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Obesity results from critical periods of positive energy balance characterized by caloric

intake greater than energy expenditure. This disbalance promotes adipose tissue

dysfunction which is related to other comorbidities. Melatonin is a low-cost therapeutic

agent and studies indicate that its usemay improve obesity-related disorders. To evaluate

if the melatonin is efficient in delaying or even blocking the damages caused by excessive

ingestion of a high-fat diet (HFD) in mice, as well as improving the inflammatory profile

triggered by obesity herein, male C57BL/6 mice of 8 weeks were induced to obesity by

a HFD and treated for 10 weeks with melatonin. The results demonstrate that melatonin

supplementation attenuated serum triglyceride levels and total and LDL cholesterol and

prevented body mass gain through a decreased lipogenesis rate and increased lipolytic

capacity in white adipocytes, with a concomitant increment in oxygen consumption

and Pgc1a and Prdm16 expression. Altogether, these effects prevented adipocyte

hypertrophy caused by HFD and reflected in decreased adiposity. Finally, melatonin

supplementation reduced the crown-like-structure (CLS) formation, characteristic of the

inflammatory process by macrophage infiltration into white adipose tissue of obese

subjects, as well as decreased the gene expression of inflammation-related factors, such

as leptin and MCP1. Thus, the melatonin can be considered a potential therapeutic agent

to attenuate the metabolic and inflammatory disorders triggered by obesity.

Keywords: subcutaneous fat, cytokines, inflammation, triacylglycerol, cholesterol, body weight reduction, CLS

INTRODUCTION

Obesity is a worldwide problem and represents a serious public health challenge for the 21’st
century. In 2016, the World Health Organization (WHO, 2019), indicated that 1.9 billion adults
over age 18 are overweight, of these, over 650 million were obese and about 3.4 million adults
die each year due to co-morbidities associated with obesity such as hypertension, heart disease,
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dyslipidemia, fatty liver, type 2 diabetes, and some types of
cancers. Obesity results from critical periods of positive energy
balance characterized by caloric intake greater than energy
expenditure, where the excess of calories from the diet are stored
in white adipose tissue (WAT) in the form of triacylglycerols
(TAG). The increase in fat mass can occur by two process:
adipocyte hypertrophy or adipocyte hyperplasia (through de novo
differentiation from progenitors) (1). It is known that adipocyte
hypertrophy leads to morbid obesity (2, 3) characterized by
the rapid growth of the fat depots through enlargement of
existing fat cells, which is accompanied by a high degree of
M1 macrophage infiltration, limited vessel development, and
massive fibrosis (3). Considering these facts, such pathological
expansion is associated with chronic inflammation and a
WAT dysfunction.

WAT dysfunction is certainly one of the main causes
of obesity-associated medical comorbidities, since this
tissue is one of the first to develop inflammatory responses
triggering the activation of the classical proinflammatory
pathways, exacerbated infiltration of macrophages, neutrophils,
lymphocytes, and a induction of a wide range pro-inflammatory
mediators secretion (4, 5), which ultimately results in
the development of systemic insulin resistance. A lot of
therapeutic strategies are used to improve this condition
triggered by this tissue dysfunction. According to some
studies, the use of melatonin, a hormone produced by the
pineal gland only in the night phase and responsible for
the synchronization of innumerable physiological effects, is
related to beneficial effects on the control of obesity and its
complications (6–9).

Moreover, important melatonin effects in energy
metabolism (10, 11) and insulin action on glucose and
lipid metabolism have been showed, being many of this
studies related to WAT from rodents, reported by our
group (12–16). Additionally, chronobiological melatonin
aspects and its interrelationship with cytokines produced by
WAT such as leptin and adiponectin have been described
(17, 18).

Another important effect described for melatonin was
an anti-inflammatory action which occurs mainly due to
its activity as a mitochondrial protector (19), by preventing
insulin resistance (20, 21), as well as to present a role
in the immune system, promoting a down-regulation
of pro-inflammatory and an up-regulation of anti-
inflammatory plasma cytokines in animal models of metabolic
syndrome (22, 23).

All studies aforementioned reinforce the therapeutic potential

for melatonin in treating obesity and its related complications.
Considering that obesity leads to a dysfunction of the

main metabolic processes of WAT (lipolysis, lipogenesis, and
adipogenesis), the present study aims to evaluate if the melatonin

is efficient in attenuating or even blocking the damages in WAT
caused by the ingestion of a high-fat diet (HFD), as well as
improving the inflammatory condition triggered by the HFD-
induced obesity in mice.

