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Background: A large yet heterogeneous body of literature exists suggesting that

endothelial dysfunction appears early in type 1 diabetes, due to hyperglycemia-induced

oxidative stress. The latter may also affect vascular smooth muscles (VSM) function,

a layer albeit less frequently considered in that pathology. This meta-analysis aims at

evaluating the extent, and the contributing risk factors, of early endothelial dysfunction,

and of the possible concomitant VSM dysfunction, in type 1 diabetes.

Methods: PubMed, Web of Sciences, Cochrane Library databases were screened

from their respective inceptions until October 2019. We included studies comparing

vasodilatory capacity depending or not on endothelium (i.e., endothelial function

or VSM function, respectively) in patients with uncomplicated type 1 diabetes and

healthy controls.

Results: Fifty-eight articles studying endothelium-dependent function, among which 21

studies also assessed VSM, were included. Global analyses revealed an impairment of

standardized mean difference (SMD) (Cohen’s d) of endothelial function: −0.61 (95%

CI: −0.79, −0.44) but also of VSM SMD: −0.32 (95% CI: −0.57, −0.07). The type

of stimuli used (i.e., exercise, occlusion-reperfusion, pharmacological substances, heat)

did not influence the impairment of the vasodilatory capacity. Endothelial dysfunction

appeared more pronounced within macrovascular than microvascular beds. The latter

was particularly altered in cases of poor glycemic control [HbA1c > 67 mmol/mol (8.3%)].

Conclusions: This meta-analysis not only corroborates the presence of an early

impairment of endothelial function, even in response to physiological stimuli like exercise,

but also highlights a VSM dysfunction in children and adults with type 1 diabetes.

Endothelial dysfunction seems to be more pronounced in large than small vessels,

fostering the debate on their relative temporal appearance.

Keywords: endothelial function, exercise, macrocirculation, microcirculation, peripheral vascular disease, smooth

muscle function, type 1 diabetes
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INTRODUCTION

Despite significant advances in diabetes care, individuals with
type 1 diabetes remain to be prone to the development
of comorbidities, in particular those associated with vascular
complications. Type 1 diabetes is associated with a 2- to 10-fold
higher mortality and cardiovascular disease risk (1). Structural
and functional endothelial aberrations seem to occur in small
and large blood vessels early during diabetes development, long
before the manifestation of overt micro- or macro-vascular
complications (2–4). The associated endothelial dysfunction is
now accepted as a reliable predictor of cardiovascular disease
(5, 6). Alarming data suggest a >35% prevalence of endothelial
dysfunction in individuals within 5 years of type 1 diabetes
(7). Endothelial dysfunction in diabetes may be the result of a
combination of multiple stressors including hyperglycaemia and
oxidative stress (1, 8). Acting in concert, these factors lead to
a decrease in the bioavailability of nitric oxide (NO.). Vascular
homeostasis depends to a significant extent on the capacity of
the endothelium to produce NO. While one of the principal
functions that led to the discovery of NO in the cardiovascular
system is to relax vascular smooth muscle by enhancing cyclic
guanosine monophosphate (cGMP) production, this is only part
of the story. NO is also a potent antioxidant and a regulator
of local and systemic redox status (4), and these facets may
play a more significant role in metabolic disease settings than
hitherto assumed.

Much has been written on the subject of early endothelial
dysfunction in type 1 diabetes. However, this large body of
literature remains complex, with numerous contradictory
findings (Table 1). It should be emphasized that the conventional
assessments of endothelial function always include the
responsiveness of the vascular smooth muscle (VSM) layer
in addition. To better dissect the relative contribution of
these two contributors to vascular dysfunction, it is crucial to
specifically assess vascular smooth muscle reactivity in parallel
to the endothelial function test. However, VSM function is
considered in only less than a half of the papers dealing with
endothelial function in type 1 diabetes, with contradictory results
(Table 1). In vitro evidence strongly suggests a deleterious impact
of chronic hyperglycemia on VSM, by provoking a dysregulation
of Ca2+ signaling (65) and vascular remodeling (66).

Abbreviations: ach, Acetylcholine; ADMA, Asymmetrical dimethylarginine;
BMI, Body Mass Index; cGMP, Cyclic guanosine monophosphate; CI,
Confidence Interval; DBP, Diastolic Blood Pressure; EDHF, Endothelial Derived
Hyperpolarizing Factor; EET, Epoxyeicosatrienoic acids; eNOS, Endothelial Nitric
Oxide Synthase; FMD, Flow-mediated dilation; HbA1c, Glycated Hemoglobin;
HC, Healthy Controls; HDL-C, High Density Lipids-Cholesterol; IDDM, Insulin-
Dependent Diabetes Mellitus; L-NMMA, NG-Monomethyl-L-arginine; MACRO,
Macrocirculation; MCh, Metacholine; MICRO, Microcirculation; NIRS, Near-
Infrared Spectroscopy; NMD, Nitrate-Mediated Dilation; NO, Nitric Oxide;
NOx, Sum of nitrite and nitrate; PEAK, Data displayed as peak values in the
original paper; PORH, Post-occlusive reactive hyperaemia; PP, Post-Prandial;
SBP, Systolic Blood Pressure; SD, Standard Deviation; SE, Standard Error; sGC,
Guanylate cyclase; SMD, Standard Mean Deviation; SNP, Sodium Nitropusside;
TG, Tryglycerides; VAR, Data displayed as variations from baseline in the original
paper; VO2, Aerobic capacity; VSM, Vascular smooth muscle.

Apparent inconsistencies about VSM and endothelial
dysfunction in the literature may be related to the heterogeneity
in conditions (e.g., age, glycemic control, and presence of
risk factors) and vascular beds (artery, subcutaneous or
muscular capillaries, and arterioles) studied as well as the
different measurement methods used [ultrasonography,
plethysmography, near-infrared spectroscopy (NIRS),
tonometry, laser Doppler, capillaroscopy] and test stimuli
applied (pharmacological substances, post-occlusive reactive
hyperemia, heat). Although increased metabolic demand
following physical exercise is one of the strongest physiological
signals for upstream vasodilation, this natural stimulus is
rarely used.

Two previous meta-analyses undertook to assess endothelial

dysfunction in patients with type 1 diabetes but only in
response to one type of stimulus, i.e., the response to occlusion-
reperfusion at the macrovascular level [FMD (Flow mediated
dilation): post-occlusive hyperemia of the brachial artery] (67)
or dermal microvascular response to local thermal hyperemia
(68). The latter stimuli are however only two of the numerous
stimuli investigated in literature for vasoreactivity assessment.
In addition, these previous meta-analyses did not take into
account the presence or absence of overt vascular complications
among patients included. However, in a preventive context,
it appears worth dealing with patients still free from clinical
complications, when one knows the strong predictive nature
of endothelial dysfunction for future cardiovascular disease (5).
The present meta-analysis of published data on vasodilatory
capacities in patients with type 1 diabetes without complications
and healthy controls was conducted to (i) evaluate the extent of
early endothelial dysfunction, and assess possible concomitant
VSM dysfunction, in type 1 diabetes and (ii) to disentangle,
through metaregressions (i.e., sensitivity analyses), which of
the many factors contributes most to the development and/or
manifestation of the resulting vascular dysfunction.

MATERIALS AND METHODS

This meta-analysis was conducted according to the PRISMA
Statement guidelines (69) and registered in Prospero (ID–
CRD42019116319). We have followed PICOS recommendations
as described throughout this section of manuscript.

Data Sources and Searches
The searches have been undertaken using three different
databases: Pubmed, Cochrane Library, and Web of Sciences
until October 2019. All of the following terms, alone and
in combination, were used: “type 1 diabetes,” “IDDM,”
“macrovascular,” “microvascular,” “endothelial function,”
“endothelium,” “exercise,” “physical activity,” “sport∗,”
“contraction,” “hemodynamic∗,” “acetylcholine,” “sodium
nitropusside,” “flow-mediated dilation,” “hyperaemia,”
“iontophoresis,” “blood flow,” “blood pressure,” “FMD,” “NMD,”
“vasodilation,” “vasodilatation,” “vascular,” “vasoreactivity.” We
excluded the terms “type 2 diabetes,” “mice,” “mouse,” “rat.” Only
articles written in English were included. Articles were selected
in the first instance by title and abstract. In the second instance,
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TABLE 1 | Main characteristics of studies included in the current meta-analysis.

