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The incidence of thyroid cancer (TC) has increasedworldwide over the past four decades.

TC is divided into three main histological types: differentiated (papillary and follicular

TC), undifferentiated (poorly differentiated and anaplastic TC), and medullary TC, arising

from TC cells. This review discusses the molecular mechanisms associated to the

pathogenesis of different types of TC and their clinical relevance. In the last years,

progresses in the genetic characterization of TC have provided molecular markers

for diagnosis, risk stratification, and treatment targets. Recently, papillary TC, the

most frequent form of TC, has been reclassified into two molecular subtypes, named

BRAF-like and RAS-like, associated to a different range of cancer risks. Similarly,

the genetic characterization of follicular TC has been proposed to complement the

new histopathological classification in order to estimate the prognosis. New analyses

characterized a comprehensive molecular profile of medullary TC, raising the role of RET

mutations. More recent evidences suggested that immune microenvironment associated

to TC may play a critical role in tumor invasion, with potential immunotherapeutic

implications in advanced and metastatic TC. Several types of ancillary approaches have

been developed to improve the diagnostic value of fine needle aspiration biopsies in

indeterminate thyroid nodules. Finally, liquid biopsy, as a non-invasive diagnostic tool

for body fluid genotyping, brings a new prospective of disease and therapy monitoring.

Despite all these novelties, much work remains to be done to fully understand the

pathogenesis and biological behaviors of the different types of TC and to transfer this

knowledge in clinical practice.
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INTRODUCTION

Thyroid cancer (TC) represents the most common endocrine malignancy, accounting for 3.4%
of all cancers diagnosed annually (1). The transformation of thyroid follicular cells may result
in differentiated or undifferentiated TC, through a multistep process that is the most accepted
theory of follicular cell carcinogenesis (2). In this model, distinct molecular alterations have been
associated with specific stages, driving progression from well-differentiated to undifferentiated
follicular-derived thyroid carcinomas. More recently, the cancer stem-like cells theory has been
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proposed, according to which phenotypically different cancer
cells could be generated by a small subpopulation of stem cells
after genetic and epigenetic transformations (3). Differentiated
TC, accounting for more than 90% of thyroid malignancies,
comprises papillary thyroid carcinoma (PTC) and follicular
thyroid carcinoma (FTC). Poorly differentiated thyroid
carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are
rare tumors (5 and 1%, respectively) associated with aggressive
behavior and short median time of survival (5 years and 6
months, respectively). Differently, medullary thyroid carcinoma
(MTC), representing 5% of TC, arises from parafollicular C cells.

In the last 30 years, the availability of the genome sequence
has produced much progress in elucidating the molecular
mechanisms underlying TC (4). TC is a genetically simple disease
with a relatively low somatic mutation burden in each tumor.
Driver mutations, i.e., mutations that provide a selective growth
advantage thus promoting cancer development, are identified
in more than 90% of TC (4). The molecular pathogenesis
of the majority of TC involves dysregulation of the mitogen-
activated protein kinase (MAPK) and phosphatidylinositol-3

FIGURE 1 | The molecular pathogenesis of thyroid cancer involves dysregulation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase

(PI3K)/AKT pathways. Common activating mutations in the MAPK pathway include RET-PTC and NTRK rearrangements, and RAS and BRAF mutations. Common

genetic alterations in the PI3K pathway include RAS mutations, PTEN mutations or deletions, PIK3K mutations or amplifications, and AKT1 mutations. PAX8-PPARG

fusions are common in FTC. Activation of Wnt/b-catenin pathway, inactivating mutations in TP53, and activating mutations in TERT promoter are frequent in

undifferentiated thyroid cancer.

