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The remission phase (or honeymoon period) is a spontaneous “temporary cure stage”

in type 1 diabetes course, which provides a good human model for studying β-cell

protection. The exact mechanisms are still uncertain, but one of the generally recognized

mechanisms is that correction of “glucotoxicity” by exogenous insulin therapy leads

to “β-cell rest” and β-cell recovery. Beyond this, the remission phase is accompanied

by changes in various immune cells and immune molecules, indicating downregulation

of immune response, and induction of immune tolerance. The role of hyperglycemia

rectification in the regulation of immune response should be emphasized because

glucose metabolism is critical to maintain the normal function of immune system. Here,

recent evidence of immune modulation based on the rectification of hyperglycemia from

multiple aspects such as immune cells, inflammatory cytokines, biomolecules, and cell

antigenicity was reviewed. It should be noteworthy that the interaction between glucose

metabolism and immune plays an important role in the pathogenesis of the remission

phase. The best intervention strategy may be the combination of strict glycemic control

and immune modulation to protect β-cell function as early as possible.
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INTRODUCTION

Type 1 diabetes mellitus (T1DM) is an autoimmune T-cell-mediated damage to pancreatic β

cells, leading to an absolute deficiency in endogenous insulin. Because of the irreversibility of
β-cell function decay, continuous exogenous insulin treatment is essential (1). To restore the
patient’s β-cell function and become insulin independent is the highest goal that scholars have
been pursuing for decades. Actually, the primary endpoint of T1DM intervention study is β-cell
function protection. Many attempts and strategies have been tried; some have made major progress
in immunotherapy, but curing T1DM is still a great challenge to be overcome (2).

During the disease process, some patients have a very special period with tempory recovery
of β-cell function, which is called remission phase or “honeymoon period” (3). The concept
of “remission phase” was first described by Jackson et al. (4). They observed a rapid decline
in demand for exogenous insulin in diabetic children after regular insulin treatment, and
hypoglycemic shock was a frequent occurrence during this period. In 1944, Brush (5) gave a more
specific description of this phenomenon. Animal experiments also proved that hyperglycemia is
a major factor to promote the development of diabetes, and early correction of hyperglycemia is
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conducive to the recovery of islet function (6, 7). Several
subsequent studies confirmed that insulin treatment leads to
preservation of residual β-cell function (8, 9).

The remission phase is a short “clinical cure stage,” which
provides a decent human model for studying β-cell protection
and immune modulation. In-depth studies of the mechanisms
of this period may lay a foundation for inhibiting autoimmune
response and even achieving clinical cures for T1DM. The
fundamental pathophysiological change of the remission phase
is a transient recovery of β-cell function (10). The exact
mechanisms are still uncertain, but one of the generally
recognized mechanisms is that correction of “glucotoxicity” by
exogenous insulin therapy leads to β-cell rest. Recent evidence
suggested that hyperglycemia rectification might protect β-cell
function through other pathways, such as inducing immune
modulation (11, 12). The latest study found that the remission
phase was accompanied by changes in the frequency of regulatory
T cells (T reg), CD25+CD127hi cells, memory T cells, Th1 cells,
B-cell subsets, neutrophils, and other immune cells (13). Besides
the immune cells, a variety of cellular inflammatory factors,
immune related molecules may also be related to the remission
phase. This review will discuss the possible mechanisms of
immune modulation of the remission phase from the aspect of
cellular, inflammatory, and molecular levels and focus on the
glyco-metabolism in immune cells.

IMMUNE CELLS

T Cell Subsets
The frequency of some T-cell subsets is closely related to the
remission phase, and the correlation might be partly attributable
to good glycemic control. Moya et al. (14) found that the high
frequency of activated Treg cells (aTreg), CD45RO+ memory T
cells, and CD25+CD127hi cells in T1DM patients had a positive
correlation with the duration of remission phase, and these
correlations only existed in the condition of satisfactory glycemic
control. A study in 2018 also found that the remission phase was
accompanied by dynamic changes in Treg cells, Th1 and Tc1-
cell subsets (13), with the decreased number of Treg cells and
increased Th1 and Tc1 cells at the end of the remission phase. A
recent study that examined a variety of immune cell subsets and
cellular molecules in newly diagnosed children with T1DM found
that the level of memory-regulatory T cells (mTreg) decreased
after the appearance of clinical symptoms and aTreg and Th17
cells were significantly elevated in the first year of onset (the
remission phase often occur) (15). The mTregs were also noted
to be positively correlated with C-peptide in T1DM patients
(16). Evidence of the obvious dynamic changes in Tregs in the
different stages of remission phase suggested that the immune
response during the remission phase was most likely related to
the frequency and function of Tregs.