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

Abd El Dayem

et al. (9)

62†

(50)

30†

(50)

16.1 ± 2.6 16.1 ± 2.6 8.9 ± 3.11 9.5 ± 1.9 NA

(F)

0 2 2 1 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

↔ NMD

Abi-Chahin

et al., (10)

30*

(70)

31

(68)

23.7 ± 4.31 23.4 ± 5.4 12.9 ± 6.7 NA NA

(NA)

1 2 1 1 MICRO

cutaneous

(VAR)

ցPORH

1min on the fourth

finger

(capillaroscopy)

NA

Aburawi et al.

(11)

15

(NA)

10

(NA)

14 ± 4.0 14.0 ± 3.0 5.0 ± 3.0 7.3 ± 2.0 NA

(NA)

0 2 0 0 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

↔ NMD

Allen et al.

(12)

15†

(0)

15†

(0)

29.0 ± 6.0 26.0 ± 6.0 13.0 ± 7.0 8.2 ± 1.3 11.3 ± 4.6

(PP)

0 2 1 1 MICRO

cutaneous

(PEAK)

↔ During

intermittent local

exercise (1

contraction per 4 s

at 25% maximal

voluntary capacity,

3min) +

FMD

(plethysmography)

NA

ցFMD 5min on

upper arm

(plethysmography)

Aslan et al.

(13)

76*

(50)

36*

(45)

30.6 ± 10.3 32.4 ± 8.5 11.7 ± 8.1 8.9 ± 1.57 7.9 ± 3.1

(NA)

1 2 2 2 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

↔ NMD

Oral contraceptive

Babar et al.

(14)

21

(57‡)

15

(60‡)

8.3 ± 1.37 7.6 ± 1.2 4.3 ± 4.6 8.0 ± 0.9 NA

(F)

0 2 0 0 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

NA

Bayir et al.

(15)

50

(46‡)

45

(47‡)

12.1 ± 2.02 11.5 ± 1.9 3.7 ± 1.9 9.2 ± 2.5 NA

(F)

1 2 2 1 MACRO

artery

(VAR)

↔ FMD

3min on forearm

(ultrasound)

NA

(Continued)
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TABLE 1 | Continued

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

Bellien et al.

(16)

16

(54)

24*

(50)

NA 37.0 ±

14.7

NA NA NA

(NA)

1 0 1 1 MACRO

artery

(VAR)

ցFMD

10min on the wrist

(ultrasound)

↔ NMD

ցHeat

(ultrasound)
NA

Boolell and

Tooke (17)

6†

(17)

9†

(22)

34.0 ± 11.0 30.0 ±

11.0

4.5 ± 2.9 7.7 ± 1.8 7.6 ± 4.0

(PP)

1 0 0 0 MICRO

cutaneous

(PEAK)

↔ Capsaïcine

(laser Doppler)
NA

ցSubstance P

(laser Doppler)
NA

Bradley et al.

(18)

199*

(51‡)

178

(53‡)

14.4 ± 1.6 14.4 ± 2.1 7.2 ± 3.1 8.5 ± 1.2 NA

(F)

1 2 0 0 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

NA

Bruzzi et al.

(19)

39

(51)

45

(51)

11.2 ± 3.7 10.2 ± 3.1 4.0 ± 2.8 8.0 ± 0.9 13.6 ± 5.3

(F)

0 2 0 1 MACRO

artery

(VAR)

↔ FMD

4.5min on forearm

(ultrasound)

NA

Calver et al.

(20)

10†

(0)

10†

(0)

26.2 ± 4.7 24.9 ± 5.1 3.2 ± 3.1 6.7 ± 1.6 NA

(NA)

0 2 2 0 MICRO

Cutaneous +

muscle(PEAK)

↔ ACh

(plethysmography)
ցSNP

Ceriello et al.

(21)

22

(11)

20

(8)

23.5 ± 13.6 23.2 ±

13.9

NA 8.1 ± 1.9 NA (F) 1 1 0 1 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

NA

Chiesa et al.

(22)

70

(61)

30

(47)

14.6 ± 1.7 13.9 ± 2.1 8.9 ± 3.8 8.3 NA

(NA)

1 2 0 0 MACRO

artery

(VAR)

↔ FMD

5min on forearm

(ultrasound)

NA

Ciftel et al.

(23)

42

(NA‡)

40

(NA‡)

13.2 ± 2.6 13.1 ± 2.8 6.9 ± 1.8 9.0 ± 1.4 NA

(NA)

1 2 0 2 MACRO

artery

(VAR)

ցFMD

3min on forearm

(ultrasound)

NA

DiMeglio et al.

(24)

17

(52)

18

(50)

10.7 ± 3.5 20.5 ± 1.4 21.1 ± 3.5 9.4 ± 1.6 NA

(F)

0 0 2 0 MICRO

cutaneous

(VAR)

ցACh

(laser Doppler)
NA

Eltayeb et al.

(25)

30

(43‡)

30

(43‡)

11.1 ± 3.8 9.8 ± 3.5 3.9 ± 0.6 9.7 ± 2.2 12.8

(F)

1 2 2 2 MACRO

artery

(VAR)

ցFMD

4.5min on forearm

(ultrasound)

NA

(Continued)
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TABLE 1 | Continued

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

Fayh et al.

(26)

20

(0)

10

(0)

23.3 ± 5.5 23.4 ± 2.6 8.5 ± 18.8 8.3 ± 1.3 10.2 ± 3.4

(F)

1 1 0 1 MICRO

muscle

(PEAK)

↔ Submaximal

aerobic exercise

immediate end

(10% below VO2

response at

ventilatory

threshold, 45min)

(plethysmography)

NA

Franzeck

et al. (27)

8*

(12)

10*

(50)

28.5 ± 5.2 25.1 ± 1.9 12.0 ±

10.9

7.4 ± 1.3 10.3 ± 5.2

(NA)

0 2 0 0 MICRO

cutaneous

(VAR)

FMD (NA)

4min

(laser Doppler)

NA

Fujii et al. (28) 12

(18)

11

(17)

25.0 ± 5.0 24.0 ± 4.0 12.5 ± 6.0 7.3 ± 0.8 NA

(NA)

0 1 1 1 MICRO

cutaneous

(VAR)

↔ Submaximal

aerobic exercise

immediate end

(45% VO2peak,

30min) +

Heat

(laser Doppler)

ցSNP

↔ Submaximal

aerobic exercise

recovery + Heat

(laser Doppler)

ցSNP

Glowinska-

Olszemska

et al. (29)

52†

(54)

36†

(56)

14.5 ± 2.4 15.1 ± 2.7 6.0 ± 3.0 8.7 ± 1.5 NA

(F)

1 1 2 1 MACRO

artery

(VAR)

ցFMD

4min on forearm

(ultrasound)

NA

Gomes et al.

(30)

50†

(42)

46†

(48)

32.8 ± 1.66 NA 15.0 ± 1.3 NA NA

(PP)

0 2 2 2 MICRO

cutaneous

(PEAK)

ցACh

(laser Doppler)
ցSNP

↔ PORH (laser
Doppler)

NA

↔ Heat (laser
Doppler)

NA

(Continued)
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TABLE 1 | Continued

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

Grzelak et al.

(31) (3

cohorts)

10

(0)

21

(0)

24.3 24.2 NA NA 6.4

(NA)

0 1 0 0 MACRO

artery

(VAR)

FMD (NA)

5min on forearm

(ultrasound)

NA

Intermittent local

exercise

immediate end (30

cycles of exercise:

∼30 times within

30 s) (NA)

(ultrasound)

10

(0)

21

(0)

38.6 37.7 NA NA 7.2

(NA)

0 1 0 0 MACRO

artery

(VAR)

FMD (NA)

5min on forearm

(ultrasound)

NA

Intermittent local

exercise

immediate end (30

cycles of exercise:

∼30 times within

30 s) (NA)

(ultrasound)

11

(0)

29

(0)

53.2 52.1 NA NA 6.8

(NA)

0 1 0 0 MACRO

artery

(VAR)

FMD (NA)

5min on forearm

(ultrasound)

NA

Intermittent local

exercise

immediate end (30

cycles of exercise:

∼30 times within

30 s) (NA)

(ultrasound)

Haak et al.