kinase (PI3K)/AKT signaling pathways. MAPK activation is
considered to be crucial for PTC initiation, through point
mutations of the BRAF and RAS genes or gene fusions of
RET/PTC and TRK. On the other hand, PI3K/AKT activation
is thought to be critical in FTC initiation and can be triggered
by activating mutations in RAS, PIK3CA, and AKT1 as well
as by inactivation of PTEN, which negatively regulates this
pathway. TC progression and dedifferentiation to PDTC and
ATC involves a number of additional mutations affecting
other cell signaling pathways, such as p53 and Wnt/β-
catenin. More recently, TERT promoter mutations have been
described in all the histological TC type, with a significantly
higher prevalence in aggressive and undifferentiated tumors,
indicating their role in TC progression (Figure 1). Mutations
in the RET (Rearranged during transfection) proto-oncogene
account for most MTC cases and can occur sporadically
or as inherited germline events in the multiple endocrine
neoplasia type 2A (MEN2A) and 2B (MEN2B) syndromes. A
minority of sporadic MTC are caused by H-, K-, and N-RAS
mutations (Table 1).
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TABLE 1 | Distribution and frequency of known somatic mutations in different histotypes of thyroid cancer.

PTC FTC PDTC ATC MTC

AKT 1% (5) 1-2.6% (6, 7) – 0–3% (8, 9) –

BRAF 61.7% (5) 1.7% (7) 19% (8)−33% (9) 19–45% (8–10) –

DICER1 2.7% (5) 5.1% (6) – 1.1% (9) –

EIF1AX 1.5% (5) 5.1% (6) 10% (9) 9% (8) 0.6% (11)

HRAS 2% (5) 7% (7) 5% (9) 6% (8) 9.3–15.8% (11)

KRAS 1.26% (5) 4% (7) 2% (9) 0–5% (8, 9) 3.0–6.2% (11)

NRAS 6% (5) 17% (12)−57% (6) 21% (9) 18% (8) 0.6–1% (11)

PAX8-PPARγ 0.8% (5) 12% (13)−53% (14) 4% (9) 0 (8) –

PI3KCA – 5.5% (7) 2% (9) 18% (8) –

PTEN 1% (5) 7.1% (7) 4% (9) 15% (8) 1% (11)

RET – – – – 55.8% (11)

RET/PTC 6.8% (5) 0 (7) 14% (9) 0 (8) Very rare (15)

SWI/SNF – – 6% (9) 18–36% (8, 9) –

TERT promoter 9.4% (5) – 33–40% (8, 9) 43–73% (8–10) –

TP53 6% (5) 5.1–9.7% (6, 7) 0–8% (8, 9) 43–78% (8–10) 1.2% (11)

TSHR 2% (5) 10.3% (7) 2% (9) 6% (8) 0.6% (11)

PAPILLARY THYROID CARCINOMA

The majority of PTC has an excellent prognosis in terms of long-
term survival (>90%) (4, 16), although recurrent disease rates
reported are rather high, occurring in 25–35% of patients (4,
17, 18). The clinical challenge relies in the early identification of
those patients who need aggressive treatment from the beginning
from those who will have an indolent course.

At the molecular level, several driver mutations have been
associated with PTC malignancy and clinicopathological
features, but none has proven useful in directing treatment
and determining clinical outcome. Among these, RET
rearrangements or point mutations of RAS or BRAF proto-
oncogenes have been described and are found in an almost
mutually exclusive modality in nearly 70% of PTC (Table 1).
These genetic alterations are common in PTC, leading
to (constitutively) activation of MAPK or PI3K signaling
pathways (19).

