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Berardinelli-Seip congenital lipoatrophy (BSCL) is characterized by near

total fat atrophy, associated with the progressive development of metabolic

complications. BSCL type 1 (BSCL1) is caused by mutations in AGPAT2, encoding

1-acylglycerol-3phosphate-O-acyltransferase β (recently renamed lysophosphatidic

acid acyltransferase beta), which catalyzes the transformation of lysophosphatidic acid

in phosphatidic acid, the precursor of glycerophospholipids and triglycerides. BSCL1

is an autosomal recessive disease due to AGPAT2 pathogenic variants leading to a

depletion of triglycerides inside the adipose organ, and to a defective signaling of key

elements involved in proper adipogenesis. We herein investigated the characteristics

of two AGPAT2 variants in Caucasian Italian patients with Berardinelli-Seip congenital

lipoatrophy. The first patient exhibited a novel homozygous nonsense c.430C >

T AGPAT2 mutation (p.Gln144∗) predicting the synthesis of a truncated enzyme of

approximately half of the proper size. The second patient harbored a homozygous

AGPAT2missense variant (p.Arg159Cys), never described previously in BSCL1 patients:

the segregation of the disease with the mutation in the pedigree of the family and

the in silico analysis are compatible with a causative role of the p.Arg159Cys variant.

We remark that BSCL1 can be clinically very heterogeneous at presentation and that

the associated complications, occurring in the natural history of the disease, reduce

life-expectancy. We point to the necessity for medical treatments capable of reducing

the risk of cardiovascular death. In BSCL1 patients, the assessment of cardiovascular

disease with conventional diagnostic means maybe particularly challenging.
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INTRODUCTION

Congenital generalized lipodystrophy was first described by
Waldemar Berardinelli in 1954 (1) and later on further outlined
by Martin Seip (2).

Berardinelli-Seip congenital lipoatrophy (BSCL) is
characterized by near total fat atrophy since birth, associated with
the progressive development of metabolic complications (3). The
most common are type 2 diabetes, severe hypertriglyceridemia,
acute pancreatitis, hepatic steatosis, and hepatomegaly which are
usually detected during infancy and adolescence; other features
include, but are not restricted to, muscle pseudo-hypertrophy
and acromegaloid appearance, umbilical hernia, polycystic ovary
syndrome, cysts in the appendicular bones, cardiopathies, and
cardiac rhythm disorders (4, 5). Depending on the underlying
molecular cause, mechanical adipose tissue depots of palms,
soles, orbits, and under the scalp is preserved or not (6) and
other comorbidities can be observed (7).

BSCL is classified in four different subtypes (8); BSCL type
1 is an autosomal recessive disease due to variants (9) of
the gene coding for the enzyme 1-acylglycerol-3phosphate-O-
acyltransferase β (lysophosphatidic acid acyltransferase beta or
AGPAT2 OMIM# 608594). BSCL type 2 is caused by biallelic
mutations in BSCL2 encoding seipin, a transmembrane protein
involved in the functional relationships between endoplasmic
reticulum and lipid droplets [OMIM# 269700) (10)]. Rarer forms
of BSCL are due to mutations of the CAV1 (OMIM# 612526) and
PTRF (OMIM# 613327) genes (11, 12), respectively, encoding
caveolin-1 and cavin-1, belonging to the signaling platforms
caveolae at the plasma membrane.

AGPAT2 is a lysophosphatidic acid acyltransferase isoform
of 278 amino acids localized in the endoplasmic reticulum
and highly expressed in white adipocytes (13). It catalyzes
the transformation of lysophosphatidic acid (1,2-diacylglycerol-
3phosphate) into phosphatidic acid (glycerol-3-phosphate)
which belongs to the glycerophospholipid and triglyceride
biosynthetic pathways. AGPAT2 deficiency leads to a depletion of
triglycerides inside the adipose organ and to a defective signaling
of key elements such as PI3K/AKT and PPARγ involved in
proper adipogenesis (14).AGPAT2KOmice develop a phenotype
resembling that of BSCL type 1 (BSCL1) in humans characterized
by near total loss of white and brown adipose tissue with severe
insulin resistance, diabetes, and hepatic steatosis (15).

