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Cardiometabolic diseases encompass those affecting the heart and vasculature as well
as other metabolic problems, such as insulin resistance, diabetes, and non-alcoholic
fatty liver disease. These diseases tend to have common riskfactors, one of which
is impaired adiponectin action. This may be due to reduced bioavailability of the
hormone or resistance to its effects on target tissues. A strong negative correlation
between adiponectin levels and cardiometabolic diseases has been well-documented
and research shown that adiponectin has cardioprotective,insulin sensitizing and direct
bene�cial metabolic effects. Thus, therapeutic approaches to enhance adiponectin
action are widely considered to be desirable. The complexity of adiponectin structure
and function has so far made progress in this area less than ideal. In this article we will
review the effects and mechanism of action of adiponectin oncardiometabolic tissues,
identify scenarios where enhancing adiponectin action would be of clinical value and
�nally discuss approaches via which this can be achieved.
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Adiponectin, one of the most abundant circulating hormones in healthy individuals, exerts
many bene�cial e�ects on cardiometabolic health. Adiponectin functions through multiple
signaling pathways that stimulate bene�cial e�ects on metabolism, in�ammation, atherosclerosis,
and cardioprotective responses. Circulating levels of adiponectin decline under conditions of
metabolic stress, including obesity and metabolic syndrome, and are associated with decreased
adiponectin signaling. Thus, strategies that enhance or restore adiponectin action are currently
being investigated as therapeutic approaches in the treatmentof cardiometabolic disease.

STRUCTURAL FEATURES OF ADIPONECTIN

Circulating adiponectin is primarily derived from adipose tissue, with lower-level expression
detected in several other peripheral tissues (1–4). Adiponectin monomers are oligomerized
within adipocytes prior to secretion and circulate as low molecular weight (LMW) medium
(MMW) and high molecular weight (HMW) forms. Extensive post-translational modi�cations
play a critical role in adiponectin forming these oligomeric complexes. In particular,
the disul�de bond formed via Cys39 (human)/Cys36 (mouse) and the hydroxylation,
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glycosylation occurred on lysine residues (lys68, lys71, lys80,
lys104) are essential for adiponectin to form the hexameric
and oligomeric complexes, respectively (5, 6). The full-length
adiponectin (fAd) oligomers can be cleaved by neutrophil elastase
to liberate the carboxy-terminal globular domain (gAd) which
itself possesses physiological activity (7, 8).

ADIPONECTIN RECEPTORS AND
SIGNALING

Adiponectin action is mediated primarily through adiponectin
receptors 1 (AdipoR1) and 2 (AdipoR2), which are non-
G-protein-coupled receptors containing seven transmembrane
domains, but with an internal N-terminus and external C-
terminus (9). Both adiponectin receptors are rather ubiquitously
expressed although some variations do occur, such as more
abundant AdipoR1 expression in skeletal muscle and higher
AdipoR2 expression in liver (9, 10). In vitro experiments in
C2C12 myocytes utilizing siRNA demonstrated that suppression
of AdipoR1 reduced gAd binding while AdipoR2 suppression
primarily reduced fAd binding, and their respective downstream
signaling and functional e�ects (9). The functional roles of
adiponectin receptors have been examined in transgenic or
knockout mouse models of AdipoR overexpression created by
di�erent research groups. Yamauchi et al. reported undetectable
levels of adiponectin speci�c binding and action in AdipoR
1 and 2 double-knockout mice leading to glucose intolerance
and insulin resistance in these animals. Both AdipoR1-null
and AdipoR2-null mice exhibited similar phenotypes with both
strains showing increased adiposity and insulin resistance(11).
A consistent phenotype of insulin resistance was observed in
AdipoR1 de�cient mice (12, 13), however studies in which
AdipoR2 was deleted have reported opposing phenotypes in
terms of glucose tolerance and susceptibility to diet-induced
insulin resistance (11–14).

Adiponectin binding to AdipoRs initiates a cascade of
downstream signaling through the interaction of AdipoR to
intracellular adaptor proteins (15) with APPL1 (adaptor protein
containing pleckstrin homology domain, phosphotyrosine
binding domain, and leucine zipper motif 1) acting as the
primary adaptor protein mediating the metabolic e�ects
of adiponectin (16). Adiponectin stimulation results in the
binding of APPL1 to the cytoplasmic domain of AdipoR1 and
AdipoR2 via the phosphotyrosine binding (PTB) and coiled
coil (CC) domain of APPL1 (17). Subsequent translocation
of LKB1 to the cytosol as well as calcium release from the
endoplasmic reticulum through phospholipase C activates
calcium/calmodulin-dependent protein kinase (13, 18, 19).
AMPK activation is the central mechanism whereby adiponectin
stimulates metabolic e�ects (6, 7, 10, 13, 17, 18, 20–26), induces
NO-dependent vasodilation, inhibits the production of reactive
oxygen species (ROS), and modulates mTOR signaling. In
addition to AMPK activation, several AMPK-independent
pathways exists whereby adiponectin is able to regulate insulin
sensitivity, in�ammation, glucose uptake, and ceramidase
activity (27).