MATERIALS AND METHODS

Animals and Melatonin Supplementation
All procedures were approved by the Ethics Committee on
Animal Use of the Federal University of São Paulo. Eight-week-
old male C57BL/6 mice were maintained under controlled light-
dark cycle (12 h:12 h lights cycle on at 0600), temperature of
24 ± 1◦C and relative humidity 53 ± 2%. The mice were
obtained from the Center for Development of Experimental
Models (CEDEME), Federal University of São Paulo. They were
randomly assigned into three groups: (a) control (low fat)
diet (Control), (b) HFD (Obese), and (c) HFD supplemented
with melatonin (Obese+Mel). Control diet contains 76%
carbohydrate, 15% protein and 9% fat and a HFD contains 26%
carbohydrate, 15% protein and 59% fat, in % kcal.

During obesity induction, the animals were supplemented
with melatonin (1 mg/kg) in drinking water during the dark
phase, daily, for 10 weeks. Body weight and food intake
were measured weekly and the food and energy efficiency
were calculated by the ratio of body weight gain (g) to food
ingestion (g) or by ratio of body weight gain (g) to caloric
intake (kcal). After 10 weeks of the experimental protocol, 12-
h fasted mice were anesthetized with isoflurane and subjected
to blood collection through puncturing the orbital plexus. The
animals were euthanasied and tissues were removed after cervical
dislocation. Adipose fat depots: ING (subcutaneous inguinal),
EPI (epididymal), RP (retroperitoneal), and BAT (interscapular
brown adipose tissue) were harvested and weighed. Then, ING
depot was processed for RT-qPCR, adipocytes isolation and
biological assays.

Blood Measurements
Triacylglycerol, total cholesterol, LDL-cholesterol, and HDL-
cholesterol levels were determined by colorimetric assays (Labtest
Diagnostics, Lagoa Santa, MG, Brazil).

Adipocyte Isolation
Adipocyte isolation was performed as previously described (24).
Briefly, ING fat pads were diced in small fragments in a
flask containing 4mL of DMEM supplemented with HEPES
(20mM), glucose (5mM), bovine serum albumin (BSA, 1%),
and collagenase type II (1 mg/mL), pH 7.4 and incubated for
40min at 37◦C in an orbital shaker. Isolated adipocytes were
filtered through a plastic mesh (150µm) and washed three
times in the same buffer without collagenase. Adipocytes were
photographed under an optic microscope (×100 magnification)
coupled to a microscope camera (AxioCam ERc5s; Zeiss,
Oberkochen, Alemanha), and mean adipocyte volume (4/3 × π

× r3) was determined by measuring 100 cells using AxioVision
LE64 software.

RNA Extraction and Quantitative Real-Time
Polymerase Chain Reaction (qPCR)
Total RNA was extracted from ING depot, reverse transcribed,
and destined for quantitative qPCR analysis as previously
described (25). Analysis of real-time PCR data was performed
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using the 2−11C
T method. Data are expressed as the ratio between

the expression of the target gene and housekeeping gene (18S
gene). Primers used are presented in Supplementary Table 1.

Lipolysis Measurement
Lipolysis was estimated as the rate of glycerol (Free Glycerol
Determination Kit, Sigma) released from ING isolated adipocytes
during 30min of incubation (24). Results were expressed as
nanomoles of glycerol per 106 cells.

Incorporation of [1-14C]-Palmitate Into
Triacylglycerol
ING adipocytes were incubated in KRH (Krebs Ringer Hepes
bicarbonate) buffer, pH 7.4, containing 1% BSA and 2mM
glucose plus palmitate (200µM), saturated with a gas mixture of
95% O2 and 5% CO2, [1-

14C]-Palmitate was then added to the
buffer (1850 Bq/tube or well) and left for 2 h at 37◦C. Cells were
then washed three times with phosphate buffered saline (PBS)
and Dole’s reagent containing isopropanol:n-heptane:H2SO4

(4:1:0.25 vol/vol/vol) was added to the remaining reaction
mixture for lipid extraction (24). The radioactivity trapped into
TAG was determined using a β-counter (1450 LSC, Counter
MicroBeta, Trilux; PerkinElmer). Results were expressed as
nanomoles of FA per 106 cells.

Oxygen Consumption
Oxygen consumption rates in isolated cells were measured as
an indication of mitochondrial respiratory activity. ING isolated
cells from animals were gently re-suspended in KRH (pH
7.4) containing BSA (0.1%) and transferred to the oxygraph
(OROBOROS Oxygraph-2 k). The oxygraph chambers were
previously equilibrated with KRH containing BSA 0.1% at 37◦C.
Carbonyl cyanide m-chlorophenyl hydrazine (CCCP, 1µM f.c.)
was added as a positive control for maximal respiratory rate
(uncoupling) determination. Oxygen consumption rates were
normalized by cell number and expressed as % of the control (26).