(32)

9*

(56)

9*

(45)

33.3 ± 1.0 27.4 ± 1.1 11.4 ± 3.0 7.2 ± 0.2 NA

(F)

1 0 0 0 MICRO

cutaneous

(PEAK)

PORH (NA)

3min on arm

(capillaroscopy)

NA

Heier et al.

(33)

46

(48)

32

(53)

2.0 ± 0.6 2.2 ± 0.6 10.0 8.7 ± 1 .4 NA

(NA)

1 1 0 1 MICRO

cutaneous

(VAR)

↔ PORH

5min on forearm

(plethysmography)

NA

(Continued)
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TABLE 1 | Continued

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

Hoffman et al.

(34)

25

(60)

29

(48)

15.1 ± 2.2 14.5 ± 2.0 5.6 7.6 NA

(PP)

2 2 2 2 MICRO

cutaneous

(PIC)

↔ PORH

4min on arm

(capillaroscopy)

NA

Järvisalo et al.

(2)

45†

(33)

30†

(40)

11.0 ± 2.0 11.0 ± 2.0 4.4 ± 2.9 8.9 ± 1.4 12.2 ± 4.5

(F)

1 2 2 1 MACRO

artery

artery

(VAR)

ցFMD

4.5min on forearm

(ultrasound)

↔ NMD

Johnstone

et al. (35)

15*

(73)

16*

(75)

30.0 ± 3.9 31.0 ± 8.0 14.0 ± 7.7 11.9 ± 2.3 NA

(PP)

0 1 1 0 MICRO

Cutaneous +

muscle

(PEAK)

ցMCh

(plethysmography)
↔ SNP

MICRO

cutaneous

(PEAK)

↔ occlusion-

reperfusion 5min

on upper arm

(plethysmography)

NA

Khan et al.

(36)

55*

(59)

25

(52)

14.8 ± 3.7 15.4 ± 4.5 6.6 ± 4.5 8.7 ± 1.5 NA

(PP)

0 1 0 1 MICRO

cutaneous

(VAR)

ցACh

(laser Doppler)
ցSNP

ցHeat (laser
Doppler)

NA

Koïtka et al.

(37)

12†

(50)

12†

(67)

22.0 ± 3.5 23.0 ± 3.5 8.9 ± 6.2 9.2 ± 2.8 NA

(PP)

0 2 0 1 MICRO

cutaneous

(PEAK)

ցACh

(laser Doppler)
↔ SNP

Lockhart

et al. (38)

40*

(NA)

32*

(NA)

40.0 ± 12.0 40.4 ±

12.3

NA 8.1 ± 1.2 NA

(F)

0 2 2 0 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

NMD

Lytvyn et al.

(39)

188

(51‡)

65

(57‡)

14.4 ± 1.7 14.0 ± 2.0 7.2 ± 3.2 8.5 ± 1.3 NA

(NA)

0 0 0 0 MACRO

artery

(VAR)

↔ FMD

5min on forearm

(ultrasound)

NA

Lytvyn et al.

(40)

49

(51)

24

(50)

26.3 ± 5.4 25.5 ± 4.5 14.3 ± 7.2 7.8 ± 1.3 NA

(NA)

0 0 0 0 MACRO

artery

(VAR)

FMD

(NA)

5min on forearm

(ultrasound)

NMD (NA)

(Continued)
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TABLE 1 | Continued

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

Mackenzie

et al. (41)

122

(43)

33

(61)

14.1 ± 2.9 14.2 ± 3.6 5.3 ± 3.6 8.7 ± 1.3 13.4 ± 4.7

(F)

0 2 2 1 MACRO

artery

(VAR)

ցFMD

4min on forearm

(ultrasound)

ցNMD

Maftei et al.

(42)

167

(NA)

57

(NA)

NA NA NA NA NA

(NA)

1 2 2 0 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

ցNMD

Mahmud

et al. (3)

20

(40)

20

(40)

14.2 ± 1.3 14.1 ± 1.5 NA 7.5 ± 1.0 7.4 ± 3.9

(F)

1 2 2 0 MICRO

cutaneous

(VAR)

ցPORH

5min on fingers

(tonometry)

NA

Mahmud

et al. (43)

23

(39‡)

23

(23‡)

14.6 ± 1.7 14.7 ± 1.9 5.8 ± 3.6 8.3 ± 1.5 11.1 ± 5.5

(PP)

0 2 2 1 MICRO

cutaneous

(VAR)

ցPORH

5min on fingers

(tonometry)

NA

Nascimento

et al. (44)

31

(39‡)

58

(41‡)

9.1 ± 1.8 8.4 ± 1.8 NA 9.0 ± 1.6 10.4 ± 5.5

(PP)

1 0 0 0 MACRO

artery

(VAR)

ցFMD

4min on forearm

(ultrasound)

NA

Palombo

et al. (45)

16

(32)

26

(42)

18.0 ± 2.0 19.0 ± 2.0 11.0 ± 5.0 7.7 ± 1.1 9.9 ± 2.5

(F)

1 1 0 1 MICRO

cutaneous

(VAR)

↔ PORH

5min on

non-dominant arm

(tonometry)

NA

Pareyn et al.

(46)

34

(53)

25

(52)

15.6 ± 1.3 15.2 ± 1.7 6.3 ± 2.7 8.3 ± 1.3 10.1 ± 2.9

(PP)

1 2 2 1 MICRO

cutaneous

(VAR)

ցPORH

5min on

non-dominant arm

(tonometry)

NA

Peltonen

et al. (47)

10

(0)

10

(0)

33.0 ± 7.0 32.0 ± 7.0 11.0 ± 6.0 7.7 ± 0.7 9.5 ± 3.1

(PP)

1 2 0 1 MICRO

muscle

(VAR)

ցDuring maximal

aerobic exercise

(incremental 40W

3 min−1 ) (NIRS)

NA

Pena et al.

(48)

52

(42‡)

50

(50‡)

14.0 ± 2.7 14.8 ± 3.3 5.5 ± 4.0 8.9 11.1 ±

11.1 ± 4.3

(NA)

1 2 2 0 MACRO

artery

(VAR)

ցFMD

4min on forearm

(ultrasound)

ցNMD

Pichler et al.

(49)

39

(50‡)

40

(40‡)

12.8 ± 2.9 12.7 ± 2.9 4.29 ± 3.0 9.2 ± 1.8 12.6 ± 4.6

(NA)

1 2 2 1 MICRO

muscle

(PEAK)

ցintermittent local

exercise (60/min

for 1min) recovery

(NIRS associated
with venous
occlusion)

NA

(Continued)
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TABLE 1 | Continued

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

Pillay et al.

(50)

38

(58‡)

28

(54‡)

13.0 ± 2.9 13.9 ± 2.7 5.4 ± 4.6 8.8 10.6

10.6

(NA)

0 2 2 0 MACRO

artery

(VAR)

ցFMD

4min on forearm

(ultrasound)

NA

Rissanen

et al. (51)

7

(0)

10

(0)

34.8 ± 6.0 34.0 ± 7.0 15.0 ± 9.0 7.4 ± 0.9 NA

(PP)

1 2 1 1 MICRO

muscle

(VAR)

ցmaximal aerobic

(incremental 40W

per 3min) during

(NIRS)

NA

Rodriguez-

Manas et al.