PHYSIOLOGICAL EFFECTS OF
ADIPONECTIN AND IMPLICATIONS IN
CARDIOMETABOLIC DISEASE

The diverse physiological functions of adiponectin in metabolic
and cardiovascular tissues has signi�cant implications in
health and disease states. Multiple studies have established
primarily bene�cial e�ects of adiponectin on the regulation
of metabolism, immunity, in�ammation, cardiac remodeling,
vasculature control and cancer (16, 28–30). The anti-diabetic
actions of adiponectin include insulin sensitizing and insulin
mimetic actions in liver and skeletal muscle, as well as protection
against beta cell destruction in the pancreas (31). In addition
to this, increased glucose transport and GLUT4 translocation
by adiponectin in skeletal muscle is regulated by AMPK or p38
MAPK activation (17). Adiponectin increases fatty acid oxidation
through PPARa enhanced expression of target genes in the liver
(20, 22, 23) or through increased mitochondria biogenesis in
skeletal muscle (13).

The cardioprotective e�ects of adiponectin can be attributed
in part to e�ects on cardiac metabolism, apoptosis, autophagy
and hypertrophy (32). Additional cardioprotection is mediated
by the anti-in�ammatory, antioxidant, and vasorelexant
properties of adiponectin as well as its ability to inhibit
atherogenesis (31). Initial in vivo studies examining the e�ect of
adiponectin on atherosclerosis demonstrated that adenovirus-
mediated overexpression of adiponectin (33) and gAd treatment
(23) in apolipoprotein (apo) E-de�cient mice resulted in reduced
atherosclerosis. Systematic review and meta-analysis of human
clinical trials suggests an important role of adiponectin in the
development of atherosclerosis, as hypoadiponectinemia was
associated with early carotid artery atherosclerosis lesionsin
healthy and metabolic disease populations (34). It should be
noted that this association was weak (34) and not consistent
across all studies (35) but in vitro experiments as well as animals
studies have reported data supporting the anti-atherogenic
properties of adiponectin. Adiponectin inhibits multiple steps
involved in the development of atherosclerotic lesions including
the reduction of macrophage lipid accumulation, inhibition
of macrophage to foam cell formation, suppression of pro-
in�ammatory cytokines release and lymphocyte migration,
inhibition of leukocyte and endothelial cell interaction, and
suppression of vascular smooth muscle proliferation through
the inhibition of atherogenic growth factors (31, 36). In the
early development of atherosclerosis, adiponectin has been
demonstrated to inhibit monocyte-macrophage migration, thus
reducing the attachment of monocytes to injured endothelial cells
and the formation of macrophage foam cells (37, 38). In addition
to this, adiponectin can downregulation scavenger receptor
A (SR-A) and acyl-coenzyme A: cholesterol-acyltransferase 1
(ACAT1) expression, both of which are important regulators of
macrophage lipid accumulation and foam cell formation (39, 40)
Adiponectin can also inhibit foam cell formation by modulating
lipid metabolism and cholesterol e�ux in macrophages (41, 42)
and altering the activity of enzymes (i.e., heptaic lipase,
lipoprotein lipase) involved in the catabolism of lipoproteins

Frontiers in Endocrinology | www.frontiersin.org 2 December 2019 | Volume 10 | Article 842

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Liu et al. Adiponectin-Based Therapeutics

(41). The e�ects of adiponectin on foam cell formation is
mediated through an adiponectin-AdipoR1/2-APPL1 axis in
macrophages (43, 44). Thus, adiponectin is a critical factor
regulating the development of atherosclerosis which accounts
for its bene�cial e�ects on cardiometabolic diseases.

Dysregulation of cardiac energy metabolism is an important
feature seen in early stages of heart failure. Cardiomyocyte
contractile energy in the healthy heart under aerobic conditions
is derived from fatty acids (� 70%) and glucose (� 30%) and
this balance is perturbed under conditions of cardiac stress,
such as under ischemic conditions (45). Our group (46–
48) and others (49–51) have shown that adiponectin can
regulate cardiac energy metabolism. Both globular and full-
length adiponectin stimulation led to increased glucose uptake
and metabolism (46) via the activation of AMPK, IRS1, and
Akt1 in primary neonatal rat cardiomyocytes. The e�ect of
adiponectin on cardiomyocyte glucose uptake is dependent
on Rho/ROCK regulated actin cytoskeleton remodeling which
colocalized APPL1 to actin �laments (48). Similar results were
observed in primary adult rat cardiomyocytes with adiponectin
signi�cantly enhancing insulin stimulated Akt phosphorylation
and glucose uptake (47). The e�ect of lipotoxicity on cardiac
insulin signaling was examined in adiponectin knockout mice
and a signi�cant reduction in insulin stimulated Akt signaling
was observed in high fat fed mice compared to chow fed group
and adiponectin replenishment was able to reverse the defect
in insulin signaling (52). Adiponectin treatment increased the
expression of fatty acid transporter protein-1 and induced the
translocation of CD36 to the outer cell membrane in primary
neonatal and adult rat cardiomyocytes, respectively, resulting in
increased fatty acid uptake (47, 48). Adiponectin, via AdipoR1-
APPL1 signaling, regulates fatty acidb-oxidation in primary
rat cardiomyocytes and isolated working heart through the
activation of AMPK leading to acetyl coenzyme A carboxylase
(ACC) phosphorylation and enhanced fatty acid oxidation (47,
48). These results suggest that adiponectin isoforms regulate
cardiac metabolism and function leading to more e�cient
utilization of glucose and fatty acids.