Abbreviations: BSCL, Berardinelli-Seip congenital lipoatrophy; AGPAT2, 1-

acylglycerol-3phosphate-O-acyltransferase β; PI3K, phosphoinositide 3-kinase;

AKT, serine/threonine-protein kinases; OMIM, online mendelian inheritance

in man; PPARγ, peroxisome proliferator-activated receptor gamma; CAV1,

caveolin-1; PTRF, polymerase I and transcript release factor; KO, knockout

mouse; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ExAC,

exome aggregation consortium; HDL, high density lipoprotein-cholesterol; ECG,

electrocardiogram; HbA1c, glycated hemoglobin; LH, luteinizing hormone; FSH,

follicle-stimulating hormone; E2, estradiol; IGF-1, Insulin-like growth factor-

1; DEXA, dual-energy x-ray absorptiometry; FT3, free tri-iodothyronine; CLIA,

chemiluminescence immunoassay; FT4, free thyroxine; TSH, thyroid stimulating

hormone; ICMA, chemiluminescent immunochemiluminometric assay; PRL,

prolactin; GGT, gamma-glutamyl transferase; PCR, polymerase chain reaction;

dbSNP, Single Nucleotide Polymorphism Database.

A very relevant aspect of the disease is the increased
food intake caused by reduced circulating levels of the
adipose-derived hormone leptin (16), which contributes to the
metabolic alterations.

BSCL is a very rare disorder, its prevalence was estimated to be
1–10 case every 10 million (3, 17), although it could reach 3 per
100,000 people in some areas (18). Some of themutations recur in
specific geographic areas, probably due to a “founder effect” (19),
and their presence is unveiled by consanguineous and endogamic
marriages or in small and isolated communities.

Close to 95% of patients affected by BSCL have identified
mutations (19). BSCL1 is an autosomal recessive disease and all
patients exhibit either homozygous or compound heterozygous
AGPAT2 mutations. Most reported mutations are nonsense or
cause altered splicing or frame shifts, which disrupts the protein
activity. Only few missense mutations have been so far described.

CASE REPORT

Clinical Case N◦1
A 7 years-old child was referred to our Lipodystrophy Center.
The boy was born at term after an uneventful pregnancy.
His birth weight was 3.250Kg. He was the third child of
non-consanguineous healthy parents living in a small village
in the Northern part of Italy. At the age of 3 months, he
was admitted to hospital for vomiting and diarrhea. Physical
examination showed a generalized lack of subcutaneous fat,
abdominal distension, muscle hypertrophy, low anterior hairline,
prominent orbital ridges, large ears, and umbilical hernia
(Figure 1). Laboratory tests showed severe hypertriglyceridemia
(1565 mg/dl) and increased liver enzymes (AST 543 U/L, ALT
667 U/L), breast feeding was halted and low fat medium chain
triglycerides enriched milk was introduced with progressive
normalization of the parameters. Liver ultrasound showed diffuse
hyperechogenicity consistent with steatosis. BSCL1 syndrome
was diagnosed when genetic analysis revealed a novel nonsense
homozygous AGPAT2 pathogenic variant. In this patient a
nucleotide change (c.430C > T) was observed in exon 3 of
the AGPAT2 gene predicting the substitution of the Glutamine
residue at position 144 by a stop codon (p.Gln144∗). This variant
was not found in the ExAC nor in the 1,000 genome project
databases and has never been described in patients affected by
BSCL1. In silico analysis confirmed the high pathogenic score
of the mutation. The allelic variant in the heterozygous form
was found in both asymptomatic parents and in three additional
family members of the maternal side (Figure 1).