Perfusion, Fixation, Dehydration, and
Embedding
For histochemical and immunohistochemical analysis, animals
under deep anesthesia (100 mg/kg ketamine with 10 mg/kg
xylazine) was perfused intracardially with 250ml of 0.9%
saline solution followed by 300ml of fixation solution [4%
paraformaldehyde in 0.1M phosphate buffer (PBS), pH7.4]. The
ING adipose depot was removed and pos-fixate for 12–15 h at
4◦C. The tissue was washed in phosphate buffer to remove any
residual fixative and was subsequently dehydrated with graded
ethanol (from 50 to 100%), and cleared in a solvent (xylol)
miscible with paraffin before impregnation at 55◦C and finally
embedded in paraffin.

Light Microscopy and Morphometry
Serial paraffin sections 4µm in thickness were obtained from
ING tissue and mounted on slices. Some were stained with
hematoxylin and eosin (H&E) to assess morphology; the others
were used for immunohistochemical procedures (n = 6 for
each procedure) (27). Adipocyte size was calculated as the mean

adipocyte area of 300 random adipocytes (100 per section)
from each depot of each mice using a drawing tablet and the
Nikon Lucia Image software (version 4.61) of the morphometric
program. Tissue sections were observed with a Nikon Eclipse
E800 light microscope (Nikon Instruments, Firenze, Italy) using
a 20X objective, and digital images were captured with a Nikon
DXM 1220 camera.

Immunohistochemical Analysis
Evaluation of macrophage infiltration and crown-like structure
(CLS) density in the adipose tissue samples was performed
by immunohistochemistry against MAC-2/galectin-3, a marker
of activated macrophages, on paraffin-embedded slices. The
primary antibody was a rat monoclonal anti-MAC-2 antibody
(dilution 1:1,500; Cedarlane Laboratories, Burlington, Ontario,
Canada). Immunohistochemistry and morphometrical analyses
were performed according to Giordano et al. (27).

Statistical Analysis
Data are presented as mean ± SEM. One-way ANOVA and
Bonferroni or Tukey post-test were used for the comparison
between groups. Test-t was used to verify the differences
between Obese and Obese+Mel groups only. GraphPad Prism
5.1 software (GraphPad Software, Inc., San Diego, CA, USA) was
used for analysis. The level of significance was set at p < 0.05.

RESULTS

Body mass evolution, food ingestion, and the adipose depots
weight of mice during the 10-weeks of the obesity-induction
period are shown in the Figure 1 and both groups showed
continued body weight increase. From week 2, the Obese group
showed a weight gain around 15% (p< 0.05) higher than Control
group and completed the experimental protocol (week 10) with a
body mass ∼49% higher (p < 0.05). However, the Obese+Mel
group presented a significant increment on body weight when
compared to Control only from week 4 and completed the
experimental protocol (week 10) with the body mass ∼28%
higher (p < 0.05) than Control group, but 13% lower (p < 0.05)
than Obese group (Figure 1A), although both groups presented
the same pattern of food and fat ingestion (Figure 1B).

ING, EPI, RP, and interscapular BAT depots were removed
and weighed, and statistical analysis showed that HFD increased
the mass of these depots (3-fold, 3-fold, 4-fold, and 21%,
respectively, p < 0.05, Figures 1E–H) compared to Control
animals. Melatonin treatment significantly decreased the relative
weight of the inguinal (∼17%, Figure 1E) and epididymal
(∼15%, Figure 1F) WAT depots, compared to Obese group, but
did not alter RP and BAT mass (Figures 1G,H).

Food efficiency (ratio between body mass gain and dietary
intake), as well as energy efficiency (ratio of body mass
gain and energy consumption) was also analyzed and the
HFD (Obese) increased these parameters in ∼9 and ∼6-fold,
respectively, compared to Control. Melatonin supplementation
also significantly reduced (by 23%) both, food and energy
efficiency (Figures 1C,D).
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FIGURE 1 | Effects of high-fat diet (HFD) and melatonin supplementation (Mel, 1 mg/ kg b.w., diluted in drinking water, daily, for 10 weeks) on body weight, food

intake, and adiposity. Mice were fed with control diet (Control) or HFD (Obese), supplemented, or not with Mel (Obese+Mel). (A) Changes in body mass (g); (B) Food

intake (g/ animal/ day); (C) Food efficiency body weight gain (g)/ food intake (g); (D) Energy efficiency body weight gain (g)/ caloric intake (kcal); Relative weight (mg/

100 g body weight) of the (E) Subcutaneous adipose depot (inguinal -ING); (F) Visceral adipose depot (epididymal -EPI); (G) Visceral adipose depot (retroperitoneal

-RP). (H) Interscapular brown adipose depot (BAT). Results were analyzed by two-way ANOVA and Bonferroni post-test. Values are mean ± SEM (n = 17–21).