(52) (2

cohorts)

12

(25‡)

14

(50‡)

28.5 ± 5.9 28.4 ± 3.4 2.5 ± 3.8 6.6 ± 0.8 6.2 ± 3.5

(NA)

1 1 0 1 ցMICRO

cutaneous +

MICRO

cutaneous +

muscle

(PEAK)

↔ MCh

(plethysmography)
↔ SNP

12

(42)

14

(50)

27.7 ± 7.6 28.4 ± 3.4 2.8 ± 3.46 11.0 ± 2.3 10.0 ± 5.2

(NA)

1 1 0 1 MICRO

cutaneous +

muscle

(PEAK)

ցMCh

(plethysmography)
ցSNP

Schlager

et al. (53)

58

(53)

58

(41)

14.1 ± 1.7 13.6 ± 2.0 7.8 ± 3.3 7.9 ± 1.0 8.5 ± 4.7

(NA)

1 2 2 0 MICRO

cutaneous

(PEAK)

րPORH

3min (laser
Doppler)

NA

Singh et al.

(54)

31

(42)

35

(51)

15.0 ± 2.4 15.7 ± 2.7 6.8 ± 3.9 8.6 ± 1.5 8.8 ± 4.5

(NA)

1 1 1 0 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

↔ NMD

Sochett et al.

(55)

51

(51‡)

59

(56‡)

14.8 13.9 6.7 9.0 ± 1.0 9.9 ± 4.5

(NA)

1 2 2 0 MACRO

artery

(VAR)

↔ FMD

5min on forearm

(ultrasound)

NA

Tacito et al.

(56)

32

(63)

28

(71)

17.3 ± 4.4 20.1 ± 5.6 4.1 ± 2.0 9.95 ± 3.0 NA

(NA)

0 0 1 1 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

NA

Tagougui

et al. (57) (2

cohorts)

11*

(0)

11*

(0)

27.1 ± 6.1 25.9 ± 5.6 4.5 ± 3.6 6.6 ± 0.7 NA

(PP)

1 2 2 2 MICRO

muscle

(VAR)

↔ During maximal

aerobic exercise

(incremental 20W

per 2min)

(NIRS)

NA

(Continued)
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TABLE 1 | Continued

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

12*

(42)

12*

(42)

25.5 ± 7.3 26.2 ± 5.0 10.9 ± 3.4 9.1 ± 0.7 NA

(PP)

1 2 2 2 MICRO

muscle

(VAR)

ցDuring maximal

aerobic exercise

(incremental 20W

per 2min)

(NIRS)

NA

Tibiriça et al.

(58)

48*

(58)

34*

(53)

NA NA NA 9.7 ± 2.5 10.5 ± 5.7

(PP)

1 2 2 2 MICRO

cutaneous

(PEAK)

ցPORH

3min on forearm

(capillaroscopy)

NA

ցPORH 3min on

calf

(capillaroscopy)

Vervoort et al.

(59)

39†

(56)

46†

(48)

28.1 ± 7.5 28.2 ± 6.1 8.7 ± 3.7 8.2 ± 1.2 NA

(PP)

1 2 0 1 MICRO

cutaneous +

muscle

(PEAK)

ցACh

(plethysmography)
NA

MICRO

muscle

(PEAK)

ցduring

intermittent local

exercise (20–30

contractions

during the last min

of ischemia) +

PORH

(plethysmography)

Oral contraceptive

Waclawovsky

et al. (60)

14

(0)

5

(0)

30.3 ± 6.0 26.8 ± 5.1 NA 7.7 ± 0.75 9.3 ± 4.8

(PP)

1 2 2 0 MICRO

muscle

(VAR)

↔ submaximal

aerobic exercise

recovery (60%

VO2peak, 40min)

(plethysmography)

NA

↔ 1 RM exercise

recovery (2 sec on

concentric phase

and 2 sec on

excentric phase,

40min)

(plethysmography)

(Continued)

F
ro
n
tie
rs

in
E
n
d
o
c
rin

o
lo
g
y
|
w
w
w
.fro

n
tie
rsin

.o
rg

1
0

A
p
ril2

0
2
0
|V

o
lu
m
e
1
1
|
A
rtic

le
2
0
3

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


L
e
sp

a
g
n
o
le
t
a
l.

E
a
rly

V
a
sc

u
la
r
D
ysfu

n
c
tio

n
in

Typ
e
1
D
ia
b
e
te
s

TABLE 1 | Continued

Authors and

year of

publication

n

(% women)

Age (years) Type 1

diabetes’

duration

(years)

Type 1

Diabetes

HbA1c

(%)

Glycaemia

before

test

(mmol.L)

(F/PP)

Quality scores Vascular

region

assessed

(VAR/PEAK)

Endothelium-

dependent

function (EF)

Time and place

of occlusion or

characteristic of

exercise

(technique)

Endothelium

independent

function

(VSM)

Type 1

diabetes

HC Type 1

diabetes

HC Type 1

diabetes

Complications Age

matching

Gender

matching

BMI

matching

Waring et al.

(61)

8

(0)

8

(0)

30.0 ± 5.7 30.0 ± 5.7 NA NA 8.5 ± 3.1

(NA)

0 2 1 1 MICRO

cutaneous +

muscle

(PEAK)

ցAch

(plethysmography)
↔ SNP

Wiltshire et al.

(62)

35

(49)

20

(50)

13.7 ± 2.2 13.8 ± 2.5 5.7 ± 3.3 9.1 ± 0.9 NA

(NA)

1 2 2 0 MACRO

artery

(VAR)

ցFMD

4.5min on forearm

(ultrasound)

↔ NMD

Wotherspoon

et al. (63)

15*

(27)

15*

(40)

39.7 ± 10.1 35.8 ± 9.7 20.6 ±

11.8

7.9 ± 0.8 12.1 ± 6.4

(NA)

1 1 0 1 MICRO

cutaneous +

muscle

(PEAK)

↔ ACh

(plethysmography)
↔ SNP

Yazici et al.

(64)

30

(60)

29

(55)

29.0 ± 6.0 30.0 ± 6.0 7.79 ±

5.79

7.7 ± 1.31 8.0 ± 3.1

(F)

1 2 2 0 MACRO

artery

(VAR)

ցFMD

5min on forearm

(ultrasound)

↔ NMD

Mean ± SD; HC, healthy controls;ցthe outcome was significantly lower in the group with type 1 diabetes vs. HC group;↔ the outcome was not significantly (P > 0.05) different between the two groups; ↑ the outcome was significantly
higher in the group with type 1 diabetes vs. HC group.
In italics: the measurement’ technique.
Quality scores: complications 1: the absence of complication was validated (no retinopathy, no nephropathy, no neuropathy), 0: one of the three complications was not noted in the article and the authors did not respond to further
inquiry. Matching 2: noticed in article, 1: visibly correct, 0: not noted in the article.
MICRO, means the study focused on the microcirculation; MACRO, means the study focused on macrocirculation.
PEAK, Data displayed as peak values in the original paper; VAR, Data displayed as variations from baseline in the original paper.
Occlusion-reperfusion stimuli FMD, Flow-Mediated Dilation; PORH, Post-Occlusive Reactive Hyperaemia; Pharmacological stimuli NMD, Nitroglycerin-Mediated Dilation; ACh, Acetylcholine; MCh, Methacholine.

*means that smokers were included;
†
means that no information on smoking was provided in the article.

‡means that none of the included women was taking oral contraceptives.
F, vascular measurements were performed during fasting; PP, vascular measurements were conducted at post-prandial state.
Overall, the 58 studies on endothelial function involved 15–377 participants, with a mean age ranging from 8.0 to 52.7 years, mean BMI from 18.4 to 26.6 kg.m−², mean SBP from 93.9 to 126.5 mmHg, mean DBP from 57.4 to 82.5
mmHg, and mean cholesterol, HDL-cholesterol and triglycerides from 3.7 to 5.3 mmol.L−1, from 1.1 to 1.8 mmol.L−1 and from 0.7 to 3.3 mmol.L−1, respectively. Among participants with type 1 diabetes, mean HbA1c and mean
diabetes duration ranged from 6.6 to 11.9% (from 7.0 to 14.9 mmol.L−1 ) and from 2.5 to 21.1 years, respectively.
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a selection was performed thanks to the eligibility criteria, as
described below. In the case of unclear or missing information,
the authors were contacted for clarification.