Adiponectin attenuates cardiomyocyte apoptosis seen in
heart failure through several di�erent signaling pathways.
Adiponectin treatment was protective against stress-induced
apoptosis through Akt-dependent signaling (53) in HL-1
cardiomyocytes. In cultured H9c2 cells and adiponectin-null
mice, globular adiponectin attenuated hypoxia/reoxygenation-
induced apoptosis through the reduction of reactive oxygen
species (54, 55). Adiponectin stimulation of ceramidase activity
plays a vital role in cell survival through ceramide degradation
and production of sphingosine 1-phosphate (S1P) both of which
protected primary mice neonatal ventricular cardiomyocytes
from palmate-induced apoptosis (56). Our group has recently
demonstrated the importance of ceramidase activity in the
cardioprotective e�ects against reactive oxygen species (ROS)
and apoptosis. High fat diet (HFD) in adiponectin knockout
mice increased myocardial total triglyceride, ceramides,and
sphingosine-1-phosphate (S1P) compared to chow-fed animals
with adiponectin replenishment resulting in signi�cant reduction
in S1P intracellular content. When these conditions were

simulated in anin vitro model of lipotoxicity, palmitate treatment
signi�cantly increased S1P intracellular concentrations in H9c2
cells. Addition of a synthetic adiponectin receptor agonist,
AdipoRon, to palmitate-treated H9c2 cells reduced intracellular
concentrations while simultaneously increasing secretion of S1P
which was consistent with attenuation of palmitate-induced
ROS production and cell death. Thus,in vivo and in vitro
results suggests that through the activation of cardiac ceramidase
activity, adiponectin increases the conversion of ceramideto S1P
which is secreted to exert autocrine/paracrine cardioprotective
e�ects (52).

Regulation of cardiomyocyte autophagy is now recognized
as an important mechanistic component of the cardioprotective
e�ects of adiponectin. Examination of myocardial autophagy in
an in vivo animal model of oxidative stress induced by chronic
angiotensin II (Ang-II) treatment showed increased LC3II
protein expression in the left ventricle which was signi�cantly
higher in adiponectin knockout vs. wild-type mice (57), this
most likely resulting from a block of autophagic �ux. H2O2
induced autophagic cell death in isolated adult rat ventricular
myocytes through AMPK/ERK activation, mTOR inhibition,
and increased expression of authophagic protein. This led to
autophagasome accumulation and adiponectin pre-treatment
ameliorated the e�ect of oxidative stress on autophagy (57).
Cardiac autophagy is a dynamic process which is activated
in response to stress but can become inhibited in chronic
pathological conditions. In studies examining the e�ect of
HFD on autophagy in wild-type and adiponectin knockout
mice, a compensatory elevation in autophagy in response
to HFD was lacking in Ad-KO mice (58). Aortic banding
to induce pressure overload cardiac dysfunction resulted in
activation of cardiac autophagy in wild-type mice but this
change was de�cient in adiponectin-null mice (59). Inhibited
autophagy was also observed in adiponectin knockout mice
following lipopolysaccharide challenge compared to wild-type
mice which had upregulated LPS-induced autophagy through
AMPK-mTOR-ULK1 dependent signaling (60). In vitro studies
with H9c2 cells, revealed an important role of adiponectin in
the stimulation of autophagy �ux in cardiomyocytes at multiple
steps within the autophagy pathway (59). In adiponectin de�cient
mice, the normal autophagic response of cardiomyocytes to
stressors is inhibited andin vitro data suggests that adiponectin
replenishment can correct this abnormal response. Collectively,
in vitro and in vivo animal studies provide convincing evidence
of multiple mechanisms in which adiponectin can enhance cell
survival and metabolism through the regulation of autophagy.

Cardiac hypertrophy can be a normal physiological
response which occurs secondary to pressure overload,
however under speci�c circumstances hypertrophy can
become pathological and lead to cardiac dysfunction (32).
Adiponectin has been demonstrated to protect against
pathological cardiac hypertrophy in bothin vitro and in
vivo experiments. Multiple studies have reported exaggerated
pathological cardiac hypertrophy in adiponectin knockout
mice under experiment models of pressure overload (61–
63) with adiponectin replenishment resulting in reduced
pathologic hypertrophy (62). Experiments in isolated neonatal
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rat ventricular myocytes treated with angiotensin II to induce
hypertrophy illustrated that the primary anti-hypertrophic
mechanism of adiponectin occurred through AdipoR1-APPL1-
AMPK activation resulting in suppression of nuclear factor
kappa-B-induced hypertrophic growth signaling (64–66). These
studies suggest that adiponectin can protect against cardiac
hypertrophy and lack of adiponectin can lead to development of
more severe pathological hypertrophy. In summary, evidence to
date illustrates that the cardioprotective e�ects of adiponectin
are mediated through e�ects on multiple cell types (e.g.,
endothelial cells, vascular smooth muscle cells, cardiomyocytes,
�broblasts, macrophages) involved in cardiac metabolism,
survival and remodeling.