RET proto-oncogene encodes for a tyrosine kinase receptor

and its activation invokes intracellular signaling cascades,

leading to gene expression modulation and biological responses.
RET/PTC fusion protein maintains the tyrosine kinase domain

intact and enables uncontrolled activation of theMAPK signaling

cascade (20). RET rearrangement was first reported by Fusco
et al. (21), and in the following years, different types of
RET/PTC rearrangements have been identified (15). RET/PTC1
and RET/PTC3 are the most common (5), the latter being
frequent in post-Chernobyl children due to radiation exposure.
The prevalence of RET rearrangements in PTC has varied deeply
among studies (2.5–73%) (22, 23) probably due to ethnical and
geographical variations as well as to the method used for their
identification and genetic heterogeneity, as demonstrated by Zhu
et al. (24); recent reports, however, from the Tumor Cancer
Genome Atlas (TCGA) in a series of 484 PTC belonging to
different ethnic groups, only 6.8% presented RET rearrangements

(5). Some reports have indicated RET/PTC1 as being associated
with a more favorable prognosis, while RET/PTC3 was associated
with a more aggressive and malignant phenotype (25, 26).
However, patients harboring these rearrangements usually follow
a favorable course, owing to their ability to respond well to
radioactive iodine (RAI) therapy (27). It is of interest that in
post-Chernobyl TC, other rearrangements have been found: in
particular, TRK gene and BRAF gene fusions (28). Recently,
NTRK fusions have been reported in some series of advanced
cancers and have been proposed as novel targets of cancer
therapy (29).

BRAF, a member of the raf family of serine/threonine protein
kinases, has been shown to be mutated and constitutively
activated in ∼7% of all cancers. Prevalence of BRAF mutation in
PTC varies among different series ranging from 29 to 83% (30–
37). Most recently, the TCGA reported 74.6% of BRAFmutations
in PTC, of which 61.7% were V600E substitutions. Different
genetic alterations have been identified in this gene; however,
the majority of classic PTC (cPTC) harbor the BRAFV600E

variant (32). The mutation of BRAF promotes the activation of
downstream transcription factors, leading to cell differentiation,
proliferation, growth, and apoptosis. Several studies reported
an association between the V600E variant and aggressive
disease features, including lymph node metastases, invasion, and
recurrence (38, 39). Intratumor genetic heterogeneity involving
BRAF mutation has been demonstrated and the clonal/subclonal
status of BRAFV600E could account for the conflicting results on
the prognostic value of this variant (5, 40, 41), as well as may
explain the lack of complete response to targeted therapies (42).

RAS is a family of GTP-binding proteins, upstream of
BRAF, that acts through the MAPK and PI3K-AKT signaling
pathways. HRAS, KRAS, and NRAS encode for four different but
related proteins (H-Ras, N-Ras, K-Ras4A, and K-Ras4B) that are
cardinal in controlling cell growth, differentiation, and survival.
Missense mutations at codons 12, 13, and 61 lead to constitutive
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activation of RAS signaling, which is found mutated in >30% of
all tumors, including thyroid lesions both benign and malignant
(43). In fact, RAS mutations may be found in FTC (28–68%),
in follicular-variant PTC [FVPTC; up to 43% (31)], and in its
non-invasive FVPTC [NIFTP; up to 47% (44)], as well as in
follicular adenomas (20–25%) (45), showing the limited role for
RASmutations alone in the clinical outcomes of TC (5, 46).

TERT encodes for the telomerase reverse transcriptase, and
two hotspot genetic alterations have been reported (C228T
and C250T). These mutations promote telomerase activity and
telomere length maintenance in cancer cells and are present in
nearly 10% of PTC (Table 1). There are consistent data linking
them to PTC aggressiveness when in co-presence of a driver
mutation, indicating a possible role for TERT mutations in PTC
progression and prognosis (47).

Among PTC variants, NIFTP represents a novel entity with
an almost negligible risk of negative outcome (46). Many efforts
have been produced in order to identify a unique NIFTP
genomic profile that helps to diagnose these tumors by FNAB.
A recent article showed that the NIFTP genomic profile is more
similar to FTC than PTC. Interestingly, 67% of NIFTP harbored
RAS mutations alone or in tandem with other mutations
(p53 and PTEN mutations), whereas BRAFV600E mutation
was not described. Furthermore, 22% of NIFTP presented
PAX8/PPARG and THADA/IGF2BP3 gene fusion mutations
(48). However, although NIFTP genomic profile seems to be
different from those of other PTC variants, the degree of
overlap makes it difficult to identify NIFTP with FNAB (49) and
molecular analysis.