Study Selection
The main inclusion criteria were having assessed the peripheral
vasodilatory capacity (dependent or not on endothelial function,
i.e., corresponding to either endothelium or VSM function)
in humans (men and/or women, no age limit) with type 1
diabetes free from micro- and/or macro-vascular complications
(“P” from the PICOS) compared with healthy controls (“C” from
the PICOS; i.e., case control studies, “S” from the PICOS). The
absence of micro (retinopathy, nephropathy—i.e., albuminuria
>40mg.dL−1, neuropathy) and macro- (cardiac, peripheral, and
cerebral) vessels complications in groups of patients with type
1 diabetes was checked based on the B category of the DCCT
(exclusion of the C category).

Studies dealing with vasoreactivity in brain, heart, or retina
were excluded because cerebral and cardiac vessels constitute a
specific system and, contrary to peripheral vessels, the retinal
vasculature is highly differentiated. Articles using needle injury
methods were excluded because of additional contributions of
the nervous system (21, 40). Only the studies using the following
stimuli for vascular function assessment were selected: post-
occlusion reactive hyperemia, local heat, physical exercise, and
pharmacological substances (“I” from the PICOS). Sometimes,
two stimuli were applied at the same time (12, 28, 59). In cases
of interventional studies testing supplementations (32, 40, 61),
drugs (61), or in a cohort study (19) only baseline values, i.e.,
before intervention, were analyzed in the meta-analyses.

Where the same data appeared in several publications by the
same (or part of the same) group of subjects (58, 59, 63, 70–72),
we opted to include the primary or the most exhaustive article
(Table 1). Study selections were undertaken independently by
two investigators (EL and EH). In the case of disagreements on
eligibility criteria, the discrepancies were resolved by consensus
with a third reviewer (PF).

Data Extraction
The absence of vascular complications in clinical stage was
carefully checked. We assessed the quality of populations
matching by age, gender, and BMI (Table 1). When the authors
provided only the standard error (SE) and did not respond to our
request to provide standard deviations (SD), we calculated the
corresponding SD, assuming the data was normally distributed.

Vascular outcomes reported corresponded either to the peak
response or to a variation from baseline to peak (“O” from the
PICOS). Where only peak values were provided (cf. in 18 studies,
Table 1), we contacted the authors to calculate the corresponding
variation. These data obtained from eight studies (26, 28, 46, 47,
49, 51, 59, 60) were then used in an additional analysis where
only variations (either initially found in the papers or a posteriori
calculated) were tested.

Data Analysis
For statistical analyses we used the standardized mean difference
(SMD) (Cohen’s d) of endothelial or non-endothelial-dependent

vascular function between the type 1 diabetes and the healthy
control group. SMD allowed to standardize micro- and macro-
circulation assessments as well as the large panel of measurement
techniques used. Negative SMD corresponded to impaired
vascular function.

We calculated weighted pooled summary estimates of SMD.
For each meta-analysis, we used the DerSimonian and Laird
method. Accordingly, studies were considered to be a random
sample from a population of studies. Heterogeneity was assessed
using I2 and chi-square heterogeneity statistics. A random-
effects model was used to combine data. The overall effect was
estimated using a weighted average of individual effects, with
weights inversely proportional to variance in observed effects.
Heterogeneity between studies was quantified using I2 statistics,
with upper limits of 25, 50, and 75% as low, moderate, and
high, respectively (73). Publication bias was evaluated with funnel
plot and Egger’s test. The pooled SMD were estimated with 95%
confidence interval (CI). All analyses were performed using R
software with the survival and metafor packages.

Main Meta-Analyses (Primary Objective)
First, two meta-analyses, for endothelial function and vascular
smooth muscle function, were conducted including all
studies, regardless of the stimulus used or the vascular bed
explored. As some studies explored the effects of more than one
stimulus successively, or used more than one pharmacological
substance, and some studies assessed several periods
surrounding exercise (Table 1), a priority order was established
(Supplementary Table S1). Overall, the stimuli inducing
vasodilatation were ordered from the most physiological to the
least physiological (exercise, occlusion-reperfusion, heat, and
then pharmacological substances).

Exercise stimuli were either aerobic (varying from 20 to
40min and from 45% VO2peak to 100% VO2max) or local
intermittent concentric/eccentric handgrip (duration from 30 s
to 3min; Table 1). Only one paper used two types of exercise,
i.e., a session of resistance exercise (40min) and aerobic exercise
(40min) (60).

Metaregression Analyses (Sensitivity
Analyses)
In order to disentangle, which of the many factors contributes
most to the development and/or manifestation of the vascular
dysfunction possibly observed in main meta-analyses, we
performed metaregression analyses.

The influence of qualitative outcomes [i.e., study design
(vessels size, vascular region, stimuli, technique, and types of
exercise) and some subjects’ characteristics (gender, generation),
see Supplementary Table S2 for SMD of endothelial function
and Supplementary Table S4 for SMD of VSM function] on
vascular functions SMD were analyzed by comparing subgroups
of studies. When a study could be included in two subgroups
of the metaregression (e.g., a study analyzing separately
both exercise and occlusion reperfusion stimuli in the same
population), it was inserted only into the subgroup with the
higher order of priority.
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The influence of quantitative outcomes [i.e., the other studies’
characteristics (sample size) and participant characteristics
(mean age, BMI among subjects’ with type 1 diabetes), and
presence of concomitant risk factors (mean HbA1c and duration
of disease in patients; difference between patients and healthy
controls in mean BMI, SBP, DBP, total cholesterol, HDL-
cholesterol, and triglycerides; SMD in patients vs. controls of
blood flow and diameter baseline values)] were tested using
univariate metaregression analyses.

RESULTS

Study Selection and Characteristics
The flow diagram (Figure 1) describes the criteria followed in
order to select articles for inclusion in this meta-analysis, and
9,232 studies were identified in the first stage. After removing
duplicates and out-of-scope studies, 1,826 studies were screened
of which 92 articles met the inclusion criteria. Thirty-four studies
were excluded after screening the abstract or reading the entire
methods section. Ultimately, 58 studies among which 3 involved
two (52, 57) or three (31) cohorts of patients vs. controls (in
2,322 subjects with type 1 diabetes and 1,777 healthy controls)
assessing the endothelial function and 21 studies among which
1 involved 2 cohorts (52) (in 916 subjects with type 1 diabetes
and 553 healthy controls) focusing on the VSM were included
in the meta-analysis. The studies which measured VSM also
assessed endothelial function. The studies main characteristics
are reported in Table 1.

Primary Outcomes (Main Meta-Analyses)
The endothelial function meta-analysis (micro- and macro-
circulation pooled) revealed a significant impairment in patients
with type 1 diabetes compared to healthy controls (SMD =

−0.61; 95% CI = −0.79, −0.44, 4,099 subjects, P < 0.001),
albeit with a great heterogeneity (I² = 85.7%, P < 0.001; forest
plot in Figure 2 and funnel plot in Supplementary Figure S1).
Comparable results was obtained when only endothelial function
calculated as a variation from baseline were included (cf data
displayed in the original papers for 43 studies and a posteriori
calculated variations for 3 additional studies) (SMD = −0.69;
95% CI=−0.88,−0.50; P < 0.001).

The non-endothelial (i.e., VSM) function meta-analysis
demonstrated a significant impairment in type 1 diabetes
compared to the control group (1,469 subjects, P < 0.05; forest
plot in Figure 6 and funnel plot in Supplementary Figure S2),
with significant heterogeneity (I²= 78.6%, P < 0.001).

Since we found some evidence of high heterogeneity,
metaregressions as well as subgroup analyses were performed
to determine the sources of heterogeneity. The metaregressions
were also intended to explore potential moderating factors of
endothelial or VSM dysfunction.

Metaregressions (Sensitivity Analyses) for
Endothelial Function
The endothelial function impairment in type 1 diabetes affected
both the macrocirculation and the microcirculation (28 and 30
studies with 2,929 and 1,343 subjects, respectively; Figure 2).

