesting that
PAR4 could favor the genesis of IBD (117). In human colon,
PAR4 expression is very weak in non-IBD patients, while its
expression is drastically increased in UC patients. Interestingly,
cathepsin G activity is enhanced in fecal supernatant from UC
individuals compared to controls (117). Moreover, inhibition of
this cathepsin G activity resulted in a restored gut paracellular
permeability (117). Thus, cathepsin G, via PAR4 receptor, could
participate in the increase of the gut permeability in UC patients.

PARs IN COLORECTAL CANCER

Colorectal Cancer (CRC)
Worldwide, colorectal cancer is the second and the third most
commonly occurring cancer in women and men, respectively.
There were over 1.8 million new cases detected in 2018
(GLOBOCAN database 2018, http://gco.iarc.fr/). CRC is the
fourth most common cause of death from cancer in the
industrialized world. The survival depends on the stage of the
pathology at the time of the diagnosis. Indeed, patients with the
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later-stage diagnosis have the poorer survival. Indeed, the 5-years
survival rate is 90% for colorectal cancers diagnosed at an early
stage but drops down to 13% for those diagnosed at a late stage.

Since a long time now, proteases have been associated with
tumor progression mainly due to their ability to degrade the
extracellular matrix (ECM), favoring thus tumor cell invasion
and metastasis process (118). However, it is now well-established
that their roles in cancer is not only restricted to their ECM
degradation capacities, these enzymes acting directly on the
cancer cells via the PARs.

PARs in CRC
PAR1
Evidence that thrombin potentiated the tumor growth and the
metastatic process in vivo was obtained in 1991. Nierodzik et al.
treated cancer cell lines, including the murine carcinoma cell line
CT26, with thrombin (0.5–1 U/mL). They then injected these
cells intravenously in the mouse and observed an increase in the
metastatic power of these cells (119). Nevertheless, a study shows
that thrombin concentration may have opposite effects on tumor
cells (120). Indeed, at a low dose of thrombin, 0.1–0.5 U/mL,
PAR1 activation resulted in the growth of tumor cells. Whereas,
at a higher dose of thrombin, 0.5–1 U/ml, growth was decreased
in favor of cell apoptosis. Since, it has been demonstrated that
PAR1 plays a direct role in the progression of epithelial colon
tumors, regulating both cell proliferation and migration (4, 121,
122) have pro- and anti-apoptotic effects, depending on the dose
of thrombin or agonist peptides used (123).

Patients with IBD are 10–20 times more likely to develop
CRC (124). One study revealed the role of thrombin in the
development of colon cancer from an inflammatory context.
Using the murine DSS-induced colitis model and the colitis-
associated cancer model treating the mice with DSS and
AOM, the authors observed the formation of adenomas. The
result obtained was a uniform development of adenomas from
aberrant crypts in control mice (Factor II+/+ mice) and, in
Factor II +/− mice, a decrease in these precancerous lesions
as well as the number of adenomas (125). The involvement of
thrombin in cancer development from a previous inflammatory
state has been proven by treating the mice with hirudin, an
inhibitor of thrombin, these mice displaying then a slower
adenoma development. However, a recent study reports that
PAR1-deficient APCMin/+ mice display an increased number
of adenomas and larger adenomas than PAR1-expressing mice
suggesting a protecting role of PAR1 in some CRC favoring
context (126). Actually, the same authors already described
earlier that the growth of colonic adenocarcinoma in PAR-1-
deficient mice was decreased compared to control animals, and
proposed an implication of the stromal cell-associated PAR-1 as
target important for tumor development (127).

PAR2
Regarding the role of PAR2, several human colon cancer
cell lines, namely T84, Caco-2, HT-29, and C1.19A, produce
and secrete trypsin at concentrations compatible with PAR2
activation, supporting the idea of a possible autocrine/paracrine
regulation of PAR2 activity by trypsin in colon cancer cells (128).
Trypsin is produced by human cancer colon cells and activates

protease-activated receptor-2 within these cells, depicting an
autocrine loop. Interestingly, EGF-R transactivation by PAR2
results in the growth of colon cancer cells after the activation of a
Src/ERK1/2 pathway (85).

More recently, we reported in three-dimensional cultures
of murine colorectal crypt and in Caco-2 cells, that PAR2
activation decreases the numbers and the size of normal or
cancerous spheroids. Spheroids deficient for display an increased
proliferation, suggesting that cell proliferation is repressed by
PAR2. However, in the same study, PAR2-stimulated normal cells
are more resistant to stress, suggesting PAR2 pro-survival roles.
Indeed, PAR2-deficient normal spheroids display an increase
of active caspase-3. Moreover, we showed that PAR2, but not
PAR1, was able to trigger GSK3β activation in normal and
tumor cells. The PAR2-triggered GSK3β activation involves an
arrestin/PP2A/GSK3β complex that is dependent on the activity
of the Rho kinase. Finally, the survival of PAR2-stimulated
cultures can be pharmacologically inhibited using a GSK3
inhibitor. This study highlighted the PAR2/GSK3β pathway as
a novel critical player in the regulation of stem/progenitor cell
survival and proliferation in normal colon crypts and colon
cancer (73).

PAR3
To date, no clear role of PAR3 in CRC has been reported.

PAR4
Regarding PAR4, its expression is increased in colorectal
cancer tissues compared to the associated normal tissues.
This overexpression seems to promote colorectal cancer cell
proliferation, survival and metastasis, making PAR4 a potential
therapeutic target in CRC (129).

PAR4 mediates thrombin effects on human colon cancer cells.
AP4, a specific PAR4 agonist, mimics the effects of thrombin on
cell proliferation. Its effects on calcium mobilization in CHO-
PAR4-expressing cells are similar to the one observed in HT-
29 cells, while HT-29 cells treatment with a reverse peptide has
no effect on calcium mobilization. Finally, AP4 promotes colon
cancer cell proliferation. More recently, PAR4 overexpression in
LoVo cells has been shown, via activation of the ERK1/2 pathway,
to increase their proliferation and migration and tumorigenesis
capacities, while its knock-down in HT29 results in opposite
effect (129). Thus, PAR4 should be regarded as a crucial receptor
by which thrombin modulates colon carcinogenesis (130).

CONCLUSION AND FUTURES
PERSPECTIVES

Since their discovery in the early nineties, PARs have been
shown to be largely involved in the regulation of the intestine
physiological processes, but also in the two main diseases
affecting the organ, namely inflammatory bowel diseases
and colorectal cancer. Consequently, these G-protein coupled
receptors represent attractive targets for therapeutic drug
development. More than aiming to target their ligands, efforts
to develop specific receptor inhibitors are currently regarded as
a priority although to date, the development of effective PAR
antagonist yet remains in its early stages.
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