*P < 0.05 vs. Control; #P <.0.05 vs. Obese.

An significant increase in plasma total cholesterol (by
53%, Figure 2A), LDL -cholesterol (by 60%, Figure 2B) and
triglycerides (by 52%, Figure 2D) was observed in Obese group.
However, melatonin supplementation prevented these increment
by 23, 28, and 25% for serum triglycerides, total cholesterol and
LDL cholesterol, respectively, p< 0.05). Plasma HDL-cholesterol
did not show any difference between the groups (Figure 2C).

Figure 3 presents the morphological study of adipocytes in
the inguinal region. Mice consuming the HFD (Obese group)
presented a significant hypertrophy of the fat cells, increasing
its area (∼1.5-fold) and volume (∼2.3-fold) as compared to the
Control group. The supplementation with melatonin attenuated
this effect, since it decreased the area (∼31%, p < 0.05) and
the volume (∼32%, p < 0.05) of the cells (Figures 3A,B,
respectively), when compared to Obese group. These findings
were confirmed by the histochemical. H&E-stained of ING
longitudinal sections (Figure 3D). Melatonin also attenuated
(∼20%, p < 0.05) the effect of HFD on the marked drop (∼70%)
in the cellularity of this depot (Figure 3C).

Thus, we next evaluated the expression of CCAAT/enhancer-
binding protein alfa (C/ebpalfa) and Peroxisome proliferator-
activated receptor gamma (Ppargama), the major regulators

of early adipogenesis. It was found a significant increase in
gene expression of both transcription factors in the Obese+Mel
group compared to Control (by 73 and 66% for Ppargama and
C/ebpalfa, respectively) and Obese groups (by 84 and 40% for
Ppargama and C/ebpalfa, respectively; Figures 4A,B).

C/EBPα and PPARγ are also required to maintain the
differentiated state of mature adipocytes and insulin sensitivity,
by activated PPARγ target genes such as adiponectin and
Glucose transporter-4 (Glut-4), that are late markers of adipocyte
differentiation. Corroborating the Ppargama and C/ebpalfa
increase findings in obese animals supplemented with melatonin,
the genes that encode Adiponectin and Glut-4 were also
increased in the inguinal WAT of Obese+Mel group compared
to the Control group (57% and by 2.3-fold, respectively;
Figures 4C,D).

To investigate whether melatonin influence TAG metabolism
in adipocytes from obese mice induced by HFD, the lipogenesis
process was evaluated through studying the incorporation of
fatty acids into TAG in inguinal isolated adipocytes. There was
a significant increase (by 2.2-fold) in palmitate incorporation
in the cells from obese animals, and this effect was partially
reversed by melatonin supplementation for 10 weeks (reduction
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FIGURE 2 | Effects of high-fat diet (HFD) and melatonin supplementation (Mel, 1 mg/ kg b.w., diluted in drinking water, daily, for 10 weeks) on serum levels of: (A)

Triglycerides; (B) Total cholesterol; (C) HDL-cholesterol; and (D) LDL-cholesterol. Mice were fed with control diet (Control) or HFD (Obese), supplemented, or not with

Mel (Obese+Mel). Results were analyzed by one-way ANOVA and Tukey post-test. Values are Mean ± SEM (n = 10–12). *P < 0.05 vs. Control.

FIGURE 3 | Effects of high-fat diet (HFD) and melatonin supplementation (Mel, 1 mg/ kg b.w., diluted in drinking water, daily, for 10 weeks) on ING adipocyte

morphometry. (A) Adipocyte area of ING adipose depot; (B) Adipocyte volume; (C) ING cellularity; (D) Hematoxylin and eosin (H&E) staining. Mice were fed with

control diet (Control) or HFD (Obese), supplemented, or not with Mel (Obese+Mel). Results were analyzed by one-way ANOVA and Tukey post-test. Values are mean

± SEM (n = 17–21 to adipocytes volume and n = 6 to histological analysis). Bar = 100µm. *P < 0.05 vs. Control; #P < 0.05 vs. Obese.

of 38% compared to Obese group; Figure 5A). Furthermore,
the increase in lipogenesis induced by HFD was associated with
significant upregulation in the mRNA levels of the lipogenic
enzymes Lipoptotein lipase (Lpl) (∼2.7-fold, Figure 5C) and
Acyl CoA:diacylglycerol Acyltransferase 2 (Dgat2) (∼13-fold),

and partial reversion by melatonin supplementation, since a
significant decrease in Dgat2 gene expression was observed
in the group that received melatonin (Obese+Mel) compared
to Obese group (Figure 5E), but no difference was seen
in relation to Control group. The 1-acylglycerol-3-phosphate
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FIGURE 4 | Effects of high-fat diet (HFD) and melatonin supplementation (Mel, 1 mg/ kg b.w., diluted in drinking water, daily, for 10 weeks) on mRNA levels of genes

related to adipogenesis expressed ING adipose tissue. (A) mRNA levels of Ppargama; (B) mRNA levels of C/ebpalfa; (C) mRNA levels of Adiponectin; (D) mRNA

levels of Glut-4. 18S was used as the housekeeping gene. Mice were fed with control diet (Control) or HFD (Obese), supplemented, or not with Mel (Obese+Mel).