Macrovessels appeared to be the most affected when considering
the entire population (moderator P = 0.001, Figures 2A,B) or
adults separately (nine studies, SMD = −1.06; 95% CI = −1.51,
−0.60 for macrocirculation vs. 22 studies, SMD=−0.24; 95% CI
=−0.51, 0.01 for microcirculation, P < 0.01).

In line with the more marked alteration in macrovascular
vs. microvascular beds, endothelial dysfunction associated with
diabetes was greater in artery compared to capillaries (Figure 3).
We performed additional analyses on factors which may have
contributed to this pronounced difference between macro- and
micro-circulation. Noteworthy, there was an overall significant
moderating effect of techniques used, translating in post-
hoc analyses into a greater impairment of type 1 diabetes
endothelial function when measured by the gold standard
macrovascular technique “ultrasound” (28 studies on artery)
compared to plethysmography (11 studies on cutaneous vessels;
Figure 4).

The stimulus used did not seem to have a significant impact
on the findings. Lower basal artery diameter in type 1 diabetes
compared to controls aggravated endothelial (FMD) dysfunction
(β = 1.70; P < 0.001).

Focusing on exercise and its characteristics, impairment
of vasodilatory capacity was more noticeable when regional
isometric exercise (intermittent handgrip, 2 studies whose 1
including 3 cohorts) was used, compared to general aerobic
exercise (constant-load for 1 study and incremental for three
studies; Figure 5).

Metaregressions based on other qualitative outcomes did not
show any significant results (Supplementary Tables S2, S3).

When taking into account the demographic or disease
characteristics of the patients included, higher HbA1c levels
in patients with type 1 diabetes were associated with more
pronounced endothelial dysfunction in the whole population (β
= −0.20; P < 0.05) or when focusing only on children and
adolescents (β =−0.43; P < 0.01).

We further examined the potential impact of concomitant
risk factors differences between patients and healthy
controls. Surprisingly, the difference in mean BMI between
children/adolescents with type 1 diabetes and healthy controls
was positively associated with endothelial function (i.e., the less
BMI those in type 1 diabetes were higher, the better was the
endothelial function; β = 0.39, P < 0.001), but with median
values of mean BMI still corresponding to normal weight in
these young subjects with type 1 diabetes (i.e., 20.9 kg.m−2).
This moderating impact of BMI on endothelial dysfunction was
also found in children and adolescents and in adults with type
1 diabetes when analyzing only the macrocirculation (data not
shown). No other metaregression with studies’ characteristics
(including sample size), participant characteristics, or presence
of concomitant risk factors, was significant.

Subgroup Analyses for Endothelial
Function
Considering the high heterogeneity, we have taken the care to
analyze also the effect of each intervention (i.e., exercise and
FMD in large vessels; exercise, heat, pharmacological substances

Frontiers in Endocrinology | www.frontiersin.org 13 April 2020 | Volume 11 | Article 203

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Lespagnol et al. Early Vascular Dysfunction in Type 1 Diabetes

FIGURE 1 | Flow-chart outlining the process of study selection.

and PORH in small vessels) separately in Figures 2A,B. For
large vessels, the endothelial function, as assessed in response
to exercise and FMD separately, was significantly impaired in
patients with type 1 diabetes for both stimuli (P < 0.01 and
P < 0.001, respectively; Figure 2A). For small vessels however,
the effects of exercise and pharmacological substances separately

did not reach statistical significance (P = 0.32, and P =

0.52, respectively), while endothelial dysfunction was visible in
response to heat and PORH (P< 0.01 and P< 0.05, respectively).

For each stimulus in microvessels, we also analyzed separately
each technique of measure (Supplementary Figure S3). For
all stimuli in macrovessels (i.e., exercise and FMD) only the
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technique of ultrasounds was used. Overall, the heterogeneity
remained high despite these subdivisions. However, focusing
specifically on only one type of exercise, i.e., local intermittent
exercise, allowed to reduce heterogeneity to a level close
to moderate.

Metaregressions (Sensitivity Analyses) for
VSM Function
Macrocirculation (i.e., brachial artery in all studies; 1,151
subjects) and microcirculation (i.e., subcutaneous capillaries in
all studies; 348 subjects) VSM function was altered to the same
extent in the whole population (Figure 6) as well as when
focusing separately on adults or children/adolescents (data not
shown). Other metaregressions based on qualitative outcomes
were not significant (Supplementary Table S4).

Higher triglycerides in patients with type 1 diabetes
vs. controls were determinants of a more altered VSM
(metaregression between difference in mean triglycerides and
VSM SMD, β = −0.80; P < 0.05). When focusing only on

the macrovascular bed, difference in mean SBP and DBP were
inversely associated with VSM SMD (β = −0.13, P < 0.001 and
β = −0.20, P < 0.01, respectively). In the microvasculature, the
numbers of studies focusing only on children and adolescents
(n = 1), or taking into account HDL-C (n = 2) or triglycerides
(n = 2) were too small for performing subgroup analyses using
these outcomes. No other subgroup or metaregressions analyses
for VSM SMD were significant.

Comparison Between Endothelial and VSM
Dysfunction
In 12 of the 21 studies where both endothelial function and
VSM were measured, authors found a significant impairment
only in endothelial function (Table 1). This result is in
accordance with sub-analyses revealing that endothelial function
(58 studies) tended to be more affected compared to VSM
(21 studies; P = 0.08).

FIGURE 2 | Forest plots of studies on endothelial function, according to size of vessels studied, in subjects with type 1 diabetes vs. controls. (A) Forest plot of studies

on endothelial function focusing on macrovascular function. (B) Forest plot of studies on endothelial function focusing on microvascular function. In these figures the

priority was set on macrocirculation over microcirculation. Similar results are obtained when priority is placed on microcirculation (SMD −0.59; 95% CI −0.74, −0.43,

P < 0.001). PORH, Post-occlusive reactive hyperaemia; FMD, Flow Mediated Dilation. For each subgroup, the following values are indicated: Z- and p-value; I2,
heterogeneity and p for heterogeneity. When comparing macro and microcirculation with metaregressions (for qualitative data), the difference was significant

(moderator P = 0.001) with a greater dysfunction due to type 1 diabetes for macrovessels.
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FIGURE 3 | Forest plots of studies on endothelial function, according to types of vessels studied, in subjects with type 1 diabetes vs. controls. For each subgroup, the

following values are indicated: Z and p-value; I2, heterogeneity and p for heterogeneity. When comparing the three vessels types with metaregressions (for qualitative

data), the difference was significant (moderator P = 0.005), with a greater dysfunction for artery compared to muscle microvessels (post-hoc comparison using

Bonferroni correction, p < 0.05) and a tendency for a greater dysfunction at artery compared to cutaneous microvessels (post-hoc comparison using Bonferroni

correction, P = 0.09).
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FIGURE 4 | Forest plots of studies on endothelial function, according to measurement techniques, in subjects with type 1 diabetes vs. controls. For each subgroup,

the following values are indicated: Z and p-value; I2, heterogeneity and p for heterogeneity. When comparing the six types of techniques with metaregressions (for

qualitative data), the difference was significant (moderator P = 0.02), with a more visible dysfunction when using ultrasounds vs. plethysmography (post-hoc
comparison using Bonferroni correction, P < 0.01).
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FIGURE 5 | Forest plots of studies on endothelial function in response to exercise, according to the type of exercise, in subjects with type 1 diabetes vs. controls. For

each subgroup, the following values are indicated: Z and p-value; I2, heterogeneity and p for heterogeneity. When comparing the two types of exercise with

metaregressions (for qualitative data), the difference was significant (moderator P = 0.04), with a more visible dysfunction when using intermittent local exercise vs.

aerobic exercise.

DISCUSSION

This meta-analysis, including 58 papers, attests to a medium-to-
large impairment of endothelial function in patients with type
1 diabetes free from clinically relevant vascular complications.
This novel result is crucial considering that ∼30% of the
studies on this topic failed to specifically detect this endothelial
dysfunction (Table 1). Alterations of VSM function in type
1 diabetes are even less well-documented (only 8 of 21
studies attested to a significant difference; Table 1), but our

current meta-analysis clearly demonstrates, for the first time,
that aberrations in endothelial function is accompanied by a
small-to-medium (according to Cohen’s effects sizes) significant
VSM dysfunction.