A low-fat hypocaloric diet was then prescribed. At the
time we first evaluated the patient (at 7 years of age) his
development and school performance were appropriate for age.
On physical examination his height and weight were between
the 25th and 50th percentile of the growth charts. He was
prepubertal. Lipoatrophy affected the entire body with the
exception of the palm of the hands and sole of the feet.
He presented muscle hypertrophy, particularly of the calf and
thigh muscles (Figure 1). On low fat diet, biochemical analysis
showed normal levels of fasting blood glucose, triglycerides,
total cholesterol, and liver enzymes. He had low level of
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FIGURE 1 | Pictures and family pedigrees of the probands. (A) Pictures of Proband 1 at 4 months of age (left) and at close to 9 years of age (right). (B) pedigree of the

family of the proband affected by a novel nonsense homozygous pathogenic variant (p.Gln144*) in exon 3 of the AGPAT2 gene. (C) Pictures of the proband number 2

and particular of the enlarged hands and feet. (D) pedigree of the family of the proband affected by a novel nonsense homozygous variant (Arg159Cys) in exon 3 of

the AGPAT2 gene; parents of the index case were second degree cousins (I-2 and I-4 were first degree cousins). The probands are indicated with the arrow, circles

indicate male subjects, squares female subjects. Roman numbers specify the different generations while Arabic numbers identify different subjects. Double horizontal

line indicate consanguinity. M, mutant allele; N, normal allele. Filled symbol indicate the presence of the disease, crossed symbols indicate deceased individuals.

high density lipoprotein-cholesterol (HDL-cholesterol 28 mg/dl).
As expected from the generalized lack of body fat, serum
leptin levels were very low (0.1 ng/ml). Fasting insulin (4.4
mU/L) and glycated hemoglobin levels (33 mmol/mol) were
in the normal range. Endocrinological evaluation showed
normal thyroid, adrenal and pituitary functions. No pathological
findings were demonstrated at cardiologic evaluation (ECG and
echocardiography). Abdominal ultrasonography revealed mild
steatosis. The hepatic left lobe volume, a standardized surrogate
marker of liver volume (20), was enlarged (234ml). Liver stiffness
value assessed by fibroscan was normal (3.7 kPa).

Clinical Case N◦2
The second patient was a 53 years old woman born from
consanguineous parents (second-degree cousins, Figure 1) living
in a 200 residents village located in the Center of Italy. At 10
years, after development of polyuria and polydipsia she was

diagnosed with lipoatrophic diabetes and eruptive xanthomatosis
(triglycerides = 718 mg/dl). The patient was advised initially to
restrict dietary fats and carbohydrate intake, but over the years
she developed uncontrolled hyperglycemia and hyperphagia
briefly treated with fenfluramine that exacerbated a bipolar
disorder. Later on anti-hypertensive therapy (at age 40) and
insulin therapy (at age 43), where administered after she
had already developed bilateral proliferative retinopathy and
blindness of the left eye because of retinal detachment. At
44 years, she was diagnosed with diabetic and hypertensive
nephropathy. She had irregular periods (oligo-menorrhea)
throughout her life and no pregnancies. She went into
menopause at age of 49.

At the time we first evaluated the patient (53 years of age),
physical examination (Figure 1) revealed diffuse reduction of
subcutaneous fat, acromegaloid features (marked prognathism
and enlarged hands and feet), acanthosis nigricans on the neck
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and axillae. In addition, she displayed muscle hypertrophy,
phlebomegaly and umbilical hernia. No signs of hirsutism were
present. The height and the body mass index of the patient were
1.55m and 22.1 kg/m2, respectively.