THE ROLE OF ADIPONECTIN AS A
BIOMARKER

Adiponectin circulates at high concentrations in humans and
rodents (67) and hypoadiponectinemia is associated with
metabolic syndrome across di�erent ethnic groups (34, 68–
70). Adiponectin levels in humans are inversely related to
BMI and fat mass with reduced adiponectin mRNA expression,
HMW adiponectin secretion and total serum levels observed
in obesity, insulin resistance, T2DM, CVD, and metabolic
syndrome (34, 68, 71–73). Human studies have reported an
inverse correlation between adiponectin levels and the riskof
cardiovascular morbidity and mortality. Hypoadiponectinemia
has been associated with early carotid artery atherosclerosis
lesions in humans (34, 74), while higher serum adiponectin
levels are correlated with favorable cardiovascular risk pro�les
in both males and females (75, 76). Higher adiponectin levels
were also associated with a reduced risk of developing type 2
diabetes and the subsequent risk of cardiovascular events in
a large population of healthy patients (77). Consistent with
these cardioprotective e�ects are studies demonstrating an
association between persistent hypoadiponectinemia following
acute myocardial infarct with increased risk of future major
adverse cardiovascular events (78, 79). In contrast, multiple
studies have reported increased adiponectin levels in patients
with advanced cardiovascular disease. In a prospective study
of men and women without initial diagnosis ischemic heart
disease or HF, higher adiponectin levels was directly correlated
with increased risk of heart failure (80). The EXAMINE trial
found a direct relationship between adverse cardiovascular
outcomes and higher adiponectin levels in type 2 diabetic patients
with recent acute coronary syndrome (81). In patients with
chronic heart failure, high adiponectin levels were associated
with an increased risk of mortality (82). Clinical studies in
older populations demonstrated a positive association between
adiponectin levels and mortality in patients with heart failure (83,
84). The paradoxical association of adiponectin levels in relation
to cardiovascular disease was further illustrated by observations
from the Copenhagen City Heart Study which reported a positive
relationship between high adiponectin and decreased risk factors
for CVD in patients without initial CVD disease. This same study
also found a positive direct correlation between adiponectin

levels and all-cause mortality and major adverse cardiovascular
events (76).

This adiponectin paradox has been proposed to occur
secondary to adiponectin resistance, a hypercatabolic state or
in response to elevated natriuretic peptides which are found in
advanced CVD. In particular, both human and animal studies
have suggested that adiponectin resistance as a consequence
of AdipoR1 downregulation may be present in severe CVD
and thus hyperadiponectinemia is a compensatory mechanism
(85, 86). The wasting theory proposes that the hypercatabolic
state in severe heart failure leads to increased adiponectinwhich
is consistent with the inverse relationship between adiponectin
and fat mass (87). Supporting this theory are observations
showing hyperadiponectinemia only in the presence of cachexia
in heart failure patients (88). Cardiac natriuretic peptides, atrial
natriuretic peptide (ANP) and brain natriuretic peptide (BNP),
are important mediators in the crosstalk between heart and
adipose tissue. This was demonstrated in transgenic mice models
where whole body as well as adipose tissue speci�c deletion
of the NP clearance receptors, resulting in enhanced ANP
action, protected mice from diet induced obesity and insulin
resistance (89). In human cultured adipocytes, ANP stimulated
lipolysis (90) and promoted the “browning” of white adipose
tissue through enhanced energy expenditure via upregulationof
mitochondrial biogenesis, respiration and UCP1 expression (91).
Unpublished data from our group suggest that defective cardiac
autophagy leads to reduced ANP-mediated inter-organ crosstalk
leading to impaired glycemic control. Increased natriuretic
peptides release is an indicator of cardiac stress and is used
as a clinical biomarker of heart failure. Both ANP and BNP
were found to enhance the expression of adiponectin mRNA
and secretion from primary human adipocytes (92). This
observation was reproducible in human studies with infusion
of ANP resulting in increased total and HMW adiponectin
concentrations in healthy men (93) and patients with chronic
heart failure (92). Clinical studies have also provided evidence for
a positive, independent association between adiponectin levels
and BNP in healthy subjects (94) and in men with ischemic heart
disease (95). Concomitantly elevated proBNP was associated with
elevated adiponectin levels observed in patients who developed
heart failure in an 8.5 years follow-up prospective study of
subjects without initial diagnosis of heart disease (80). Thus, both
ex vivoand in vivo analyses have provided evidence supporting
the idea that hyperadiponectinemia in advanced CVD can be
driven by elevated natriuretic peptides.

Overall, the clinical value of adiponectin as a biomarker
remains highly promising, especially for metabolic and
cardiovascular diseases (96, 97). However, published �ndings
suggest that clinical interpretation of circulating adiponectin
levels must be done in the context of factors, such as age, gender,
and severity or stage of CVD (98, 99).

ADIPONECTIN AS A BIOTARGET

Research studies to date have proven the signi�cant potential of
adiponectin as a biotarget for the modulation of metabolic and
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cardiovascular disease. However, the exogenous administration
of recombinant adiponectin has proven to be di�cult due
to the challenges associated with producing stable multimeric
recombinant adiponectin isoforms. Further complicating the
process of establishing a therapeutic dose is the high endogenous
concentration and the relative shortin vivo half-life of
adiponectin (100, 101). The therapeutic success of adiponectin
thus lies in approaches aimed at enhancing endogenous levels of
expression as well as strategies to target adiponectin signaling and
its downstream e�ector pathways.