Recently, the TCGA has unfolded the genomic landscape
of TC, reducing to <4% the unknown genomics of PTC (5).
Based on a BRAFV600E-RAS gene expression score, PTCs
may be grouped according to their molecular differences
as BRAFV600E-like and RAS-like PTC. In fact, BRAFV600E
mutation is more frequent in cPTC and tall-cell variant
PTC, showing increased MAPK activation, whereas RAS
mutations occur mostly in FVPTC and NIFTP, having a
genomic profile more similar to FTC. The genomic landscape
described by these studies reveals that PTC bears a relatively
stable genome, which could explain the usually indolent
course of this disease. Nonetheless, aggressive PTC may occur
and, therefore, additional investigation is necessary in order
to early identify those PTCs that will dedifferentiate and
become life-threatening.

HYALINIZING TRABECULAR TUMOR

Hyalinizing trabecular tumor (HTT) is a rare benign follicular
neoplasm characterized by thick trabeculae and cells with nuclear
elements shared with PTC, producing false-positive cytology
(50). However, using whole-exome and RNA-Seq analyses,
Nikiforova et al. presented a unique genomic signature of HTT
and showed that GLIS fusions, especially PAX8-GLIS3, are highly
prevalent in HTT but not in PTC. These fusions were related to
overexpression of GLIS, inducing upregulation of extracellular
deposition of collagen IV (51).

FOLLICULAR THYROID CARCINOMA

In 2017, the World Health Organization guidelines proposed
to re-classify the FTC into minimally invasive (miFTC),
encapsulated angioinvasive (eaFTC), and widely invasive
(wiFTC) subtypes, according to their different clinical and
biological behaviors (52). Although the genomic landscape
of PTC is nearly complete, the molecular characterization of
FTC and its progression from miFTC to wiFTC are still not
totally clear.

In FTC, the most common mutations are in the RAS gene
family (HRAS, KRAS, and NRAS), and NRAS gene was found
mutated in 17% (12) to 57% (6) of cases. Although a previous
study had demonstrated that RAS mutations are negative
prognostic markers (53), recent evidences did not describe
RAS mutations as predictors of disease-specific mortality (54).
Intriguingly, RASmutations appear to be mutually exclusive with
TSH receptor mutations, which were found in 10.3% of FTC
cases (54) (Table 1).

The fusion gene PAX8-PPARγ was identified in one-third of
FTC cases, ranging from 12% (13) to 53% (14) (Table 1). PAX8 is
a member of paired box family of transcription factors, and it is
necessary for the physiological thyroid development, promoting
thyroid progenitor survival and driving the expression of
thyroid-specific genes (55). Conversely, PPARγ is a member
of the nuclear receptor family of transcription factors, and,
besides its role of master of adipogenesis, it seems to be a tumor
suppressor gene (56). The fusion protein PAX8-PPARγ can act
as a negative inhibitor of oncosuppressor PPARγ activity or as
a novel transcriptional factor with protooncogene activity (57).
However, it seems to not affect FTC prognosis (13).

TERT promoter mutations have been described in about
15% of FTCs (Table 1) and associated with worst clinical and
prognostic features (58). Furthermore, many groups (54, 59, 60)
described point mutations of driver genes EIF1AX and DICER1
and somatic arm-level copy changes (e.g., loss of 22q), the
significance of which needs to be clarified.

In this complex scenario, the total mutational burden
seems to be a prognostic factor: the bigger is the number
of mutations, the worse is the prognosis. Furthermore, since
multivariate analysis describes the total mutational burden as
an independent indicator of histopathology, the genetic analysis
may be used to predict survival as a complement to the
histological informations (54).