This impairment in VSM is alarming, considering that this
dysfunction might be an even better predictor of atherosclerosis
risk than endothelial dysfunction (74). Indeed, a significant
negative correlation of NMD, but not FMD, with aortic intima-
media thickness, a sensitive marker of atherosclerosis, has been
reported in 406 adolescents with type 1 diabetes (42). In line with
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FIGURE 6 | Forest plot of studies on VSM function in subjects with type 1 diabetes vs. controls. For each subgroup, the following values are indicated: Z and p-value;
I2, heterogeneity and p for heterogeneity. There was no difference between macro and microcirculation (with metaregression for qualitative data: moderator P = 0.60).

this notion, we found that a poorer VSM function was associated
with higher triglycerides and, when focusing on macrovessels,
with higher SBP and DBP. The link between VSM and these
classical cardiovascular risk factors has been previously reported
in type 2 diabetes (75), and may thus represent a common

feature of vascular dysfunction in metabolic disease. In contrast
to type 2 diabetes (75), low HDL-C did not appear to worsen
VSM dysfunction in the current study. This is in line with
the observation that HDL-C levels are elevated rather than
decreased in type 1 diabetes (76), albeit with an alteration of
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their composition and function (77). Moreover, contrary to TG,
HDL-C levels were described as poor predictors of micro- and
macro-vascular complications in type 1 diabetes (78).

In addition to the smooth muscle dysfunction unmasked
in the present meta-analysis, endothelial function tended to
be still more markedly impaired. The latter result needs
nevertheless cautious consideration as its assessment includes
both the capacity of the endothelium to release vasodilator
substances and the reactivity of the vascular smooth muscle.
By the way, Khan et al. (36) revealed a correlation between
iontophoresis Ach- and SNP-induced vasodilatation among
children and adolescents with uncomplicated type 1 diabetes
(36). Endothelial dysfunction was detected in both micro- and
macro-vascular beds, albeit to a greater degree in the latter.
Impaired endothelial dysfunction inmacro- vs. micro-circulation
in type 1 diabetes has to be considered in the context of
the relative contribution of NO to the overall endothelium-
dependent vasodilatation, which varies with vessels size. While
NO appears crucial for vasodilatation in relatively large arteries
and arterioles (79), endothelial derived hyperpolarizing factor
(EDHF) makes a larger contribution to endothelial function in
resistance arteries (i.e., the microcirculation) (80). Conceivably,
EDHF may compensate deficiencies in NO bioactivity, as
indicated in a rat model of type 1 diabetes (81). Likewise, as
demonstrated in the forearm microcirculation of humans with
type 1 diabetes using a cyclo-oxygenase inhibitor, prostanoid-
mediated vasodilatation may compensate for a lack of NO
(82). Finally, we cannot exclude that additional alterations
occur in muscular vasoconstrictive capacity within arterioles,
as hypothesized in a study in children and adolescents with
type 1 diabetes where capillary peak perfusion during reactive
hyperemia was even increased in patients vs. controls (53). In any
case, our novel finding that subtle endothelial dysfunction affects
more large than small vessels was unexpected, reinvigorating the
debate as to whether or not microvascular complications precede
macrovascular complications (83).

From a clinical perspective, it is important to note that
HbA1c, the traditional diabetes monitoring tool, was the only
one risk factor holding a significant deleterious impact on
endothelial function, especially in young patients. Future studies
will nevertheless be needed to confirm the conditions of this
impact since we were able to evidence it only when all studies
were included, but not in the adult subgroup or separately in
micro and macro-vessels. Earlier studies already demonstrated
a negative correlation between high HbA1c and acetylcholine-
induced vasodilation in children, adolescents and young adults
with type 1 diabetes (36, 84) or heat-induced microvascular
dilation in adolescents and young adults with type 1 diabetes
(85). In one of our previous studies, we split the group with
type 1 diabetes into two subgroups, with either adequate (<7%)
or poor (>8%) glycemic control and demonstrated an altered
exercise-induced microvascular reactivity only in the poorly-
controlled group (57). Likewise, Hoffman et al. (86) revealed
a more impaired reactive hyperaemic response in the human
forearm of adolescents with HbA1c > 8.3%.

The close link between HbA1c levels and endothelial function
may originate from one of two processes (i) the indirect

deleterious impact of chronic hyperglycemia (as reflected by high
HbA1c levels) on NO bioavailability through reactive oxygen
species overproduction, which inactivate NO by conversion into
peroxynitrite and promote ADMA production and arginase
overexpression, thus inhibiting eNOS activity and reducing the
availability of the substrate L-arginine (87), (ii) a possible direct
impact of glycated hemoglobin, whose affinity for NO is greater
than that of the non-glycated molecule (88). This implies that,
among patients with high HbA1c levels, NO transported (bound
onHb) from regions of high production (i.e., the conduit arteries)
may be less readily released downstream in the microcirculation,
potentially altering microvascular tone.

Noteworthy, we did not detect any moderating effect of
diabetes duration on endothelial dysfunction and we found that
the adverse impact of HbA1c was evident already in childhood
and adolescence, which highlights that optimization of glycemic
control should be at the center of care from the earliest stages of
life onward.

Our meta-analysis did not reveal any negative influence of
lipid profile or BMI on the association between endothelial
dysfunction and type 1 diabetes. This result is not too surprising
considering that most study participants displayed mean lipid
profiles and BMI within ranges of normality (except for 1
of the 35 studies on HDL-C, 1 among the 47 studies on
cholesterol). Accordingly, the majority of studies that tested the
association between lipid profile and endothelial function in
uncomplicated type 1 diabetes did not reveal any link between
these outcomes (14, 16, 19, 45, 54, 56).

Considering the high heterogeneity in the results, we have
also separated the analyses of endothelial function according to
the size of vessels studied and the type of stimulus/intervention
used. Separately, the effects of some stimuli (i.e., exercise and
pharmacological substances) did not reach statistical significance
only for small vessels. For large vessels, FMD and exercise stimuli
were both associated with a significant endothelial dysfunction
among the patients. In addition, when comparing the effects
of the stimuli between each other, in macro as well as in
microvessels, no significant differences appeared. This suggests
that physical exercise, a physiological stimulus, may be efficient
in triggering endothelial NO release, particularly in large vessels.
In a previous study, Grzelak et al. (31) demonstrated that
exercise (i.e., handgrip) was even more efficient than occlusion-
reperfusion maneuver for promoting a dilatation of the artery
in adults with type 1 diabetes. Only 10 studies have investigated
the impact of an acute exercise stimulus on vascular function
in uncomplicated patients with type 1 diabetes compared to
a healthy population; 3 of these focused on skin capillaries
(12, 28, 59), 7 on muscle microvasculature (26, 47, 49, 51, 57,
60) and 3 on arteries (31). When analyzing more specifically
the type of exercise chosen, only one work used a session
of resistance exercise and compared it to aerobic exercise of
the same duration, without finding any intergroup difference
of post-exercise forearm blood flow, regardless of the type of
exercise performed (60). Intriguingly, concentric intermittent
local (handgrip) exercise [4 cohorts; (31, 49)] appeared to
induce a significantly greater vascular impairment in patients
with type 1 diabetes than when performing whole-body aerobic
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exercise [6 cohorts; (26, 47, 51, 57, 60)]. Whether this inter-
exercise difference results from a release of different and exercise-
specific vasoactive molecules remains to be elucidated. Of note,
isometric local exercise involves a very small active muscle mass,
where blood flow is unlikely to be influenced by variations in
cardiac output (89). Conversely, whole body aerobic exercise
elicits substantial increases in cardiac output, and this central
cardiovascular response might mask inter-group differences
in peripheral vascular reactivity. Noteworthy, focusing only
on local intermittent exercise allowed to considerably reduce
heterogeneity to a level close to the “moderate” heterogeneity
category. Finally, the ability of local isometric intermittent
exercise to detect endothelial dysfunction in uncomplicated
patients with type 1 diabetes provides considerable clinical
perspective: such an exercise, which is physiological, cheap
(requiring only a handgrip) and simple to implement, would be
worth adding to the routine clinical follow-ups of uncomplicated
patients, in whom pharmacological or painful (e.g., 5min
occlusion) stimuli are less well-tolerated.