CURRENT KNOWLEDGE AND FUTURE
APPROACHES FOR HOW ADIPONECTIN
CAN BE TARGETED THERAPEUTICALLY

Increase Circulating or Local Levels
As summarized inFigure 1, overcoming the reduction in
circulating adiponectin levels observed in disease states,such
as obesity and diabetes has potential to be bene�cial. Lifestyle
interventions are an e�ective strategy to increase circulating
adiponectin levels. Interventions, such as exercise, caloric
restriction, pharmacological drugs, or gastric bypass leading
to weight loss have consistently shown a positive e�ect on
adiponectin levels. Weight loss induced by a combination
of lifestyle and pharmacological (phentermine/topiramate)
interventions resulted in an increase in adiponectin levels
in patients with metabolic syndrome (102, 103). Circulating
adiponectin levels signi�cantly increased following gastric bypass

and sleeve gastrectomy in obese women and this was negatively
correlated with body weight and waist circumference (104).
Both gastric bypass and very low calorie diets led to improved
adiponectin levels in obese type 2 diabetic subjects (105).
Exercise training leading to weight loss in overweight, obese
and diabetic subjects was associated with increased adiponectin
levels (106–109). These �ndings support the idea that sustained
weight reductions through lifestyle modi�cations can enhance
adiponectin levels.

Thiazolidinediones (TZD), prescribed for the treatment
of diabetes, are perhaps the most extensively characterized
regulator of adiponectin expression. TZDs, such as pioglitazone
and rosiglitazone increase adiponectin expression through the
activation of proliferator-activated receptor gamma (PPARg)
(110, 111). Pioglitazone treatment for 16-weeks increased
adiponectin levels in an obese population of Chinese subjects
with diabetes and this correlated with improved insulin
secretion and insulin sensitivity (112). Clinical studies in
subjects across di�erent ethnic, age and metabolic disease
groups have consistently observed increased adiponectin levels
with pioglitazone (113–115) or rosiglitazone (116) treatment.
Importantly, TZDs up-regulate both total expression and HMW
oligomers content in bothin vitro as well asin vivo animal and
human studies (3, 117, 118). However, the adverse side e�ects
which have unfortunately blighted use of TZDs (119, 120) limit
their utility as a go-to agent to increase adiponectin levels.

Speci�c dietary supplements have been recognized as
regulators of adiponectin expression. Evidence fromin vitro and
in vivostudies suggests that vitamin E can upregulate adiponectin

FIGURE 1 | Interventions that enhance adiponectin receptor expression. Adiponectin receptor expression can be increased by lifestyle interventions, such as diet and
exercise as well as through pharmacological therapies as shown.
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expression, also through the activation of PPARg. Treatment
with g- and a-tocopherol, vitamers of vitamin E, enhanced
adiponectin expression in 3T3-L1 adipocytes and mice (121)
and was able to ameliorate the suppressive e�ects of TNF-a on
adiponectin expression in 3T3-L1 adipocytes (122). Both �sh
oil (123) and omega-3 (124, 125) supplementation increased
adiponectin levels in human studies. St. John's Wort (Hypericum
perforatum) (126) and Groundsel Bush (Baccharis halimifolia)
extract (127) induce 3T3-L1 adipocyte di�erentiation leading to
enhanced adiponectin expression. Additional supplements that
have been shown to increase circulating adiponectin in humans
and animals include grape-seed extract (128–130) green tea
extract (131, 132), walnuts (133, 134), a-linolenic acid (135),
resveratrol (136–138), and Radix Astragaliisolated compounds
(astragaloside II and isoastragaloside I) (139).

Targeting the renin-angiotensin aldosterone system
through angiotensin-converting enzyme inhibitor (ACEi)
and angiotensin receptor blockers (ARBs) have consistently
increased adiponectin levels in humans through PPARg
activated adiponectin gene transcription and enhanced
adipogenesis (140). The ACEi inhibitor temocapril also
signi�cantly increased adiponectin expression in patients with
essential hypertension (141). Ex vivoexperiments with human
omental (OM) preadipocytes from healthy women showed
signi�cantly higher adiponectin mRNA expression in adipocytes
di�erentiated in the presence of ARBs vs. TZDs (140). Finally, it
was suggested that enhanced adiponectin expression was speci�c
to PPARg ligand ARBs (e.g., irbesartan, telmisartan) via studies
in 3T3-L1 adipocytes andex vivoepididymal fat from Zucker
fa/fa rats (142).

Incretins [e.g., glucagon-like peptide 1 (GLP-1), GLP-1
analogs (e.g. liraglutide)] and pharmacological agents used
to increase incretin bioavailability [e.g., dipeptidyldipeptidase
4 (DPP4) inhibitors] upregulate adiponectin expression
in 3T3-L1 adipocytes (143) as well as in clinical trials
(144). Evidence from systematic review and meta-analysis
of randomized controlled trials suggests that statins can increase
adiponectin concentrations despite its negative e�ect on insulin
sensitivity (145) and risk for developing diabetes mellitus (146).
Empagli�ozin, a diabetes pharmacological agent that works
through the inhibition of sodium-glucose cotransporter-2,
was been reported to increase adiponectin levels in mice
through an unknown mechanism (147, 148). Together, these
studies suggest that multiple pathways can regulate circulating
adiponectin expression either through direct stimulation ofgene
expression or through mechanisms that enhance adipogenesis
and insulin sensitivity.