Treg cells (CD4+CD25+T cells) play a critical role in the
induction and maintenance of peripheral tolerance (17–19).
Dysfunction of Treg cells has been found to be one of the key
pathogenesis of autoimmune diabetes (20, 21). There is one study
that showed that presence of Tregs to Teffs dominance is the
underlying cause of the remission phase (22). Considering the

crucial roles of glucose metabolism in T-cell function, it has been
expected that hyperglycemia rectification may be a trigger event
for dominance of Tregs in the remission phase.

As early as in 2008, Maciver et al. (23) found that the
energy that is supplied by glucose is necessary for T cells to
sustain growth, proliferation, and immune activity. T cells cannot
produce the appropriate cytokines, such as IFN-γ, to exert
an immune effect without adequate glucose uptake (23). This
suggests that the immune function of T cells requires a normal
state of glucose metabolism. Treg cells have also been implicated
in glucose metabolism in numerous studies (24, 25). Recent
study showed that the growth and differentiation processes of
Tregs and Th17 are significantly dependent on glycolysis and
aerobic phosphorylation (26). In this regard, although there
is no direct evidence available, it is rational to deduce that
rapid rectification of hyperglycemia at the initial stage of T1DM
might help to recover the impaired function of Treg cells and
downregulate the immune response that is characterized by
remission phase. Indeed, in the study of Moya R, the frequent
changes of aTreg, CD25+CD127hi cells, and CD45RO+ memory
cells were correlated with better blood glucose control (14), which
may serve as indirect evidence for this hypothesis.

In addition to Tregs, other T-cell subsets are less reported in
the remission phase. In the previously mentioned study, Moya
showed that the CD25+CD127hi-cell frequency was significantly
correlated with that of aTregs. In this way, it could be speculated
that good glycemic control might also restore the function
of CD25+CD127hi cells, which promote the development of
Tr1 cells through CD44 and CD44v6 signaling pathways (14).
Tr1 and memory T cells have also been demonstrated to
inhibit autoreactive inflammation (27, 28), but their roles in the
remission phase have not been reported so far.

B-Cell Subsets
Recent studies have shown that B lymphocytes also play an
indispensable role in the pathogenesis of the autoimmune
diabetes (29, 30). A study showed that the frequency changes of
marginal zone B cells (MZB), follicular B cells (FoB), and other B-
cell subsets were associated with T1DM, and the regulatory B cells
(Breg) have immunomodulatory effects (30). Limited reports
showed that the remission phase was accompanied by changes
in B-cell frequency (13, 15). Glucose metabolism had also been
shown to play an important role in the normal functioning of
B cells. Therefore, it may be hypothesized that hyperglycemia
rectification during the remission phase affects the frequency of
B cells.

Studies on the relationship between B-cell subsets and the
remission phase are rare. In 2018, Fitas et al. (13) found that
the absolute number and relative frequency of B cells decreased
significantly during the disease course when compared with the
onset stage and hit the lowest level in the remission phase. A
recent study found that the Breg cells significantly increased
during the remission phase (15). In addition, the study showed
that the intervention of the anti-CD20 monoclonal antibody
rituximab can extend the duration of the remission phase to 2
years (31). These combined results suggested that B lymphocytes
are involved in the pathogenesis of the remission phase.
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Among all B-cell subsets, the Breg subpopulation with
immunomodulatory effects is a research hotspot. An animal
studied showed that Breg subpopulations that secrete IL-10
(CD1dhiCD5+, B10) can effectively inhibit the proliferation of
effector T cells and alleviate the decline in β-cell function by
secret IL-10 (32). Breg cells were increased in the early recovery
stage of T1DM (15), and the B10 subgroup was positively
correlated with fasting C-peptide level and negatively correlated
with HbA1c of T1DM patients (30). The evidence suggests
that B-cell subsets participate in the process of the remission
phase. In addition, it was reported that B10 cells can reduce T-
cell-mediated islet transplant rejection by promoting Treg-cell
development and inhibiting pro-inflammatory Th1-cell activity
(33). Considering this situation, it is a high value to investigate
the effects and mechanisms possible of B10-cell subsets in the
remission phase.