Biochemical blood tests, under insulin treatment (51 IU/day)
and omega three fatty acids, showed high levels of fasting plasma
glucose with normal glycated hemoglobin (178 mg/dl; HbA1c
37 mmol/mol, respectively) and frequent hypoglycemic episodes,
hypertriglyceridemia (423 mg/dl), and low HDL-cholesterol
levels (22 mg/dl). Serum creatinine and proteinuria were 2.14
mg/dl and 1.9 g/24 h, respectively. Endocrinological evaluation
showed normal thyroid, parathyroid, and adrenal functions.
Plasma leptin and adiponectin were severely reduced (0.4 ng/ml
and 0.1 mcg/ml, respectively). Gonadal function showed low
levels of gonadotropins with undetectable estradiol (LH 1.1 UI/l;
FSH 4.6 UI/l; E2 <20 ng/L) and slightly increased levels of
IGF-1 (231 mcg/L) and prolactin (71.4 mcg/l). Pituitary imaging
excluded the presence of adenomas or suprasellar masses and
hyperprolactinemia was attributed to the chronic treatment
with risperidone.

Abdominal ultrasonography revealed mild liver steatosis
with an enlarged hepatic left lobe volume (223ml) and
splenomegaly. Body composition assessed by DEXA showed
reduced total fat mass (9.2%). Total body X-rays confirmed the
presence of multiple bone cysts, confluent, with osteosclerotic
appearance, mainly localized in the femoral heads and
humerus diaphysis.

Her cardiovascular evaluation showed hypertension, dilated
left atrial chamber, left ventricular hypertrophy but normal
ventricular volume. Taking into account the high cardiovascular
risk of this patient, a stress myocardial perfusion Single-
Photon Emission Computed Tomography (SPECT) SPECT
was conducted with negative results. The patient had been
asymptomatic during the stress test.

Approximately 3 months after discharge from our institution,
she experienced chest pain and was admitted to the emergency
room and diagnosed with massive myocardial infarction and
acute heart failure. Despite transcutaneous revascularization
for diffuse coronary stenosis the patient developed progressive
cardiac insufficiency and kidney failure. One month after her
hospitalization the patient died in the intensive care unit.

In this patient, genetic screening of the AGPAT2 gene revealed
a homozygous gene variant predicting the substitution of the
Arginine residue at position 159 with a Cysteine (p.Arg159Cys,
nucleotide change c.475C > G).

The missense variant p.Arg159Cys (Figure 2) in exon 3 of the
gene was found, among others, in the ExAC database with an
allelic frequency of 0.00553 and in the 1,000 Genome Project
with an allelic frequency of 0.003 in the general population. In
silico analysis showed a high pathogenic score (180/215). This
aminoacid is significantly conserved (Figure 2) among different
species and resides in a highly conserved protein region. Protein
stability of the missense variant p.Arg159Cys may be affected as
predicted by dedicated software. This variant was found in the
heterozygous state in her brother (Figure 1) who had normal
triglycerides, glucose tolerance, glycated hemoglobin, hepatic
ultrasound, and total body fat assessed by DEXA.

Biochemistry and Hormones
All determinations were carried out after 12 h fasting. Leptin
and adiponectin were measured by CLIA from Mediagnost,
Reutlingen, Germany, FT3 (CLIA), FT4 (CLIA), TSH (ICMA)
from Ortho Clinical Diagnostic Rochester NY, USA, FSH
(ICMA), PRL (ICMA), LH (ICMA), Insulin (ICMA) from
Beckman Coulter, Inc. Diagnostics California, USA, and
IGF1 (ICMA) from Immunodiagnostic Systems Holdings, UK.
Glucose cholesterol, triglycerides, creatinine, AST, ALT, GGT,
were determined using automated equipment at the central
Laboratory of the University Hospital of Cisanello, Italy.

Genetic Testing, Mutation Screening
AGPAT2 variants were identified by next generation sequencing
(Patient 1) and/or Sanger sequencing (Patient 2), and all were
confirmed by Sanger sequencing in an independent DNA
sample. Specific primers were designed to amplifyAGPAT2 exons
and splice junctions from genomic DNA, isolated from whole
blood. PCR was performed using PCR Master Mix (Promega
Corporation, WI 53711-5399) with an annealing temperature of
60◦C. After purification with ExoProStar (GE Healthcare UK
Limited, UK), the PCR products were directly sequenced using
Applied Biosystems 3130 xl sequencer (Thermo Fisher Scientific,
MA, USA).