Alter Level (or Localization) of Adiponectin
Receptors or Signaling Pathway Proteins
Regulation of AdipoR expression and downstream signaling
e�ector proteins are clearly prime candidates which have been
targeted to enhance adiponectin action and several compounds
have been identi�ed as possible regulators of adiponectin
receptor expression. PPAR agonists have been reported to
enhance AdipoR expression in various cell types. In epididymal

white adipose tissue (WAT) of male KKAy mice, AdipoR1
and AdipoR2 expression was upregulated following treatment
with the PPARa agonist Wy-14,643 (149). AdipoR2 but not
AdipoR1 mRNA expression was increased by PPARa and PPARg
agonist in primary human and THP-1 macrophages (150).
Rosiglitazone increased both AdipoR1 and AdipoR2 mRNA in
isolated adult rat ventricular cardiomyocytes (51). In humans,
pioglitazone treatment increased both AdipoR1 and AdipoR2
mRNA in muscle biopsies from type 2 diabetic subjects (151).
Telmisartan, an ARB with selective PPARg activity, was observed
to correct the reduced ventricular cardiomyocytes AdipoR2
and aortic AdipoR1 in diabetic rat to comparable levels as
control animals (152). Metformin, a �rst-line pharmacotherapy
for treatment of diabetes, is a potent activator of AMPK with
insulin sensitizing e�ects. Studies in ZDF rats demonstrated
that metformin can upregulate AdipoR1 and AdipoR2 receptor
expression in muscle and AdipoR1 in WAT (153). In addition
to e�ects on adiponectin levels, exercise training in animals and
humans is associated with enhanced AdipoR expression (109).
Studies in obese and diabetic animal models consistently report
upregulation of skeletal muscle AdipoR1 expression in response
to di�erent exercise programs (154, 155). In humans, AdipoR1
and AdipoR2 expression in skeletal muscle increased in response
to endurance exercise programs (156, 157). Collectively, these
�ndings further support the bene�t of lifestyle interventions in
enhancing adiponectin action.

Receptor Agonists—What's Available and
Future Developments
AdipoR agonists (Figure 2) have been an intense focus of
pharmaceutical drug development programs in metabolic and
cardiovascular diseases (20, 158). Ligand binding receptors are of
course recognized as the logical targets for activating/inhibiting
that signaling pathway. Given the di�culties in producing
biologically active adiponectin and optimizing the exact dosage
and route of administration for this recombinant protein,
designing agonists to activate adiponectin receptor-mediated
downstream signaling is a highly desirable strategy to maximize
adiponectin's bene�cial e�ects. Several small molecules or short
peptides have been discovered for this purpose since Kadowaki's
group identi�ed AdipoR1 and AdipoR2 (9).

ADP355/ADP399

The C-terminal of adiponectin (residues 105–254) that forms
gAd is well-established to induce potent biological e�ects in
various studies (21, 159). By screening 66 small peptides
overlapping each other by 10 amino acids and covering
the entire sequence of the globular domain of adiponectin,
Otvos et al. discovered that the peptide sequence between
residues 149–166 retained biological activity similar to gAd
(160). A patent was �led (US9,073,965) indicating the potential
of developing this sequence into a receptor agonist. After
additional pharmacological modi�cations and structure-function
assays, a short peptide namedADP355(H-DAsn-Ile-Pro-Nva-
Leu-Tyr-DSer-Phe-Ala-DSer-NH2), was formed acting as an

Frontiers in Endocrinology | www.frontiersin.org 6 December 2019 | Volume 10 | Article 842

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Liu et al. Adiponectin-Based Therapeutics

FIGURE 2 | Adiponectin receptor agonists. Binding of full-length andglobular adiponectin to adiponectin receptors with seven transmembrane spanning domains (left
side) normally activates downstream signaling pathways, such as AMPK, p38MAPK, and PPAR-alpha. Multiple adiponectinreceptor agonists have now been
identi�ed to also bind adiponectin receptors and induce these downstream signaling cascades.

active adiponectin receptor agonist. Follow upin-vitro activity
assays including cell proliferation assay and western blot to
monitor the activation of key signaling molecules (AMPK,
AKT, STAT3, ERK1/2 etc.) in various cancer cell lines, revealed
e�ects of ADP355 in the concentration range 100 nM� 10
uM comparable to or exceeding those of gAd (161). A bolus
injection of 5–50 mg/kgADP355displayed excellent stability
and minimum toxicity in-vivo. Furthermore, a 1 mg/kg/day
ADP355 treatment via intraperitoneal (i.p.) injection for 28
days signi�cantly inhibited the growth of human breast cancer
xenograft in mouse (161). With the initial success, Otvos et al.
continued to explore ways to pharmacologically enhance the
agonist activity ofADP355. In considering adiponectin normally
circulates in its multimeric forms, the second generation of the
peptide, a linear branched dimer (ADP399) and an octapeptide
(ADP400), was formed. The dimeric peptideADP399exhibits
almost 20-fold increased cellular activity in comparison to
the monomeric peptideADP355. However, surprisingly, at the
similar concentration,ADP400acted as an antagonist rather than
an agonist to AdipoRs (160).

