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This mini-review considers the phenomenon of maternal photoperiodic programming

(MPP). In order to match neonatal development to environmental conditions at the

time of birth, mammals use melatonin produced by the maternal pineal gland as a

transplacental signal representing ambient photoperiod. Melatonin acts via receptors in

the fetal pituitary gland, exerting actions on the developing medio-basal hypothalamus.

Within this structure, a central role for specialized ependymal cells known as tanycytes

has emerged, linking melatonin to control of hypothalamic thyroid metabolism and in turn

to pup development. This review summarizes current knowledge of this programming

mechanism, and its relevance in an eco-evolutionary context. Maternal photoperiodic

programming emerges as a useful paradigm for understanding how in utero programing

of hypothalamic function leads to life-long effects on growth, reproduction, health and

disease in mammals, including humans.

Keywords: melatonin, pars tuberalis, tanycyte, fetal programming, thyrotropin (TSH—thyroid-stimulating

hormone), photoperiodic history, deiodinase, thyroid hormone (T3)

INTRODUCTION

Life on a rotating planet brings predictable daily and seasonal environmental challenges to
the balancing of energy budgets for biological fitness. Because thermo-energetic challenges are
inversely related to body size, the capacity to predict the cyclical environmental changes is of
special importance for small animals (1), presumably this is crucial in the neonatal/juvenile
period. The light-dark cycle and annually changing day lengths (photoperiod), are the most
predictable information sources regarding the time of the day and time of the year. Adult mammals
are in direct contact with the photic environment, and translate this signal via the hormone
melatonin, to time their own changes in physiology and behavior. Contrastingly, the fetus is
isolated from photoperiodic information both because light levels in utero are much lower than
in the surrounding environment, and light sensing pathways are not fully developed until after
birth in many cases (2, 3). To deal with this challenge, mammals use maternal melatonin as a
transplacental signal (4), through which the fetus gains information about time of day [for review
see (5, 6), and references therein], and about time of year [for review see (7), and references
therein]. Several articles in this review series deal with the former aspect, and so we focus here
on the latter, which we describe as maternal photoperiodic programming (MPP). We first discuss
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the eco-evolutionary importance ofMPP; thenwe go on to review
current understanding of how MPP takes place, focussing on the
sites of action of melatonin during the fetal and neonatal period.

THE EVOLUTIONARY DRIVERS FOR MPP

While seasonal conditions at any given point in the annual cycle
may vary considerably from year to year, photoperiod is the
most reliable cue for position in the annual cycle, and hence
is a predictor of forthcoming environmental challenges. This in
essence is the ultimate evolutionary reason for the evolution of
melatonin-based photoperiodic synchronization in mammals. It
is also important to appreciate that absolute day length alone
is insufficient as a synchronizing signal because all variations
in day length, except the solsticial maxima and minima, occur
twice in every solar year. Hence the use of photoperiod as a cue
must be dependent on prior history of photoperiodic exposure:
intermediate photoperiods preceded by the long days of summer
presage autumn and winter, whereas intermediate photoperiods
preceded by the short days of winter presage spring and summer
(Figure 1A) [for review see (8)].

This importance of integrating photoperiodic history into
the use of photoperiod as a cue is made abundantly clear by
a consideration of reproductive development and life-history
strategy in short lived rodent species including voles and
hamsters (9–11). In such animals the time from conception
to reproductive maturity is potentially <2 months, and so
multiple generations are typically born within a single annual
breeding season. Nonetheless, the optimal life-history strategy
for individuals born in the spring is entirely different from that
for individuals born late in the breeding season (Figure 1A).
For the former a “live fast, die young” strategy with fitness
success based on producing progeny within the same summer
season is appropriate because within the same season there will
continue to be sufficient resources for lactation and rearing
young. Contrastingly, young born later in the season do not
have time for breeding and rearing of young before the autumn
decline in resources and increased thermo-energetic demand
occurs. As consequence these late born pups delay reproduction
until the following year, conserving resources for investment in
overwintering survival. In the field, the use of these two alternate
life-history strategies as a function of time of birth reveals itself as
a bimodal age distribution in wild caught individuals (9–11).