Heterogeneity
In this meta-analysis, the heterogeneity was very high in
practically all the analyzed topics.

The large number of studies in this meta-analysis revealed
considerable variability in methodological practice which is
likely to contribute to the heterogeneity in responses observed.
Factors such as the inclusion criteria and precautions before
the visit or the D-day, matching between patients with type
1 diabetes and healthy controls, varied widely between studies
(Table 1), inviting bias for meta-analyses. Most of the studies
did match their populations only for age. Focusing on the 10
studies on exercise, only 3 indicated a matching for physical
activity level. Smoking, oral contraceptives or statins could
have an impact on vasoreactivity, but unfortunately this is not
always considered. In addition, prevailing circulating glucose
and insulin concentrations, which presumably differ considerably
between subjects and studies but are regrettably not always
reported (of the 58 studies, only 31 displayed glycemia, 23
reported the status of insulin injection among which 17 were in
fasting and 16 in a post-prandial state), are known as modulating
peripheral vasodilation (90, 91). Ultimately, while the influence
of long-term glycemic control (i.e., HbA1c) on vascular function
is systematically taken into consideration, only 2 studies (14,
48), among the 58 included in the meta-analysis, explored
the moderating effect of glycemic variability (i.e., oscillating
glucose concentrations) or hypoglycaemia on vascular function
in patients with type 1 diabetes compared to healthy controls.
These 2 studies, in children with type 1 diabetes, failed to detect
significant correlation between FMD and glycemic variability, as
assessed using 2-week, seven-point, self-monitored blood glucose
logs (14) or 48-h continuous glucose monitoring (48). However,
as previous in vitro (92) and in vivo (21, 93–98), studies suggested
a possible deleterious impact of glycemic variability on vascular
function, further studies are needed to better explore the strength,
conditions and mechanisms of this impact. An increased
magnitude of glycemic variability would generate more reactive
oxygen species (including nitrotyrosine) in complications-prone

cells compared to stable hyperglycemia and preliminary data
suggest that protective adaptations induced by constant exposure
to hyperglycemia are inadequately activated with intermittent
exposure, allowing for more pronounced toxicity (92). Besides,
in accordance with other reports (96, 97), Pena et al. (48)
showed that an index of hypoglycaemic risk (i.e., Glycemic Risk
Assessment Diabetes Equation—Hypoglycemia), measured over
the 48 preceding hours, was a negative predictor of FMD but
not of NMD. Noteworthy, hypoglycemia may induce vascular
damages in the short and long terms: the hypoglycaemia-induced
acute hemodynamic changes may precipitate and aggravate a
vascular event during an acute episode (99), while repetition of
hypoglycemic events could trigger abnormalities of coagulation,
fibrinolysis, and inflammation.

Likewise, the combination of various ages, genders, regions
assessed and, mainly, methods of assessing vascular function
may greatly contribute to the high heterogeneity. In that respect,
we performed metaregressions and separated sub-analyses of
each intervention. Although some parameters partly explained
some heterogeneity (cf., significant moderator P-values), the
heterogeneity remained high in all the sub-analyses, thus limiting
the extrapolation of the effect size (73). This result highlights
the urgent need for vascular methods standardization. Although
the gold-standard ultrasonographic assessment of large vessels
by FMD is the only method benefiting from standardized
guidelines (100, 101), it is operator-dependant and demands
considerable practice before reproducible results are obtained
(102, 103). In addition, very few studies (i.e., 1 among 30 included
in the meta-analysis) took into account evoked hyperaemic
shear stress while analysing FMD, while this, if altered, can
constitute a reduced stimulus for dilation (104). While efforts for
microvascular assessment standardization are emerging (105),
further work in this direction is needed. As in this current meta-
analysis, a particular technique of measure is typically appointed
to correspond to either macro- or micro-vascular circulation,
but in real-life these cardiovascular functions are, of course,
interconnected and interdependent.

Limits and Perspectives
While this meta-analysis focused only on peripheral vessels,
vascular dysfunction is not limited to this area. Vascular
dysfunction may also appear in cerebral vessels in response to
aerobic exercise (106), which is highly relevant given the risk for
long-term diabetes-associated cognitive decline (107).

Even if endothelial and, to a lesser extent, VSM dysfunction,
have been the topic of a large number of studies in uncomplicated
patients with type 1 diabetes, further studies focusing on the
understanding of their underlying molecular mechanisms would
benefit from agreeing on the most sensitive stimulus and
most appropriate vascular bed to study for relevant routine
clinical patient follow-up. NO is the main mediator controlling
vascular tone and any reduction in its bioavailibility (e.g.,
by superoxide) translates directly into endothelial dysfunction.
However, even the NO receptor (soluble guanylyl cyclase; sGC)
is sensitive to oxidative stress, and a redox-driven impairment
of NO/sGC signaling may contribute to VSM dysfunction.
Moreover, many others pathways are involved in vasodilatation
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and each stimulus induces vasodilatation through common
but highly specific pathways [e.g., prostaglandin (108) and
EDHF/EET (epoxyeicosatrienoic acids) pathway in response to
post-occlusive reactive hyperemia, chemical factors released by
contracting skeletal muscle (109)].

Up to now, very limited data is available about underlying
mechanisms of vasodilation defects in uncomplicated type 1
diabetes. Of the 55 studies included in this meta-analysis,
only 4 attempted to concomitantly assess some of the
putative underlying mechanisms of the vasoreactivity defect.
Although Fayh et al. (26) hypothesized, by measuring total
NOx (the sum of nitrite and nitrate), that NO production
was unaltered in their study, this result merits confirmation
because the authors did not distinguish nitrite and nitrate,
although only nitrite reflects acute changes in NO synthase
activity in humans (110). Using pharmacological inhibitors
of endogenous NO synthesis (L-NMMA) and prostaglandin-
mediated vasodilatation (indomethacin) (63) or of Ca2+

release in cytoplasm (35), administered concomitantly with
vasoactive substances [acetylcholine or exogenous NO (sodium
nitroprusside), respectively], no differences were found between
patients with type 1 diabetes and healthy controls suggesting
normal contribution of NO and prostaglandin as well as
efficient VSM calcium channels. However, Rodriguez-Manas
et al. (52) suggested the involvement of oxidative stress
in endothelial dysfunction among poorly-controlled type 1
diabetes subjects: they indeed demonstrated an improvement of
blunted vasodilatory response to metacholine when co-infusing
superoxide dismutase in patients with HbA1c ≥ 7.5%, while no
changes appeared for healthy controls or well-controlled patients.

In addition to help selecting the most appropriate stimulus
for routine follow-ups of vascular function in type 1 diabetes,
future efforts should focus on a better understanding of the
underlying mechanisms to design specific interventions and
molecular target to slow down progressive vascular damage.
Several studies already tested some non-pharmacological
interventions in patients with uncomplicated type 1 diabetes
and displayed encouraging results for regular physical exercise
(111) and nutritional supplementation with L-arginine (26) and
vitamin C (112).

In conclusion, this meta-analysis not only corroborates
the presence of a medium-to-large impairment of endothelial
function, even in response to physiological stimuli such as
exercise, but also highlights a VSM dysfunction in children

and adults with type 1 diabetes free from clinical vascular
complications. Of note, heterogeneity was high and was not
further explained by subgroups analyses, thus limiting the
extrapolation of the effect size and highlighting the urgent need
for vascular methods standardization. Surprisingly, endothelial
dysfunction seemed more marked in large rather than small
blood vessels, re-invigorating the debate about the timing and
complexity of the development of vascular complications
in type 1 diabetes. The inverse relationship between
endothelial function and HbA1c provides further arguments
for identifying therapeutic strategies aimed at improving
glycemic control.
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