ADIPORON

AdipoRON, a synthetic small molecule that can be administered
orally, is the most well-studied AdipoR agonist currently

available. In 2013, via screening chemical library compounds
provided by the Open Innovation Center for Drug Discovery
in University of Tokyo, Kadowaki's group successfully identi�ed
AdipoRON as the most potent agonist for AdipoR's (162).
During the screening assay, the phosphorylation of AMPK,
the key targeted signaling molecule for adiponectin, was used
as the readout for evaluating the activity of all chemical
compounds in the screen. In C2C12 myotubes, comparing to
the treatment of native adiponectin protein, AdipoRON induced
a comparable and dose-dependent phosphorylation of AMPK
within the concentration of 5–50 uM. AdipoRON was identi�ed
as agonist for both AdipoR1 and AdipoR2. An intravenous
injection of AdipoRON, in the dose of 50 mg/kg, induced
the phosphorylation of AMPK in both skeletal muscle and
liver of wt mice, however, this phosphorylation was abolished
in AdipoR1 and AdipoR2 double knockout mice (162). One
key advantage of a small molecule receptor agonist in the
pharma industry is oral administration. To test the therapeutic
potential of AdipoRON in alleviating metabolic disorders, 50
mg/bodyweight of AdipoRON was given to diet induced obese
mice via oral administration for 8 days. AdipoRON e�ectively
improved insulin sensitivity and restored glucose homeostasis via
the activation of AdipoR1-AMPK-PGC1a and AdipoR2-PPARa
signaling pathways (162). AdipoRON treatment also mimicked
adiponectin's established anti-diabetic e�ects (163) and ability
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to enhance cellular capacity for mitigating oxidative-stress
(162, 164), enhancing lipid/glucose oxidation in mitochondria
(162, 164), anti-in�ammatory responses (162, 164–167), life-
prolonging e�ect (162, 163), anti-cancer e�ects (168, 169), pro-
cell survival and anti-apoptotic e�ect (170, 171), neuronal- (172,
173), reno- (174, 175), and cardio-/vascular-protective e�ects
(165, 176–179). However, exciting AdipoRON research in animal
models has not been translated to establishment of a drug
for human use and the search continues for additional small
molecule AdipoR agonists which have little or no toxicity.

OSMOTIN

Osmotin, a plant protein, that was found to be structurally similar
to adiponectin, can also induce the phosphorylation of AMPK in
C2C12 myotubes (180). Interestingly, the adiponectin receptor,
AdipoR1, is the mammalian homolog of the osmotin receptor,
PHO36 (180). Based on these observations, it was proposed
that osmotin could function as an agonist for AdipoR1 (181).
Indeed, an osmotin peptide with nine residues (CTQGPCGPT)
was synthesized and its molecular interaction with AdipoR1
was modeledin silico. Functional analyses revealed similar
biological e�ects, evaluated as the induction of IL-6 production
in synovial �broblasts, of fAd (5 ug/ml) and osmotin peptide
(5 ug/ml) (181, 182). Studies within-vivo, in-vitro treatment of
osmotin also revealed its adiponectin's memetic e�ect toward
obesity, diabetes and related fatty liver, cardiovasculardiseases
(183–186). The activation of AdipoRs mediated downstream
signaling pathways including AdipoRs/PPARa (185) and
AdipoR1/PI3K/AKT (183) upon osmotin treatment, further
con�rmed the agonist activity of osmotin peptide to AdipoRs, in
particularly to AdipoR1 (187). Interestingly, a group of Korean
scientists led by Dr. Kim MO have conducted series of studies
and revealed the neuroprotective e�ect of osmotin, in particular
to Alzheimer disease. Firstly, they shown the preventive e�ect
of osmotin on amyloid beta-induced synaptic de�cits, Ab
accumulation,b-secretase expression and tau phosphorylation
via reduced phosphorylation of PI3K, Akt, and GSK in
mice (188). Secondly, they identi�ed AdipoR1/TLR4/NFkB,
AdipoR1/AMPK/SIRT1/SREBP2 signaling, and AdipoR1
interfered Nogo-receptor 1 (Ng1) signaling are three
key pathways that responsible for osmotin diminished
neuroin�ammation and Ab accumulation while improved
neurodegenerative disease related, synaptic de�cits, cognitive
impairment, memory loss and long-term potentiation (189–
192). Lastly, an osmotin preloaded magnetic nanoparticles
demonstrated a novel drug delivery approach for the treatment
of Alzeimer (193).

OTHERS

Additional AdipoR activating small molecules have also been
studied as potential therapeutic agents. Via anin silicoapproach,
peptide Pep70 was identi�ed as a potential AdipoR1 agonist
in protecting against �brosis (194). PEGylated BHD1028 was
discovered and formulated for the treatment of diabetes (195).

Others identi�ed that a short region of adiponectin protein N-
terminus (6, 15–35) can act as agonist to AdipoRs and activate
the downstream signaling pathways to promote cell viability
and proliferation, thus maintaining pancreatic beta cell mass
and preventing the development of diabetes (196). Another
orally active AdipoR agonist named6-C-b-D-glucopyranosyl-
(2S,3S)-(C)-5,7,39,49-tetrahydroxydihydro�avonol (GTDF) was
identi�ed and its biological e�ects characterized (197), followed
by identi�cation of a 13-amino acid residue segment located
in the collagen domain of adiponectin (ADP-1) as another
potent AdipoR1 agonist (198). The corresponding functional
studies have revealed that GTDF can bind to both AdipoRs,
with a preference for AdipoR1, and activate associated signaling
pathways to improve metabolic health, including glucose uptake,
lipid pro�le, beta cell survival, reduced steatohepatitis andthe
browning of adipose tissue (197, 198).