Results were analyzed by one-way ANOVA and Tukey post-test. Values are mean ± SEM (n = 9–13). *P < 0,05 vs. Control; #P < 0,05 vs. Obese.

O-acyltransferase 2 (Agpat-2) analysis did not present statistical
differences between groups (Figure 5D).

In contrast to lipogenesis, mice receiving HFD presented
a significant decrease in lipolytic capacity (∼54%, p < 0.05)
measured by the increment (delta) over basal, after isoproterenol-
stimulated lipolysis in isolated adipocytes (Figure 5B). Melatonin
supplementation completely prevented this fall. Furthermore,
the melatonin effect in lipolysis was associated with significant
upregulation in themRNA levels of the lipase Hormone-Sensitive
Lipase (Hsl) (∼81%, p < 0.05; Figure 5F), but not Adipose
triglyceride lipase (Atgl) (Figure 5G).

Figure 6 shows the oxygen consumption rate by isolated
inguinal adipocytes. Melatonin supplementation partially
reversed (∼77%) the decrease (54%, p < 0.05) in oxygen
consumption triggered by obesity (Figure 6A). The gene
expression of the Peroxisome Proliferator-Activated Receptor
Gamma Coativator 1-alpha (Pgc1alfa) and PR-domain
containing 16 (Prdm16), both transcriptional co-regulators
that boost the increase of mitochondrial genes expression,
were next evaluated. Melatonin supplementation completely
prevented the drop (by 50%, p < 0.05, Figure 6B) in Pgc1alfa
expression observed in non-supplemented Obese group.
Melatonin also increased Prdm16 expression (2.5-fold compared
to Control group, Figure 6C).

Obesity is also characterized by chronic low-grade
inflammation and macrophage infiltration into WAT is
implicated in the metabolic complications. Once active,
macrophages aggregate and form the so-called crown-like-
structure (CLS). In order to visualize these structures, we
performed an immunohistochemistry analysis with the galectin-3

(also known as Mac-2 marker). The galectin-3 is a lectin
expressed in activated macrophages which is related to mediate
the inflammatory and phagocytic responses of macrophages.
The analysis revealed that melatonin supplementation decreased
∼2.6-fold (p < 0.05) the presence of these structures in the
subcutaneous depot, compared to Obese group (Figures 7A,B).

In addition, genes that encode important cytokines involved
in inflammation, such as leptin, interleukin-6 (Il-6), and
monocyte chemoattractant-1(Mcp-1), were also evaluated. It
was observed that both the Leptin and Mcp-1 expression were
significantly increased in mice receiving HFD (20-fold and
95%, respectively). Melatonin supplementation reversed the
effect of HFD on the marked rise in Leptin and completely
reversed Mcp-1 increase (p < 0.05; Figures 7C,E). Regarding Il-
6 mRNA expression, no differences were observed between the
groups (Figure 7D).

DISCUSSION

Herein, we investigated the repercussions of melatonin
supplementation in WAT of obese mice induced by a HFD. Our
data showed that melatonin prevents the body mass gain that
corroborates the lower weight of inguinal and epididymal fat
depots, as well as the smaller volume and area of its adipocytes.
Melatonin also reduced the lipogenesis and acted to increase the
lipolytic capacity and oxygen rate consumption of adipocytes
from the inguinal fat. Furthermore, this hormone reduced
CLS formation which is characteristic of obesity, showing that
in addition to its metabolic effects, melatonin acts to reduce
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FIGURE 5 | Effects of high-fat diet (HFD) and melatonin supplementation (Mel, 1 mg/ kg b.w., diluted in drinking water, daily, for 10 weeks) on lipogenesis and lipolysis

in ING adipocytes. (A) [1−14]- palmitate incorporation into TGA (nanomoles of incorporated [1−14C]- palmitate per 106 cells); (B) Lipolytic capacity; (C) mRNA levels of

Lpl; (D) mRNA levels of Agpat-2; (E) mRNA levels of Dgat-2; (F) mRNA levels of Hsl; (G) mRNA levels of Atgl. Mice were fed with control diet (Control) or HFD

(Obese), supplemented, or not with Mel (Obese+Mel). Results were analyzed by one-way ANOVA and Tukey post-test. Values are Mean ± SEM (n = 6–8 to metabolic

activities and n = 9–13 to gene analysis). *P < 0.05 vs. Control; #P < 0.05 vs. Obese.

inflammation, that was confirmed by the lower expression of
pro-inflammatory cytokines in WAT, such as leptin and Mcp-1.