In silico Modeling of the Pathogenicity of
AGPAT2 Variants
In silico analysis was conducted using Mutationtaster software
[http://mutationtaster.org/ (Last time accessed December 23,
2019)]: each variant is given a score up to the value of 215; a high
score is indicative for pathogenic mutations. ExAC and 1,000
Genome Project, dbSNP, Ensembl, Exome Variant server, and in
the Clinvar database databases were also searched to determine
allelic frequencies in the general population. PROVEAN (Protein
Variation Effect Analyzer) is a software tool which predicts
whether an amino acid substitution or indel has an impact on the
biological function of a protein (http://provean.jcvi.org/index.
php, last time accessed December 23, 2019). DUET a server
for predicting effects of mutations on protein stability via an
integrated computational approach (http://biosig.unimelb.edu.
au/duet/stabilityn, last time accessed December 23, 2019) was
also used. Prediction from SIFT, Mutation Assessor, CAD and
Revel were obtained from the Ensembl genome database.

DISCUSSION

BSCL1 pathogenic mutations affect triacylglycerol and
glycerophospholipid synthesis in adipose tissue and cause
lipodystrophy by impairing adipogenesis and depleting the
adipocytes of triglycerides (9, 14).

Patients with BSCL1 are either homozygous or compound
heterozygous for AGPAT2 gene mutations that co-segregate with
the phenotype of disease in accordance with an autosomal
recessive pattern of inheritance. Heterozygotes carriers are
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FIGURE 2 | AGPAT2 gene variants described so far and sequence alignment of patient number 2. (A) Schematic gene structure of AGPAT2 gene, filled boxes

indicate exons and in between lines introns: various mutations of AGPAT2 described so far, novel mutations described in this manuscript are inscribed in rectangular

boxes (upper panel). (B) Lower panel indicate AGPAT2 aminoacid sequence alignment in humans and other mammalians. The arrow points at the position of the

missense variant at arginine residue 159 (p.Arg159Cys) found in patient number 2 which resides in a highly conserved region.

asymptomatic although an increased incidence of diabetes is
suggested (21).

We have identified 150 cases of patients with a genetically
confirmed BSCL1 syndrome reported and 42 different mutations.
Most of the mutations cause frame-shifts or alter mRNA splicing
leading to the synthesis of a non-functional enzyme while
rarer pathogenic variants cause amino acid substitutions
(Tables 1, 2). Mutations are spread throughout all six exons
and intronic junctions of the gene (Figure 2). Approximately
1/4 of the mutations are nonsense mutations, more frequently

present in exon 2 and 3. Insertions and deletions localize
usually in exons 3 and 4 while over 80% of mutations altering
mRNA splicing localize in intron 4 (p.Gln196fsX228 or
p.Phe109fsX452 variants). Fewer patients (15%) present
a compound heterozygosity for AGPAT2 pathogenic
variants and each compound mutation, concentrating
predominantly in introns or exons 3 or 4, is almost unique.
No relationships between AGPAT2 pathogenic genotypes and
the severity of lipodystrophy or specific complications has ever
been described.
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TABLE 1 | Pathogenic variants of AGPAT2 gene described in the homozygote state.