CHARACTERIZATION OF MPP IN THE
LABORATORY

In the laboratory it is possible to reveal these alternate strategies
simply by manipulation of artificial photoperiod. In the Montane
vole (Microtus montanus), pups gestated and raised under long

Abbreviations: Dio2, type 2 deiodinase; Dio3, type 3 deiodinase; MBH, medio

basal hypothalamus; MPP, maternal photoperiodic programing; MT1, type 1

melatonin receptor; 3V, 3rd ventricle; PNS, photoneuroendocrine system; PD,

pars distalis; PT, pars tuberalis; Px, pinealectomy; SCN, suprachiasmatic nucleus;

SCG, superior cervical ganglion; T3, triiodothyronine; T4, thyroxine; TSH, thyroid

stimulating hormone.

photoperiods (16L:8D) delay growth and maturation when
exposed to shorter, intermediate photoperiods (14L:10D) at
weaning, whereas pups gestated under short photoperiods
(8L:16D) undergo accelerated growth and maturation when
exposed to the same intermediate photoperiod (12, 13). The use
of intermediate photoperiods is a powerful paradigm to show
that weaned offspring have a “memory” of prior photoperiodic
history. Determining if this “memory” is encoded in utero or
neonatally, was a challenge addressed by a series of elegant
studies by Milton Stetson, Teresa Horton and colleagues, which
dissected the origins of this photoperiodic history, both through
cross-fostering experiments and by resolving photoperiodic
manipulation into gestational, neonatal and post-weaning phases
[(12, 14, 15), reviewed in (7, 16)].

Cross fostering experiments in Montane voles demonstrate
that the in utero environment is where the programming of
developmental trajectories occurs (14). Pregnant mothers were
kept under long (16L:8D) or short (8L:16D) photoperiods. At
birth, half of the young were given to a foster mother who
had experienced the same photoperiod as the birth-mother
and the other half of the young went to a foster mother who
had experienced the opposite photoperiod during pregnancy,
compared to the birth-mother. All young were raised under
intermediate (14L:10D) photoperiods after birth. The accelerated
growth and sexual maturation of short-day gestated voles
compared to long-day gestated voles clearly demonstrated the
in utero transfer of photoperiodic information by the actual
birth-mother. The foster mother’s photoperiodic history had no
effect on the offspring after birth, which excludes the effect
of maternal signals transferred through milk. Similar effects
of maternal photoperiodic programming have been shown
in Siberian hamsters (Phodopus sungorus) (15, 17), collared
lemmings (Dicrostonyx groenlandicus) (18), and meadow voles
(Microtus pennsylvanicus) (19, 20).

The clear conclusion from these studies is that photoperiod
influences reproductive development in a manner dependent
on the interaction between photoperiod exposure in utero
and photoperiod exposure post-weaning. Photoperiod exposure
in the intervening neonatal period has little influence, and
constitutes a “dead zone” for MPP, probably because at this
stage the photo-neuroendocrine system (PNS) is not fully light-
responsive and pups typically remain in subterranean nests (21).

MPP IN NON-RODENT SPECIES

Longer-lived, larger mammals also show evidence of MPP.
Sexual maturity of red deer gestated under short photoperiods
is advanced compared to long photoperiods (22). The effect
of gestation is also evident in the prolactin levels of sheep
lambs at the time of birth, with levels being lower in short-day
gestated lambs than in long-day gestated lambs (23). Moreover,
subsequent responses to intermediate (LD12:12) photoperiods
after birth were quite different, with prolactin levels rapidly
increased in short-day gestated lambs but decreased in long-
day gestated lambs. Under natural conditions sheep and other
ungulates have a single round of reproduction in a given year,
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FIGURE 1 | Melatonin-mediated transplacental relay of photoperiodic information. (A) The breeding season for small rodents runs from spring through to early

autumn (top panel, dashed line). Middle & bottom panels: offspring born early in the breeding season on increasing photoperiods grow fast and breed in the same

season, while pups born later on declining photoperiods grow slowly and delay breeding to the following year. (B) Actions of maternal melatonin via the pars tuberalis

(PT). In both the mother and the fetus, thyrotrophs in the pars tuberalis (PT) contain melatonin receptors (MT1), and in response to shorter melatonin signals

representing intermediate to long photoperiods these cells secrete thyroid stimulating hormone (TSH). Tanycytes lining the 3rd ventricle, express TSH receptors, and

respond to changing levels of PT TSH secretion by modulating relative levels of expression of two thyroid hormone deiodinase enzymes (dio2 and dio3). This affects

the local thyroid environment in the MBH, with relatively increased dio2 expresison causing a relative increase in levels of T3 (the active form of TH). This in turn

determines the reproductive behavior and energy metabolism of the adult animal.

and this is tightly constrained to an autumn period to ensure
that young are born in the spring. Hence in contrast to voles
and hamsters, an evolutionary narrative based on alternate
life-history strategies cannot apply. Rather it is likely that
in utero programming establishes the phase for calendar timer
mechanisms from birth which then continue throughout life.