POORLY DIFFERENTIATED THYROID
CANCER

The frequency of molecular mutations in PDTC is not the same
in all studies, and this can be related not only to the sensitivity
of the molecular technique used to ascertain the molecular
pattern (Next-generation sequencing vs. Sanger sequencing)
but also to the histological criteria used to define the PDTC.
Indeed, two main classifications for PDTC exist: Turin (the
presence of a solid/trabecular/insular pattern of growth, in the
absence of the conventional nuclear features of PTC and at
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least one of the following: convoluted nuclei, high mitotic rate,
or tumor necrosis) and MSKCC criteria (high mitotic rate and
necrosis independently from the growth pattern) (8, 61–63).
BRAF mutations are found in 19% (8)−33% (61) of PDTC, while
H-, K-, and N-RAS mutations were found in 5% (61)−28% (8)
of cases (Table 1). BRAFV600E was found to be more frequent
in PDTC when defined following the MSKCC criteria, while
RAS mutations are more common in PDTC fulfilling Turin
definition (8). Moreover, BRAF and RAS are mutually exclusive
and correlate with a different clinical behavior: BRAF-mutated
PDTCs were found to have a higher rate of nodal metastases vs. a
higher rate of distant metastases found in RAS-mutated PDTCs.
Furthermore, the expression of thyroid-specific genes related to
radioiodine avidity was found to be lowered in BRAF-mutated
PDTCs, but not in their RASmutated counterparts (8).

TERT promoter mutation can co-occur with BRAF and RAS
mutations (8)and is particularly frequent in advanced tumors:
33% (61)−40% (8) of PDTCs are found to carry aTERT promoter
mutation (Table 1), inducing a higher risk of distant metastases
and mortality (8). Intriguingly, TERT promoter mutation in
PTC is subclonal, while it is clonal in advanced cancers (PDTC
and ATC), suggesting an advancement in TC due to a selected
immortalized TERT-positive clone (8). By contrast, p53 was
rarely found in PDTC, even using sensible techniques, having
a frequency of 8% in the Landa et al. analysis, with no patients
carrying p53 mutation in PDTC in the Elisei et al. series (8, 61).
EIF1AX mutations are present in 1% of PTC and in 10% of
PDTC, inducing a worse survival (8) (Table 1). Interestingly, in
advanced cancers, it has a strong association with RASmutations,
while in PTC, these two mutations are mutually exclusive. The
significance of this observation is yet to be clarified. EIF1AX
mutation does not overlap with PI3K/AKT/mTOR pathway
mutations, suggesting similar functions in thyroid progression.
Also, PTEN/PI3KCA is uncommon (8) or even absent in
PDTC (61).

Another substantial difference in thyroid advanced tumors
compared to PTC is in the chromosome number variation. The
genome of PTC is largely diploid, while in PDTC and ATC,
chromosome copy number alterations are widespread and more
frequent in those tumors lacking a driver genemutation (8). Gene
rearrangements common in PTC (RET/PTC, PAX8-PPARγ , ALK
fusions) may be found in 14% of PDTC (specially in younger
patients), but are absent in ATC (8).

ANAPLASTIC THYROID CANCER

In ATC, BRAF and H-, K-, and N-RAS mutations have a
frequency of 19–45% and 9.5–27%, respectively (8, 9, 61), lower
than that of DTC. Conversely, the two most frequent mutations
occurring in ATC are TERT promoter mutations, occurring in
43–73% of cases and TP53 mutations that have a frequency
ranging from 48 to 73% of cases (8, 9, 61). Interestingly,
while TERT promoter mutations are quite common also in
PDTC, TP53 is highly frequent only in ATC and thus it may
be considered pathognomonic for this tumor and its severe
aggressiveness (8). Also, mutations in PTEN and PI3KCA are

rather frequent in ATC, 15 and 18%, respectively, in comparison
with well-differentiated cancers and PDTC (8). Moreover, in
ATC, other mutations less typical for thyroid tumors are also
found: 18–36% of ATC carry mutations in SWI/SNF chromatin
remodeling complex (8, 9) and in genes associated with histone
modifications (8) (Table 1); mutations in genes involved in cell-
cycle regulation (CDKN2A, CDKN2B, and CCNE1) are present
in 29% of ATC (8), and finally, few ATCs were also found to
be mutated in tumor immune regulation genes (PDL1, PDL2,
and JAK2) (8). The real pathogenic role of these alterations is
unknown and could be related to the genomic instability of
these tumors.