Many e�orts have been invested in identifying and optimizing
AdipoR agonists as a class of therapeutic drugs, however, none
of them has reached the stage of being adopted in clinical
practice yet. This may due to the interpersonal variants in
endogenous adiponectin and adiponectin receptor expression
levels and the complicated cross-reactive molecular networks
formed around its signaling pathway. Besides, it is also important
to realize that the development of adiponectin resistance in
certain disease states, possibly due to the reduced expression or
altered post-translational modi�cation of adiponectin receptors
or adaptor proteins, such as APPL1, could also signi�cantly a�ect
the e�ectiveness of AdipoR agonists (10, 199–201). However,
with recent advances in high throughput and high content
drug discovery technologies (202, 203) and the establishment
of AdipoR crystal structure to facilitate rational drug design
(204), it is possible to expect further re�nement of small
molecule AdipoR agonists for the treatment of metabolic and
cardiovascular diseases.

FUTURE CONSIDERATIONS

A Personalized Approach to Maximizing
Effectiveness of Adiponectin Therapeutics
There clearly is huge potential for implementing use of
adiponectin-based therapeutics, and when the time comes we
must also make progress in stratifying ways to better deploy their
use. Here, we list several possible directions that could be follow
to maximize health impact of future advances in adiponectin-
related drug discovery.

Crosstalk With the Microbiome
As our understanding of the bio-e�ects of adiponectin has
developed during the last decade, so too has knowledge of
the important role that gut microbiota plays in metabolic
health (205). Like adiponectin, targeting microbiota has also
been suggested to have therapeutic value in treating metabolic
syndrome. A large number of studies in rodents and humans
have now validated the concept that insulin resistance condition
could be improved upon receiving a more healthy donor's
intestinal microbiota via a procedure called fecal microbiota
transplantation (FMT) (206). Interestingly, it was found that
expression of adiponectin can also be modulated by speci�c
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changes in gut microbiota composition. FMT, especially of
those that are enriched in Lactobacillus NK6 colony (very
similar to Lactobacillus taiwanensisstrain BCRC 17755) can
induce adiponectin expression from gut epithelial cells (207).
Indeed, it has been proposed that activation of adiponectin
signaling can also mediate the bene�cial physiological e�ects
of Lactobacillus (208). The important role of gut microbiota
in mediating drug absorption and metabolism has now been
recognized (209). Speci�cally, one study identi�ed more than
�ve phase-I metabolites and many possible glucuronic acid
conjugated phase-II metabolites generated upon AdipoR agonist
AdipoRON treatment (210). However, whether these metabolites
are generated from microbe or host mediated drug metabolism,
and whether there is any functional signi�cance related to those
metabolites are still under investigation. Thus, future studies
focused on developing adiponectin-based therapies must include
considering the dynamic interaction among gut microbiota,host
metabolism and adiponectin based drug metabolism (211).

Arti�cial Intelligence (AI) Assisted Drug
Development and Use
The analysis of pharmacokinetics and pharmacodynamics on
adiponectin based drug metabolism is often long and costly,
yet arti�cial intelligence using machine learning algorithms are
now able to assist this process. An example for AI assisted
drug development is analysis of the hepatic toxicity e�ect of
terbina�ne, an oral antifungal agent (212). Nearly 20 years
after the initial safety watch regarding its hepatic toxicity e�ect,
a machine learning algorithm trained with large dataset of
known metabolic pathways identi�ed what no human could
previously: the detailed 2-step metabolic processes that led to
the breakdown of terbina�ne into its toxic metabolite, TBF-
A (213, 214). Using an AI assisted computational approach
could help in forming a comprehensive understanding of
metabolism for new adiponectin-mimetic small molecules
and thus assist in making logical predictions of potential
pharmacological considerations.

FIGURE 3 | Enhanced adiponectin therapeutics via precision medicineupon personalized response prediction. Accumulation of big data will allow algorithm-based
prediction of those individuals most likely to bene�t from therapeutic agents to either increase adiponectin levels or directly mimic adiponectin action, thus resulting in
more ef�cient and improved health care outcomes.
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Precision Medicine to Maximize Impact of
Adiponectin-Based Therapeutics
Interpersonal variants in factors including the expression level
of adiponectin and adiponectin receptors, the largely diverse
life style (such as food composition, exercise frequency, sleep
quality), the stage at which individuals are located along
the course of disease progression, ultimately determine the
individualized response to potential therapeutic interventions
(215–218). The reciprocal interplay between microbiota and
adiponectin action has also created personal variables in drug
e�ciency ( 208). All the above listed factors played important role
on the yet not so successful translational trials on adiponectin
based drug development. In order to design the most e�ective
treatment plan according to all such variants, the concept of
precision medicine is important. Several pioneering studies have
illustrated the power of personalized pro�ling in understanding
and capturing individualized characterization under the same
clinical phenotype (219–221). For example, unique groups of
small molecules were identi�ed as being characteristic foreach
individual and that they di�ered from the group mean. These
individualized datasets can serve as early predictive signatures
for disease warning and allow speci�c preventive treatments
to be planned accordingly in order to delay the occurrence of

diseases. These pioneering studies provide an excellent guidein
establishing a concept that will be applicable for future studies
focused on adiponectin as a personalized therapeutic target.

In conclusion, merging what we know about adiponectin in
disease pathophysiology, and mechanisms of action with new
understandings of how utilizing AI can personalize medicine
and improve outcomes, it is hoped that adiponectin-based
therapeutics can be tailored as the best-in-class approach for
managing metabolic health in the future (Figure 3).
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