ROLE OF MELATONIN IN MPP

Except in early development, the pineal gland of mammals
secretes melatonin in a light responsive fashion. The photic input
pathway from the retina to the suprachiasmatic nucleus (SCN)
drives rhythmic melatonin production from the pineal gland and
this melatonin signal is sculpted by photoperiod to provide an
internal endocrine representation for external photoperiod, this
is the PNS (Figure 1B) [for review see (8, 24)]. Through this

means, short (winter) photoperiods are represented by increased
duration of nocturnally elevated plasma melatonin titers and
long (summer) photoperiods by shorter duration for nocturnally
elevated titers (Figure 1B).

The pivotal role of maternal pineal melatonin production
in MPP was first demonstrated by a series of studies in
Siberian hamsters (P. sungorus) [(17, 25–27), for review see
(28)]. Injection of melatonin to pineal-intact mothers caused
a suppression of pup testicular growth, dependent on the
phase of melatonin injection relative to the light dark cycle.
Specifically, injections in afternoon were most effective, because
melatonin delivered at this phase extended the endogenous
maternal melatonin signal to give it a profile mimicking a
short photoperiod (25). Complete removal of the maternal
melatonin signal by pinealectomy (px) blocked the effect of
in utero photoperiod manipulations on pup development (26),
as did fitting of pineal-intact mothers with continuous release
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melatonin implants (27). Collectively, these studies reveal that
maternal pineal melatonin production relays information about
ambient photoperiod to the developing fetus.

MELATONIN SITES OF ACTION IN THE
DEVELOPING FETUS

The use of the radio-analog of melatonin, 2-iodo-melatonin (29),
led to the identification of melatonin binding sites in a range
of central and peripheral fetal tissues (30). In fetal rodents,
melatonin binding sites representing high affinity G–protein
coupled receptors are consistently observed in the pars tuberalis
(PT) and pars distalis (PD) of the pituitary and in the SCN [(31–
33), for review see (30, 34)]. While type 1 melatonin receptor
(mt1) expression disappears from the PD within a few days of
birth (35), expression in the PT persists, and this site has emerged
as the key site for the seasonal actions of melatonin in adult
mammals [for review see (8, 30, 36–38)].

The PT shows the highest concentration of melatonin
receptors of all mammalian tissues, and these mediate
photoperiodic control of TSH production by the PT through
a circadian-based “coincidence timer” mechanism (39, 40).
TSH produced by the PT acts locally on the TSH receptors
(TSHR) expressed in tanycyte cells lining the third ventricle of
the hypothalamus (41, 42). Ligand binding to TSHR regulates
the expression of deiodinase seleno-enzymes (Dio2 and Dio3),
which in turn controls the local metabolism of thyroid hormone
within the mediobasal hypothalamus (MBH), driving seasonal
adaptations (Figure 1B) [(41, 42), for review see (24, 43)].

FETAL PT AS A TARGET FOR THE
MATERNAL MELATONIN SIGNAL

Based on the paradigm emerging in adult mammals, Sáenz de
Miera and colleagues have explored the involvement of the PT
and MBH in MPP (44). This study demonstrates that in the
Siberian hamster, expression of TSH in the fetal PT at the time
of birth depends on maternal photoperiod, with high expression
in pups gestated on LP but low expression in pups gestated on
SP. These effects on PT TSH gene expression persisted through
the perinatal period. As in adult mammals, TSHR expression
is found in the ependymal region, and corresponding effects of
photoperiod on the expression of dio2 and dio3 were observed
(i.e., high dio2 and low dio3 in LP gestated pups and the
converse in SP gestated pups). These studies provide evidence
that the fetal PT mediates seasonal programming effects of
maternal melatonin.

MPP ESTABLISHES PHOTOPERIODIC
HISTORY-DEPENDENCE AT THE LEVEL OF
THE TANYCYTES

Maternal photoperiod not only sets neonatal levels of TSH
and deiodinase gene expression, associated with different
trajectories for gonadal development, it also influences the
sensitivity of MBH deiodinase gene expression to photoperiod

FIGURE 2 | Model for photoperiodic history-dependence through shifting

tanycyte sensitivity to TSH. The solid line in the upper panel shows how

tanycyte sensitivity to TSH is presumed to change during the course of the

year. During winter PT TSH secretion is photoperiodically inhibited and

TSH-sensitivity becomes heightened. In spring increased TSH production is a

potent stimulus for increased dio2 expression due to high TSH sensitivity

established in the winter phase. As spring becomes summer, sensitivity to

TSH in the tanycytes declines and so high dio2 expression is not maintained

despite continued exposure to long photoperiods. Then in autumn, the

combination of declining TSH secretion and reduced sensitivity to TSH

established in the summer phase leads to loss of dio2 expression and

increased dio3 expression. The system then resets to the winter. The

predicted consequences of this for hypothalamic T3 levels is shown as a

dashed line—the asymmetry of this relative to the curve for photoperiod

represents photoperiodic history-dependence. The lower panel shows the

predicted consequences of this process for TSH, dio2 and dio3

expression—where arrow lengths represent strength of expression.

exposure post-weaning. Specifically SP-gestation was associated
with more dio2 and less dio3 expression in response to
intermediate photoperiods than was the case for LP-gestated
pups (Figure 2). Hence MPP is seen in hypothalamic
expression of the key enzymes controlling thyroid status in
the developing hypothalamus.