Homozygous variants

Exon/intron cDNA Protein Number of cases References

Missense/nonsense

Exon 1 c.134C > A Ser45X 1 (22)

Exon 1 c.142C > T Cys48Arg 2 (23)

Exon 1 c.144C > A Cys48X 3 (24)

Exon 2 c.194G > A Trp65X 1 (19)

Exon 2 c.199G > A* Val67Met 1 (25, 26)

Exon 2 c.202C > T Arg68X 14 (9, 19, 24, 27, 28)

Exon 2 c.216C > G Tyr72X 1 (28)

Exon 2 c.259C > T Gln87X 1 (29)

Exon 2

Intron 3

c.299G > A

IVS3-1G > C

Ser100Asn**

Asn164fsX249**

5 (30–32)*

Exon 3 c.335C > T Pro112Leu 2 (33, 34)

Exon 3 c.430C > T Gln144X 1 Current study

Exon 3 c.475C > T Arg159Cys 1 Current study

Exon 4 c.514G > A Glu172Lys 5 (19, 22, 35, 36)

Exon 5 c.643A > T*** Lys216X 5 (19, 24, 35, 37)****

Exon 6 c.676C > T Gln226X 1 (19)

Exon 6 c.685G > T Glu229X 5 (22, 24)

Deletion

Exon 2 268delC Arg90ValfsX15 1 (24)

Exon 3 c.369_372deLGCTC Leu124SerfsX26 1 (38)

Exon 3-4 317-588del (Ex 3-4del) Gly106fsX188 24 (9, 19, 37, 39, 40)

Exon 6 755TGAGGACCA del 252delMetArgThr 1 (30)

Intron 4-5 12562_12613 del Val197GlufsX32 1 (41)

Intron 5 IVS5-2A>C 221delGlyThr 2 (9, 24)

Insertion

Exon 2 258_259insGGCTG Gln87GlyfsX 1 (42)

Exon 3 377insT Leu126fsX146 1 (30)

Deletion/insertion

Exon 6 667_705delinsCTGCG Val223LeufsX19 2 (24)

Splice-site

Intron 2 IVS2+1G > T – 2 (24)

Intron 3 IVS3-1G > C delLeu165-Gin196 2 (19, 35)

Intron 3 IVS3-1G > C Asn164fsX249 3 (32)

Intron 4 IVS4-2A > G Gln196fsX228 23 (9, 28, 30, 35, 37)

Intron 4 IVS4-2A > G Phe109fsX452 16 (19)

Intron 5 IVS5+2T > G Phe109fsX452 2 (19)

*Originally described as c.119 G > A. **Double homozygosity. ***Originally described as 712 A > T. ****Originally described as 645 A > T.

Several are the metabolic complications related to AGPAT2
functional loss, insulin resistance is a hallmark of the disease
and usually progresses during childhood (4) leading to diabetes
mellitus after adolescence.

In the functional absence of AGPAT2, liver activity of
the isoform 1 of the enzyme (AGPAT1) is significantly
upregulated leading to overproduction of diacylglycerol, used
for triacylglycerol synthesis (15). This could be an additional
mechanism responsible for the development of severe liver
steatosis and hepatomegaly besides the ectopic accumulation of
triglycerides of alimentary origin.

Patients with BSCL1 display specific skeletal abnormalities, in
particular lytic lesions at the extremities of appendicular bones
associated with a diffuse serous transformation of the bone
marrow (35), which can help clinicians with an early diagnosis
in pauci-symptomatic patients.

Many patients with generalized lipodystrophy show evidence
of cardiac hypertrophy, as measured by echocardiographic
parameters. Lupsa et al. (45) have documented that out of 19
patients affected by BSCL1, 10 had some evidence, in some cases
severe, of left ventricular hypertrophy. ECG abnormalities were
seen in 53% of patients.
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TABLE 2 | Pathogenic variants of AGPAT2 gene in the compound heterozygous state.