Obesity triggered by the ingestion of a HFD may be a
consequence of desynchronization in the biological rhythms of
important metabolic processes (28, 29). The supplementation
with melatonin (1mg / kg) exclusively at night prevented or even
partially reversed the changes observed in the obese phenotype.
Thus, it is possible that melatonin acting on the synchronization
of clock genes is preventing the desynchronization generated by
the HFD intake. In addition, some studies show that melatonin,
being a potent antioxidant, could improve inflammation by
acting as a scavenger of reactive oxygen and nitrogen species
(30). It is important to emphasize that the doses offered to
the animals in other works studying obesity and inflammation
ranged from 10 to 100 mg/kg, i.e., 10–100x more than we offered
to the animals. We opted for this dose as it is considered a
more physiological dose from ametabolic point of view. Anyway,

even offering that small amount, we have already seen these
beneficial effects.

Melatonin effect on body weight/fat mass was also described
in others studies (31, 32). Using different animal models (ob/ob
mice or Sprague Dawley rats), these authors observed that
melatonin supplementation by gavage (30 mg/kg for 3 weeks)
or in drinking water (100 mg/kg for 8 weeks) decreased
∼5% the total body mass and the weight of visceral and
subcutaneous fat depots. In another study, melatonin (4 mg/kg),
did not affect body mass of obese animals, despite having
generated a cardioprotective effect (33). These controversial data
may be due to the different concentrations and methods of
melatonin administration.

Associated to a body mass reduction, a preventive effect
exerted bymelatonin on serum triglycerides, total cholesterol and
LDL-cholesterol levels due to HFD was herein observed. Hoyos
et al. (34), also found a reduction in triglycerides and LDL levels
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FIGURE 6 | Effects of high-fat diet (HFD) and melatonin supplementation (Mel, 1 mg/ kg b.w., diluted in drinking water, daily, for 10 weeks) on oxygen consumption in

ING adipocytes. (A) Oxygen consumption; (B) mRNA levels of Pgc1alfa; (C) mRNA levels of Prdm16. Mice were fed with control diet (Control) or HFD (Obese),

supplemented, or not with Mel (Obese+Mel). Results were analyzed by one-way ANOVA and Tukey post-test. Results are presented as means ± SEM (n = 8–10).

*P < 0.05 vs. Control; #P < 0.05 vs. Obese.

and an increase in HDL serum levels in rats fed with cholesterol-
enriched diet treated with melatonin. In another study (35),
it was observed a reduction in body mass, triglycerides levels,
cholesterol and LDL in rabbits with HFD-induced obesity treated
with melatonin (1 mg/kg subcutaneous) for 4 weeks.

An attenuation of serum triglycerides and cholesterol levels
has been attributed to the antioxidant action of melatonin, which
in turn, reduces the effects caused by oxidative stress (36). It
is important to note that dyslipidemia is associated with an
increase risk of cardiovascular disease, once the obese and/or
diabetic individuals showed a high plasma concentrations of total
cholesterol and LDL-cholesterol (37). Thus, the attenuation of
serum triglyceride levels, total cholesterol, and LDL cholesterol
observed in animals treated with melatonin suggests a role
in atherosclerosis prevention, one of the serious complications
of obesity.

Corroborating the lower body mass gain observed in the
melatonin group, the masses of both ING and EPI depots
were reduced indicating that melatonin is able to influence the
adiposity by preventing cell hypertrophy triggered by HFD.
Interestingly, it was shown that only 24–48 h of exposure to a
HFD is enough to cause an abrupt increase in adipocyte size (38).
Different from ING and EPI, RP, and BAT are smaller adipose
depots, thus, it is possible that the subtle effect of melatonin
reducing adiposity was not sufficient to reflect on a relevant
statistical analysis. Additionally, it is believed that the high-fat
diet causes the process of tissue "whitening” in the brown adipose
tissue. Therefore, melatonin supplementation for 10 weeks was
not enough to completely block this process, despite the gross
mass of this tissue in the supplemented animals to be smaller.