At present, studies about glucose metabolism and immune
cells are mainly concentrated in T cells and macrophages. Studies
of the relationship between B cells and glucose metabolism are
rare. An in vitro study showed that B-lymphocyte activating
factor, lipopolysaccharide, and B-cell receptor rapidly accelerate
glucose uptake and glycolysis, which provide rapid energy for cell
proliferation (34). In addition, Kojima et al. (35) reported that
hypoxia-inducible factors play a part in upregulating glycolysis
during B-cell development. Furthermore, hypoxia-inducible
factor-1α plays a critical role in the expansion of B10 cells and
the expression of IL-10 (36). It is suggested that the regulation
of B-cell energy metabolism is essential for its development and
function. Therefore, the rectification of hyperglycemia may affect
the normal function of B-cell subsets and participate in the
remission phase immune modulation process. However, there is
no relevant research evidence yet.

Other Immune Cells
Besides T and B cells, other immune cells such as natural killer
(NK) cells, monocytes, and neutrophils may also participate
in the remission phase of T1DM. Fitas et al. (13) reported
that the number of neutrophil and NK cells was significantly
reduced at the onset of T1DM and began to recover during
the remission period, and low percentage of NK cells and high
percentage of neutrophils were positively correlated with the
duration of the remission phase. The number of mononuclear
cells also decreased after the onset of T1DM and reached the
nadir in the first year (15). These changes of the immune cells in
peripheral blood suggest an active extravasation to target tissues,
probably contributing to the downregulation of the autoimmune
response (16).

CYTOKINES

The roles of pro-inflammatory and anti-inflammatory cytokines
in the pathogenesis of T1DM have been known for a long time.
Numerous cytokines have been tested as possible biomarkers
for the remission phase. Hvidoere’s team found that Th1-related
chemokines CCL5 decreased in patients with remission and
was positively correlated with HbA1c, while CCL3 increased
in these patients but negatively correlated with C-peptide

(37). Furthermore, patients during the remission phase were
accompanied with decreased IFN-γ and TGF-β levels, and high
levels of IL-10 were in parallel with good glycemic control (15, 38,
39). However, some inconsistent results had been reported, and
pro-inflammatory IL-6 was shown to be elevated in the remission
phase while demonstrated a positive correlation with glycemic
control (40). When different cytokines were taken together and
defined patients according to multiple cytokines, that is, low-
responder patients who did not detect any anti-inflammatory
(IL-4, IL-10, and IL-13) and pro-inflammatory factors (TNF-α)
and high-responder patients with at least one cytokine detected,
it was found that low responders had higher C-peptide levels and
longer remission duration than high responders (13), suggesting
the downregulation of pro-inflammation in the remission phase.

Glucose metabolism is implicated in the change pattern of
cytokines. Soluble interleukin-7 (IL-7) receptor α (sCD127)
expressed on the surface of T cells, when combined with IL-
7, has an antagonistic effect on IL-7 signaling pathway and
IL-7-mediated T-cell proliferation (41). It is worth noting that
hyperglycemia resulted in a glycosylated form of sCD127 that was
ineffective as an IL-7 antagonist and glycosylated sCD127 was
found in patients with T1DM (42), which provided new evidence
that hyperglycemia regulates the immune network by acting on
immune molecules.

IMMUNE MOLECULES

The role of inhibitory immune-related molecules such as CTLA4
is crucial in the pathogenesis of T1DM. Recently, programmed
cell death-1 (PD-1), a transmembrane glycoprotein belonging
to CD28/CTLA4 family, which is acting as an important
immunosuppressive molecule that is mainly expressed on
activated T or B cells, is regaining the attention in the field
of T1DM as well as in oncology (43). It was shown that the
infiltration of autoimmune islet inflammation and islet antigen
reactive T cells was aggravated when PD-1 or PD-L1 was blocked
(44). PD-1/PD-L1 as a therapeutic target can effectively inhibit
autoimmune T-cell response in non-obese diabetic mice and
reverse diabetes (23). The widespread application of PD-1/PD-
L1 antibody therapy is an epoch-making event in the field
of oncology, but their side effects as PD-1 inhibitor induced
T1DM have prompted us to explore the roles of PD-1/PD-L1 in
T1DM and its possible participation in the remission phase. It is
noteworthy that the expression of PD-L1 on β cells could alleviate
autoimmune attacks and resist T-cell-mediated destruction (45,
46), making PD-L1 as a potential biomarker for recognizing β