Compound heterozygote variants

Exon cDNA Protein Number of cases References

Exon 2

Intron 4

202C > T

IVS4-2A > G

Arg68X

Gln196fsX228

2 (43)

Exon3

Intron 4

c.369_372delGCTC

IVS4-2A > G

Leu124SerfsX26

–

1 (38)

Exon 3

Exon 4

406G > A

504delGA

Gly136Arg

Val167fsX183

1 (9)

Exon 3

Intron 4

418delTTC

IVS4-2A > G

140delPhe

Gln196fsX228

1 (9)

Exon 3

Intron 4

377insT

IVS4-2A > G

Leu126fsX146

Gln196fsX228

2 (9)

Exon 3

Intron 4

355C > T

IVS4-2A > G

Pro112Leu

Gln196fsX228

1 (43)

Exon 4

Exon 5

c.513del C

c.622_626TCCTC

Glu172ArgfsX81

Ser208LeufsX267

1 (44)

Exon 4

Intron 1

538Gdel

IVS1+1G > A

Asp180fsX251

–

1 (30)

Exon 4

Intron 3

c.636C > A

IVS3-1G > C

Phe189X

Asn164fsX249

1 (37)

Exon 4

Intron 4

570C > A

IVS4-2A > G

Tyr190X

Gln196fsX228

2 (30)

Exon 6

Intron 4

683T > C

IVS4-2A > G

Leu228Pro

Gln196fsX228

2 (9)

Exon 6

–

c. 712C > G

–

Ala238Gly

–

1 (19)

Exon 6

Exon 6-

3’UTR

716C > T

c.916C > G

Ala239Val

–

1 (9)

Intron 1

–

IVS1-2A > G

–

Phe60fsX102

–

1 (19)

Intron 4

Intron 3

IVS4-2A > G

IVS3+1G > A

Gln196fsX228

–

1 (30)

Intron 4

–

IVS4-2A > G

–

Phe109fsX452

–

2 (19)

At variance with the numerous cardiovascular risk factors
displayed by patients with congenital generalized lipodystrophy
(46), myocardial infarction and sudden death were not reported
to be the leading cause of decease (47).

The two cases presented illustrate well the clinical
heterogeneity of BSCL1. In the younger patient, born from
non-consanguineous parents, the metabolic complications, at
the age of 8 years, were mild and controlled by hypocaloric diet
and physical activity. The older woman, who was diagnosed
during puberty, showed the multiple and severe metabolic
derangements typically occurring in the natural history of the
disease. Regarding the cardiac health, ECGs in both our patients
were normal but echocardiography revealed dilated left atrial
chamber and left ventricular hypertrophy in the adult patient,
who also had hypertension. Taking into account the numerous
and long standing cardiovascular risk factors of this 53 years old
woman, we performed one of the most accurate test available
for diagnosing coronary artery disease, which, however, failed
to foresee the underlining ischemic disease. The etiology of

the frequent hypertrophic cardiomyopathy in lipodystrophy
remains unclear; in part, it could be related to the underlying
hypertension, but also to the increased growth stimulatory
action of excess insulin (48). A third potential mechanism
of cardiac disease is related to the increased fatty acid influx
or ectopic deposition of fat in the myocardium. “Lipotoxic
cardiomyopathy” in lipodystrophy has not proved yet but is a
very plausible explanation since a significant number of patients
develop cardiac hypertrophy and left ventricular dysfunction
in the absence of hypertension (45). Lipotoxic cardiomyopathy,
together with the vascular complications of diabetes,
hypertension and dyslipidemia, favor cardiovascular morbidity
and mortality (46). Retrospectively, the adoption of an insulin
treatment favoring hypoglycemic episodes rather than insulin
sensitizers and drugs with a protective cardiovascular profile
may have been further detrimental in this case. Furthermore,
the role for implementation of a protective cardiac treatment
(ace-inhibitors, anti-aldosterone drugs, anti-aggregants, PCSK9
inhibitors) should be assessed in adult patients with BSCL.
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Another consequence of chronically decreased leptin levels
is the reduction of GnRH pulsatile activity which causes oligo-
menorrhea (4). Indeed, our patient presented with a clinical
history of oligo-menorrhea and showed almost undetectable
gonadotropin levels, probably determined by the combination of
reduced leptin levels and iatrogenic hyperprolactinemia. Notably,
∼10% of BSCL1 patients, display cognitive impairment (49), but
our patients did not.