In spite of adiposity and hypertrophy prevention effect exerted
by melatonin, we observed that the number of cells in ING depot
was increased in obese+Mel when compared to obese animals
(that present a significant decrease in adipocytes number)
and, concomitantly to this effect, a significant increase in the
expression of Ppargama, the master regulator of adipogenesis
(39), was also observed. Although the role of melatonin in the
adipogenesis process is not clear, a study using 3T3-L1 cells
showed that melatonin stimulates the differentiation of these cells
by increasing the expression of PPAR-γ and CEBP-α (40), whose
data corroborates our findings.

The literature reports a subgroup of obese individuals
classified as metabolically healthy but obese (MHO), that
seems to be more resistant to the development of obesity-
associated metabolic disorders. Despite the excess of body fat,
these individuals exhibit a normal insulin sensitivity, arterial
pressure and a favorable lipid, hormonal, inflammatory, hepatic,
and immunological profile (41). Smaller and more numerous
adipocytes are markers of a healthy obesity indicating that
WAT expansion is promoted by increased cell number. For this
reason, adipocyte differentiation is now accepted to be a potent
strategy to allow for healthy WAT expansion and to prevent
the development of hypertrophic obesity, an independent risk
factor for the development of type 2 diabetes (2). Adipogenesis
in subcutaneos stromal cells is markedly reduced in hypertrophic
obesity and the degree of impairment in this process is positively
correlated with adipose cell size (42).

In fact, it has been suggested that the damage in the ability
to recruit and differentiate new subcutaneous adipose precursor
cells is the cause of the hypertrophic obesity (43, 44). Once
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FIGURE 7 | Effects of high-fat diet (HFD) and melatonin supplementation (Mel, 1 mg/ kg b.w., diluted in drinking water, daily, for 10 weeks) on inflammation in the ING

depot. Mice were fed with control diet (Control) or HFD (Obese), supplemented, or not with Mel (Obese+Mel). (A) Immunohistochemistry analysis [number of

crown-like structures (CLS)/ 10.000 adipocytes] using Mac-2 marker (n = 6). White adipose tissue (WAT) macrophages localize to CLS around individual adipocytes.

(B) Light microscopy of inguinal WAT of Control, Obese, and Obese+Mel mice showing MAC-2 immunoreactive macrophages (arrows in brown color). Bar = 100µm;

(C) mRNA levels of Leptin in ING depot; (D) mRNA levels of Il-6 in ING depot; (E) mRNA levels of Mcp-1 in ING depot. Results were analyzed by one-way ANOVA and

Tukey post-test. Values are mean ± SEM (n = 9–13). *P < 0.05 vs. Control; #P < 0.05 vs. Obese.

committed, preadipocytes can undergo the adipogenic program
leading to activation of the dominant adipose regulator PPAR-
γ as well as the C/EBP proteins (39, 45). Newly differentiated
adipose cells secrets more adiponectin an important adipose-
derived insulin-sensitizing hormone, one of the best predictors
of insulin sensitivity and marker of adipogenesis. However, the
serum levels of adiponectin drop considerably in hypertrophic
(pathological) obesity (46). Thus, based on our data about
hypertrophy and hyperplasia of the fat cells, we can infer that
melatonin may act as a blocker agent in the development of
pathological obesity, since the formation, and presence of smaller
and more numerous adipocytes brings benefits to the individual,
for example, expressing more adiponectin, as we observed in this
study (Figure 4C).

Also, studies indicate that the improvement and increase
in mitochondrial biogenesis is associated with adipocytes
differentiation (47). Moreover, it has been demonstrated that
mitochondrial function is damaged under conditions of type

2 diabetes and morbid obesity, indicating that under these
conditions there is a reduction of total oxygen consumption
rates (48), suggesting a decrease in mitochondrial oxidative
activity. As observed here, the animals consuming a HFD
showed a marked decrease in oxygen consumption. However,
those supplemented with melatonin partially recovered this rate,
approaching the levels observed in animals receiving a control
diet. It is known that melatonin acts on mitochondria because is
a potent scavenger of ROS (49) for this reason the improvement
observed in this function could be given to the protective effect
of melatonin by preventing oxidative stress induced by obesity
(50). Other studies have indicated that melatonin could increase
mitochondrial biogenesis (51) and inhibit apoptosis (52). The
key gene for the mitochondrial biogenesis activation is Pgc1-α
and can be transactivated by Prdm16, a gene that is intimately
involved with the brown adipocytes differentiation (53). Our
results point to this interrelation, since we observed a significant
increase in the expression of both genes. Moreover, it is known
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that PPAR-γ (also increased in this study by the melatonin
treatment) is also important to the thermogenic function and
brown adipocytes differentiation (54, 55).