Interestingly, in this panorama of apparently heterogeneous
molecular scenario, four distinct subtypes of molecular pattern
of ATC have been proposed: (1) type 1 ATC, BRAF-positive ATC,
with a genetic landscape similar to PTC (it is likely to evolve from
PTC); (2) type 2 ATC, NRAS-positive ATC, which may originate
from FTC; (3) type 3 ATC, which carries RASmutations or more
atypical ones (e.g., PTEN, NF1 and RB1) and is likely to originate
from FTC or from Hürthle cell carcinoma; and (4) mixed ATC,
which harbor loss-of-function genetic alterations and mutations
in the genes of cell-cycle regulations (CDKN2A andCDKN2B) (9)
and do not seem to derive from a pre-existing DTC.

Intriguingly, ATC presents a deeper status of dedifferentiation
than DTC and PDTC: in ATC, mRNA levels for TG,
TSHR, TPO, PAX8, SLC26A4, DIO1, and DUOX2 genes are
profoundly supressed (8). In BRAF-positive ATC, TP53 or
PIK3CA mutations are frequently found and may drive the
dedifferentiation process. Among ATC tumors carrying RAS
mutations, the mechanism of dedifferentiation is less clear,
although EIF1AX is a good candidate, given its frequent co-
occurrence with RAS mutations in advanced cancers (10).
Among ATC tumors not carrying BRAF or RAS mutations, the
atypical mutations of NF1, ERBB2, mTOR, and MHL genes may
enhance the dedifferentiation process (10).

MEDULLARY THYROID CANCER

MTC can be either familial (25%) or sporadic (75%), and in
both cases, proto-oncogene RET exerts a crucial role in its
oncogenesis. Virtually, all familial cases (>98%) present germline
RETmutations (64). However, two cases of familial MTCwithout
any RET germline mutations have been recently described with
one case carrying a germline mutation of ESR2 gene (65) and
another one of MET gene (66). In sporadic cases, RET is mutated
in 44% and RAS genes (mainly HRAS and KRAS) are mutated
in 13% of cases, according to COSMIC (catalog of somatic
mutations in cancer) database (7). Intriguingly, oncogenesis of
a relevant group of sporadic (more than 40%) and some rare
familial MTCs is still unclear.

In MTC, RET gene is typically harboring point mutations,
while its deletions or insertions are rare. Activating point
mutations of RET may affect both extracellular and intracellular
domains, inducing different effects: intracellular mutations
domain induce a ligand-independent constitutive dimerization,
promoting the activation of the tyrosine kinase receptor;
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otherwise, extracellular mutation domains induce a ret
activation, which is ligand and dimerization independent
(15). Mutations of different ret domains induce different
clinical features in familial MTC cases. They are grouped
into MEN2A and MEN2B syndromes, and the MEN2A
syndrome is subdivided by clinical characteristics into MEN2A
associated with cutaneous lichen amyloidosis (CLA), MEN2A
with Hirschsprung Disease (HD), and familial MTC (FMTC)
(67). There is an evident genotype–phenotype correlation
with patients affected by classical MEN2A harboring almost
exclusively RET codon 634 mutations (68), patients affected by
MEN2A and HD carrying RET germline “Janus” mutations in
exon 10 (codons 609, 611, 618 and 620) (69), and patients with
MEN2B harboring almost exclusively RET germline mutations
in exon 16 (codon M918T) (70).