Described individuals with mutations in the AGPAT2
gene mainly originated from America or Northern Europe
and occasionally from sub-Saharan Africa or Middle Eastern
Countries (50). As for Caucasian Italian population the two
herein described subjects add up to one other single case
previously reported (33).

The first mutation (p.Gln144∗) is not present in databases
collecting variants identified in the general population.

In this case it is straightforward to predict that the mutation
affects the protein activity via the synthesis of a truncated enzyme
approximately half (143 amino acids) of the proper size. Missense
mutations located close (p.Gly136Arg) (9) or nonsensemutations
more distal to the C-terminal part of the protein have been
previously reported as pathogenic (e.g., p.Phe189X, p.Tyr190X,
p.Lys216X, p.Gln226X) (19, 30, 37).

The substitution of the Arginine residue at position 159
with a Cysteine (AGPAT2 p.Arg159Cys) was present in the
homozygous state in Proband 2 and found in the heterozygous
state in the unaffected brother. This variation alters a conserved
amino acid site in a highly conserved region among mammalian
species and its in silico score was predictive of disruption
of protein activity. Furthermore, the homozygous variant
segregated with the disease in the family making its pathogenic
role possible.

We speculate that the substitution of hydrophilic charged
Arginine with a polar, non-charged Cysteine, capable of forming
disulfide bonds may disrupt the folding or activity of the enzyme.
Results from dedicated software tools are not fully concordant
in this regard: SIFT, Mutation Assessor, CAD, and PROVEAN
predict in fact the aminoacid change to be neutral whereas
Revel consider this substitution pathogenic, in line with the
reduced stability of the R159C variant predicted by DUET, an
integrated computational approach that takes into account the
three dimensional structure of the protein.

Databases collecting variants existent in the general
population report the heterozygous p.Arg159Cys to be present
at a frequency around 0.3% which is higher than expected
from the disease prevalence. The presence of few homozygous
carriers (three subjects in ExaC and nine subjects in gnomAD)
is reported by these databases but no information regarding the
clinical history of the homozygous subjects can be retrieved.
This evidence is difficult to reconcile with our findings. We
therefore cannot rule out different pathogenic mechanisms.
Pathogenic AGPAT2 missense mutations are thought to reduce
protein expression (23) and possibly enzymatic activity (27).
Testing in vitro the effects of the described mutation may give
us further clues, but the assessment of the pathogenic potential
of AGPAT2 variants has been proven challenging and has been
rarely performed (23, 27).

Berardinelli Seip syndrome is frequently unveiled by
consanguineous marriages or in small and relatively isolated
communities (50). This was indeed the case for both patients.
The first one was born from apparently unrelated parents
living in a small village of few thousands inhabitants. The
occurrence of a unique variant of AGPAT2 was found in
members on both sides of the family, suggesting a founder effect
from a common ancestor. The second patient was born from
second-degree cousins.

In conclusion we describe two patients with BSCL type 1
lipodystrophy harboring novel homozygous variants. The first
one presented with a null variant (p.Gln144∗) occurring in
exon 3 of AGPAT2 gene. The second patient presented with
a homozygous AGPAT2 missense variant (p.Arg159Cys), never
described previously in BSCL1 patients, raising the question
on its pathogenicity. The segregation of the disease with the
genotype in the family and the in silico analysis are compatible
with a causative role of the p.Arg159Cys variant.

We remark that BSCL1 can be clinically very heterogeneous
at presentation and that the associated complications, occurring
in the natural history of the disease, may reduce life-
expectancy. We point to the necessity for medical treatments
capable of reducing the risk of cardiovascular death. In
BSCL1 patients, the assessment of cardiovascular disease with
conventional diagnostic means maybe particularly challenging.
Future studies will be essential to investigate if specific
cardiovascular diagnostic approach is recommended in adult
BSCL patients.
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