In addition to adipogenesis, adiposity is regulated by two
fundamental metabolic processes in adipocytes, lipogenesis and
lipolysis. Lipogenesis, an anabolic pathway responsible for the
accumulation of TGAs, is also regulated by melatonin. Studies
have shown that this neurohormone is able to inhibit the
lipogenesis in the liver of hamsters (56) as well as promote a
down-regulation on the expression of SREBP-1 (sterol regulatory
element binding protein 1), Fas (fatty acid synthase), and Scd1
(stearoyl-CoA desaturase-1) in HepG2 cells (57). In visceral
adipocytes, melatonin increased Fas expression (13). Here, we
demonstrated a decrease of ∼40% in the incorporation of fatty
acids into TAG in subcutaneous (ING) cells from obese mice
receiving melatonin, as well as a reduction in the expression
of Lpl and Dgat2, both important lipogenic enzymes (58). The
analysis of Agpat-2 gene expression, another enzyme involved
with triglycerides biosynthesis, reveled a decrease of ∼35% in its
expression in the Obese+Mel group. Thus, melatonin was able to
limit the triglycerides synthesis in ING adipocytes.

On the other hand, lipolysis, process by which occurs
the lipid breakdown from adipocytes, generates free fatty
acids and glycerol release and is important to WAT mass
regulation (59). Lipolysis is mainly activated by catecholamines
acting through its beta-adrenoreceptor and is strongly regulated
by the hormone-sensitive lipase (HSL) enzyme. Studies have
shown that melatonin, at different concentrations, is able
to stimulating lipolysis through HSL and pHSL protein up-
regulation, besides regulating the gene expression of Atgl and
Perilipin (60). It was also shown that the melatonin can
promote lipolysis of intramuscular fat by activating protein
kinase A and the signaling of extracellular signal-regulated
kinases 1/2 (61). Herein, it was observed that in addition
to the increased lipolysis, melatonin stimulated the Hsl gene
expression. Since the lipolysis activity is highly linked to the
thermogenic process (62), the increase in the lipolytic capacity
observed in Obese+Mel group reinforces the hypothesis that
melatonin stimulates the thermogenesis as a consequence of an
increment in the browning process. Although browning was
not approached here, it was demonstrated in another work that
melatonin (10mg/kg/days) for 6 weeks was efficient in promoting
browning in subcutaneos adipose depot of Zucker diabetic fatty
rats (63).

In addition to its important metabolic function, WAT also
secretes a variety of adipokines with pro- and anti-inflammatory
characteristics (64). In obesity condition, it is observed a
disbalance on this secretion, where a greater release of pro-
inflammatory cytokines (Leptin, IL-6, TNF-α among others) is
seen in detriment to anti-inflammatory cytokines (Adiponectin
and IL-10). Our results indicates that HFD was effective in
increasing the expression of leptin, Il-6, and Mcp-1 and that
melatonin supplementation significantly prevented the leptin
andMcp-1 increase demonstrating the potent anti-inflammatory
action of melatonin. As we did not perform the measures in a
visceral adipose depot, but in subcutaneous, that is described
to produce and release less IL-6 (24, 65), the statistical analysis

was not able to demonstrate significant difference between the
three groups.

The increase in adiposity also leads to a lower ability to expand
the capillary network surrounding the adipocytes, resulting in
hypoxia and cellular necrosis, which contributes to increasing
inflammatory cell infiltrate (66). The macrophage infiltration
into WAT is implicated in the metabolic complications of this
comorbidity. Once the macrophages are active, using the Mac-
2 marker, it is possible to visualize a set of structures called
as CLS, which correspond on macrophages that individually
surround each adipocyte during an inflammatory process (64,
67). As observed, melatonin decreased ∼2.6-fold the presence
of these structures in the subcutaneous depot of the obese
animals, confirming that this neurohormone can attenuate the
inflammatory framework. Herein, we describe for the first
time the action of melatonin decreasing the CLS formation
characteristic of the inflammatory process by macrophage
infiltration in WAT of obese mice, induced by a HFD. This
result corroborate the findings in isolatedmyofibroblasts induced
to inflammation by leptin, where melatonin (1µM) was able
to reduce the increase of galectin-3 protein expression in these
cells (68).

Taken together, our study provide further evidences proving
the beneficial functions of melatonin on the obesity condition.
More studies are necessary to understand the pathways by which
melatonin acts to prevent and ameliorate the dysfunctions caused
by increased adiposity in mice on the HFD. The major findings
of our study is that the melatonin supplementation prevents the
deleterious effects caused by the excessive intake of a hyperlipidic
diet, and can be considered a potential therapeutic agent to
attenuate the metabolic and inflammatory disorders triggered
by obesity. This work provides important evidence concerning
the effectiveness of a low-cost hormone to prevent or treat the
obesity-related conditions, which causes thousands of deaths
annually and burdens the public coffers.
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