cells that resist the immune attack. In this sense, it is of particular
interest to explore whether PD-1/PD-L1 expression of immune
cells and β cells could be a predictor for the occurrence and
duration of the remission phase.

IMMUNOGENICITY OF ISLET β CELLS

A study showed that some β cells can survive a long time without
being immune attacked by reducing the expression of diabetes-
associated antigens IGRP, Chga, Gad1, and Ins1/Ins2 (46). This
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TABLE 1 | The immunological changes during the different stage of the remission

phase.

Immunological markers Changes during the

remission phase

References

aTreg, Th17, Breg,

Neutrophil, CCL3, IL-6

Increased at the beginning

of the remission phase

(13, 15, 37, 40)

B cells, mononuclear, NK

cells, CCL5, INF-γ, TGF-β,

β-cell immunogenicity,

Decreased at the beginning

of the remission phase

(13, 15, 37, 38, 52)

aTreg;

CD4+CD25+CD127hi cells;

CD4+CD45RO+ memory

cells; Neutrophil; IL-10,

Positively correlation with

the length of the remission

phase

(13, 14, 39)

NK cells; IL-4; IL-13; TNF-α, Negatively correlation with

the length of the remission

phase

(13)

suggests that changes of β-cell antigenicity play an important role
in the immune destruction process. The effect of blood glucose on
the immunogenicity of β cells has long been documented, and a
hyperglycemic environment could stimulate antigen expression
(47–49). A new study found that resident macrophages in islets
could take up the β endocellular insulin-containing granules
through its filopodial and present insulin peptides to insulin-
reactive T cells and the antigen presentation was increased
after high-glucose stimulation in non-obese diabetic mice (50).
Skowera et al. (51) showed that the expression of cell-specific
proinsulinogen (PPI) signaling epitopes increased in long-
term hyperglycemic concentrations, leading to increased PPI-
specific CD8+ T-cell killing of cells and accelerated β-cell death.
Accordingly, a significant decrease of autoantigen expression
of β cells was observed after insulin treatment (52, 53). Taken
together, it was deemed that correction of the “glucotoxicity”
during the remission phase may downregulate immune response
by reducing the immunogenicity of β cells.

DISCUSSION

To sum up, patients in remission phase were accompanied by
changes in the frequency of various cells and immune molecules,

including increased aTreg, Th17, Breg, and neutrophil cells to
varying degrees, decreased B cells, NK cells, IFN-γ, and lower β

cell immunogenicity, partly due to hyperglycemia rectification.
Meanwhile, duration of the remission phase is also related to a
variety of cells and molecules, such as aTreg, CD25+CD127hi

cells, CD45RO+ memory cells, neutrophil, and IL-10, which
are positively correlated, and NK cells and some inflammatory
molecules (IL-4, IL-10, IL-13, and TNF-γ), which are negatively
correlated (Table 1). The occurrence of remission phase is based
on the immune modulation as well as β-cell rest, and rectification
of hyperglycemia is likely to be the main cause of this immune
change. Although the exact mechanisms are not clear, it could
be deemed that controlling hyperglycemia not only is important
to β-cell rest but also has vital effects on various immune
components. The best way to intervene in T1DM may be
to combine strict glycemic control with immune intervention
to protect β-cell functions as early as possible and as long
as possible.

Although there are several published studies on the remission
phase of T1DM (54, 55), reviews focusing on mechanisms of
immune modulation by hyperglycemia rectification are lacking.
Our review has some strength in providing a comprehensive
overview and new evidence on the interaction between glucose
metabolism and immune regulation from multiple aspects such
as immune cells, inflammatory cytokines, biomolecules, and
cell antigenicity. The importance of immune-glycometabolism
should be emphasized in the pathogenesis of the remission phase.
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