The genetic profile in sporadic MTCs is more heterogeneous
than in familial MTCs. Recently, the genetic landscape of 208
cases of sporadic MTCs, identified by using a deep sequencing
technique, has been published (11). In this large series, the
number of RET or RAS negative cases was highly reduced
(18.3%), and the crucial pathogenic role of RET and RAS gene,
which are affected by mutually exclusive alterations, has been
confirmed. According to these data, RET mutations remain
the most common genetic variant in sporadic MTCs (55.8%)
followed by RAS mutations (24.3%) (Table 1). Interestingly, the
study also demonstrated that patients with RET-positive MTCs
have a lower survival than those with RAS mutations. Moreover,
the variant allele frequency represents an additional prognostic
marker in RET-positive MTCs (11).

IMMUNE PROFILE OF TC

Increasing evidences confirm that solid tumors are composed by
different clusters of cells including cancer cells, cancer stem cells,
fibroblasts, and stroma cells, and also a variety of cells belonging
to the innate and adaptive immune system (71). Nowadays, the
evidence that tumor cells and immune cells have an important
relationship inside tumor microenvironment is recognized
worldwide. Furthermore, the presence in some solid tumors of
an intensive infiltration and the evidence of a contemporary anti-
tumor response and a tolerant microenvironment, essential for
tumor growth and progression, enforce the role of the immune
system inside cancer (72). In this context, a comprehensive study
of the immune profile of TC to clarify the mechanisms involved
in immune escape and characterize the tumormicroenvironment
results is pivotal.

Over the last years, many studies have focused on cancer gene
expression profiling, outlying a detailed immune profile also for
TC. In 2018, a classification arisen from a huge research on the
TCGA databases detected six immune subtypes of cancers (73):
C1—Wound healing; C2—IFN-γ dominant; C3—Inflammatory;
C4—Lymphocyte depleted; C5—Immunologically quiet; C6—
TGF-β dominant. Following this classification, the majority
of PTCs were classified as C3 tumors, with a balance in T
helper1:T helper2 presence, elevated T helper 17 genes, low
tumor cell proliferation, and lower levels of aneuploidy and

somatic copy number alterations. This was in agreement with the
former observation of a complex immune network inside PTCs
consisting of a rich infiltration by tumor-associatedmacrophages,
myeloid-derived suppressor cells, and T helper 17 cells (74).

More recently, the development of an immunoscore
stratification, based on immune contexture within the tumor,
has allowed the classification of cancers by their immune
phenotype. Indeed, thanks to the distribution of T CD3+
and T CD8+ lymphocytes in the center of the cancer or at
the invasive margin, it could be possible to distinguish four
different phenotypes of cancers: (1) the hot ones, with a high
infiltration of cells all over the tumor; (2) altered–excluded
with the presence of cells only at the invasive margin; (3)
altered–immunosuppressed with sparse immune cells within
all the tumor; and (4) cold tumors, without infiltration (75).
A study published in 2019 analyzed a cluster of about 730
immune-related genes in the three major histotypes of TC (i.e.,
PTC, PDTC, and ATC) with the aim to investigate and clarify
the immune profiling of advanced TCs (76). The histotypes
are segregated into two different clusters of expression: a first
group, including PDTCs, part of PTCs, and normal thyroid, and
a second group including ATCs and part of PTCs. Interestingly,
the regulation of gene expression was different between ATCs
and PDTCs: the first ones had a marked overexpression
of about all immune genes analyzed, compared to normal
tissue; the second ones had expression levels that were very
similar to normal thyroid. The results obtained indicated the
existence of two major immune phenotypes in TCs: an ATC-like
one, including hot and altered–immunosuppressed tumors,
and a PDTC-like one, including altered–excluded and cold
tumors. Moreover, TCs, mostly the anaplastic ones, showed an
increased overexpression of immune checkpoints, including
PDL1, PDL2, PD1, LAG-3, TIM-3, PVR, and TIGIT. These
data confirm a strong activation of adaptive immune escape
strategies for blocking tumor-infiltrating leucocytes, especially
in ATC (77).