This effect does not seem to derive from downstream
programming of both melatonin synthesis in the weaned pups,
and sensitivity to melatonin at the level of the pup PT, but rather,
it derives from history-dependent differences in sensitivity to
TSH produced by the pup PT. This was demonstrated by icv
injection of exogenous TSH which had a bigger inductive effect
on dio2 expression in SP- than in LP-gestated pups (Figure 2).
Since no overt changes inTSHR expression in theMBHwere seen
in these experiments (44), other causes for this apparent shift in
TSH sensitivity must be sought.

The identification of tanycytes as the site at which MPP
generates photoperiodic history dependence echoes data from
studies in the Soay sheep (45). Here, the onset of refractoriness
to SP-exposure, i.e., another example of photoperiodic history-
dependence, also appears at the level of dio2/dio3 expression in
tanycytes independently of changes in TSH expression in the PT.
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FUNCTIONAL ROLES FOR
HYPOTHALAMIC TANYCYTES

If the significance of these programming phenomena are to be
properly understood it is imperative that attention focuses on
tanycyte function. Tanycytes are a specialized form of ependymal
cell derived from a glial cell lineage shared with microglial
cells—for review see (46–49). They differ morphologically from
the cuboidal epithelial cells that line most of the ventricular
walls in that they have a bipolar morphology with extensive
processes projecting into the parenchymal tissue surrounding the
ependymal zone. Detailed analysis suggests that hypothalamic
tanycytes may be subclassified based upon their anatomical
location and upon their expression profiles (50)—but how these
differences relate to differences in function remains uncertain.
Much has been written on the possible functions of these cells,
and at least three broad classes of cellular process have emerged:
metabolic sensing (48, 51–53) regulation of blood/CSF/brain
interfaces (50) and neurogenesis (54). The regulation of
deiodinase gene expression and consequent effects on the local
thyroid environment is but one molecular function of tanycytes,
and may impact on any or all of the above cellular processes.
At one level dio2/dio3 are regulators of uptake of active thyroid
hormone into the circumventricular environment, and so serve a
role as enzymatic “gatekeepers” (55). At another level, because
T3 levels in the hypothalamus interact with the AMP-kinase
dependent energy sensing pathways (56), shifts in deiodinase
expression may be linked to metabolic sensing and responses.
Thirdly, because T3 is strongly implicated in neurogenic
pathways (57–59), shifts in T3 status dependent on photoperiodic
history may impact in neurogenesis-dependent neural plasticity
in the basal hypothalamus (54, 60, 61). Much remains to be
done to establish an integrated view on the consequences of
photoperiodic programming of tanycyte function.

MPP IN THE WIDER CONTEXT OF
PROGRAMMING BY EARLY LIFE
EXPERIENCE

The life-long consequences of early life experience is a
topic of major biomedical importance. Epidemiological studies
in humans demonstrate a positive correlation between low

birthweight and susceptibility to obesity and cardiovascular
health problems in adult life (62–66). Attempts to understand
the mechanisms behind this phenomenon have led to studies
in rats, in which maternal undernutrition leads to a chronic
increase in susceptibility to weight gain when fed a “cafeteria”
diet (67). Remarkably, this effect is completely reversed by
treatment with the lipostatic hormone, leptin, in a narrow
window in the neonatal period, which has closed by 10
days post-partum [(67), for review see (68)]. The mechanisms
behind this effect of leptin remain unclear, it is probably
not a coincidence that the ependymal zone of the MBH
expresses high levels of leptin receptor at post-natal day 4,
which then decline rapidly over the following week (69). This
pattern is the inverse of that seen in the arcuate nuclei, and
points to a transient role for leptin in establishing energy
regulatory circuits in the neonatal period. The mapping of
leptin receptor expression to the region encompassing the
tanycytes involved in MPP suggests that this region is at
the crux of mechanisms through which hypothalamic control
circuits are established in early life. For this reason, we
suggest that MPP, which relies on a harmless and non-invasive
environmental perturbation (i.e., light) and acts through a well-
defined pharmacological pathway (i.e., MT1 receptors in the
PT), is a useful experimental paradigm for investigating the
mechanisms through which early life experience establishes long
term patterns of hypothalamic regulation.
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