CURRENT AND FUTURE CLINICAL
APPLICATIONS

Significant advances in the understanding of TC biology, coupled
with advances in high-throughput technologies, are contributing
to the development of novel diagnostic, prognostic, predictive,
and therapeutic tools for TC patients.

Most efforts have been made in the development of molecular
tests for cancer diagnosis in thyroid nodules. Panels of gene
expression markers [e.g., Afirma Genomic Sequencing Classifier
(78)] or somatic mutation panels [e.g., ThyroSeq Genomic
Classifier (79)] have improved the pre-operative diagnostic
accuracy for patients with indeterminate cytology by addressing
the problem of unnecessary surgery for benign thyroid nodules.
Much effort should be done in order to pre-operatively identify
a subset of aggressive cancers or to increase positive predictive
value in some tumor subtypes (i.e., in RAS-mutated cases).

An alternative approach for early diagnosis and prompt
detection of disease persistence or relapse is liquid biopsy (i.e.,
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the sampling and non-invasive analysis of circulating tumor-
derived material, the tumor circulome) (80), and its details
are reported elsewhere (81). Although the development of
circulating biomarkers for TC is still in its infancy and at
present liquid biopsy does not find any application, it presents
several advantages, such as the rapid, low-cost, non-invasive
nature of sample collection and the capture of intratumoral and
intermetastatic genetic heterogeneity. The diagnostic application
of circulating tumor DNA (ctDNA) in follicular cell-derived
TC is still questioned. In contrast with other advanced cancers,
only 25% of metastatic TCs have detectable ctDNA (82). These
data are confirmed by multiple studies focusing on detection
of BRAFV600E mutation in PTCs, which showed low or no
concordance between plasma and tissue samples (83), also when
sensitive techniques were employed (84). Conversely, higher
concordance was found in ATC (85) and MTC (86) patients
with important implications in guiding treatment selection and
clinical trial enrollment.

Circulating miRNAs represent an alternative and valuable
source for real-time thyroid tumor monitoring, due to their
high stability in biological fluids (87) and tissue specificity
(88). Most studies published thus far have been conducted on
PTC patients, and in this setting, unlike ctDNAs, circulating
miRNAs show undeniable promise as novel diagnostic and
predictive biomarkers. Higher circulating levels of miR-221-3p,
miR-222-3p, and miR-146b-5p were detected in PTC patients
than in healthy controls, while miR-222 and miR-146b levels
also discriminate between PTCs and benign nodules. Moreover,
circulating levels of miR-146b-5p, miR-221-3p, miR-222-3p, and
miR-146a-5p have been shown to decline after tumor excision
(89). Recently, miRNAs of tumor tissue have been proposed to
face the challenge of indeterminate FNAB category. Stokowy et al.
showed that none of the miRNAs could be used as an alone
malignancy marker but the classifier made by miR-484/miR-
148b-3p identified TC with a sensitivity of 89% and a specificity
of 87% (90).

Furthermore, miR-221-3p and miR-146a-5p blood levels in
PTC patients have been shown to predict clinical responses,

with significantly increased levels observed at the 2 year follow-
up in patients with structural evidence of disease, including
some in which serum thyroglobulin assays remained persistently
negative (91).

Realization of this enormous potential will depend on
our ability to develop standardized methods for detection of
circulating biomarkers and to validate their performance in
clinical setting.

CONCLUSIONS

We discussed the molecular mechanisms involved into the
pathogenesis of the different types of TC and their clinical
relevance. In the last years, many steps forward have been
made in the genetic characterization of TC, providing molecular
markers for diagnosis, risk stratification, and treatment targets.
However, many other steps need to be done in order to diagnose
TCs with aggressive behavior, to tailor the most appropriate
target therapy, and to monitor the response to the therapies using
new molecular approaches.
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