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Since the recent rediscovery of brown adipose tissue (BAT) in adult humans, this

thermogenic tissue has been attracting increasing interest. The inverse relationship

between BAT activity and body fatness suggests that BAT, because of its energy

dissipating activity, is protective against body fat accumulation. Cold exposure activates

and recruits BAT, resulting in increased energy expenditure and decreased body fatness.

The stimulatory effects of cold exposure aremediated through transient receptor potential

(TRP) channels and the sympathetic nervous system (SNS). Most TRP members also

function as chemesthetic receptors for various food ingredients, and indeed, agonists of

TRP vanilloid 1 such as capsaicin and its analog capsinoids mimic the effects of cold

exposure to decrease body fatness through the activation and recruitment of BAT. The

antiobesity effect of other food ingredients including tea catechins may be attributable,

at least in part, to the activation of the TRP–SNS–BAT axis. BAT is also involved

in the facultative thermogenesis induced by meal intake, referred to as diet-induced

thermogenesis (DIT), which is a significant component of the total energy expenditure in

our daily lives. Emerging evidence suggests a crucial role for the SNS in BAT-associated

DIT, particularly during the early phase, but several gut-derived humoral factors may

also participate in meal-induced BAT activation. One intriguing factor is bile acids, which

activate BAT directly through Takeda G-protein receptor 5 (TGR5) in brown adipocytes.

Given the apparent beneficial effects of some TRP agonists and bile acids on whole-body

substrate and energy metabolism, the TRP/TGR5–BAT axis represents a promising

target for combating obesity and related metabolic disorders in humans.

Keywords: bile acids, brown adipose tissue, diet-induced thermogenesis, food ingredients, gut hormone, obesity,

sympathetic nervous system, transient receptor potential channels

INTRODUCTION

Brown adipose tissue (BAT) has long been recognized as the major site of non-shivering
thermogenesis (NST) during cold exposure [cold-induced thermogenesis (CIT)] and arousal
from hibernation in small rodents (1). Since the rediscovery of metabolically active BAT using
fluorodeoxyglucose (FDG)-positron emission tomography (PET) and computed tomography (CT)
in adult humans (2–5), subsequent experimental and clinical studies have dramatically increased
our knowledge about the pathophysiological roles of BAT in the regulation of energy balance
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and body fatness (6, 7). Human BAT, as in the case of
rodent BAT, is activated by acute cold exposure (2, 5) or
administration of β-adrenergic receptor (βAR) agonists (8), and
contributes to increasing whole-body energy expenditure (EE)
and fatty acid oxidation (9–12). The activity and prevalence
of BAT substantially decrease in older and obese populations
(2, 3, 13–16), and this age-related decline in BAT activity is
closely associated with visceral fat accumulation (17). Prolonged
exposure to cold recruits BAT, increases EE, and decreases body
fat content (18–20). In addition, cold exposure improves glucose
metabolism and insulin sensitivity (21–24). Thus, BAT could be
a promising target to boost whole-body EE and prevent obesity
and related metabolic disorders in humans (25–30).

Although cold exposure is undoubtedly themost physiological
and effective regimen to activate and recruit BAT, it would be
difficult and uncomfortable to increase human exposure to cold
temperatures under well-controlled conditions with the presence
of clothing and heating systems.Moreover, chronic cold exposure
increases blood pressure (8) and may induce atherosclerosis
(31). Thermogenesis observed after food intake [diet-induced
thermogenesis (DIT)] is another component of NST. Although
the involvement of BAT in DIT has been demonstrated in
small rodents, only limited information is currently available in
humans. The aim of this review article is to summarize and
discuss the evidence for a role of BAT in DIT and thermogenesis
induced by certain food ingredients in humans, considering that
DIT is a significant component of whole-body EE in our usual
daily life.

COLD-INDUCED BAT THERMOGENESIS

Although themechanism of BAT-dependent CIT hasmostly been
investigated in small rodents, essentially the same mechanism is
believed to work in humans. When animals are exposed to cold
temperatures, cold is perceived by temperature sensors, transient
receptor potential (TRP) channels, which are membrane proteins
that transmit information about changes in the environment
such as temperature, touch, pain, osmolarity, and naturally
occurring substances (32). Cold-activated TRP on sensory
neurons on the body surface transmit information to the brain
and increase the activity of sympathetic nerves entering BAT (33).
Noradrenaline (NA) released from sympathetic nerve endings
stimulates brown adipocytes via the βAR and triggers cyclic
adenosinemonophosphate (cAMP)-activated intracellular events
including hydrolysis of triglyceride, oxidation of resulting fatty
acids, and activation of uncoupling protein 1 (UCP1), a key

Abbreviations: βAR, β-adrenergic receptor; BA, bile acids; BAT, brown

adipose tissue; CCK, cholecystokinin; CIT, cold-induced thermogenesis; COMT,

catechol-O-methyl transferase; CT, computed tomography; DIT, diet-induced

thermogenesis; EE, energy expenditure; DHA, docosahexaenoic acid; EPA,

eicosapentaenoic acid; FDG, fluorodeoxyglucose; GLP-1, glucagon-like peptide-

1; GP, Grains of Paradise; NA, noradrenaline; NST, nonshivering metabolic

thermogenesis; PET, positron emission tomography; SCTR, secretin receptor;

SNS, sympathetic nervous system; TGR5, G-protein-coupled bile acid-activated

receptor; TRP, transient receptor potential channel; TRPA1, TRP ankyrin

subfamily member 1; TRPM8, TRP metastatin 8; TRPV1, TRP vanilloid 1; UCP1,

uncoupling protein 1.

mitochondrial molecule for BAT thermogenesis. Sympathetic
activation also results in increased fat mobilization in white
adipose tissue, and released fatty acids are used in peripheral
tissues including BAT. Although the principal substrate for BAT
thermogenesis is fatty acids, glucose utilization is also enhanced
in parallel with UCP1 activation, probably for a sufficient supply
of oxaloacetate to enable the rapid oxidation of fatty acids and
acetyl coenzyme A (CoA), and also for recovery of cellular
adenosine triphosphate (ATP) levels by activating anaerobic
glycolysis (34). Thus, UCP1-dependent glucose utilization could
be a metabolic index of BAT thermogenesis, and has been applied
in FDG-PET for assessing human BAT.

When animals are exposed to cold temperatures for a long
time, they adapt to their surroundings by increasing the number
of brown adipocytes and the amount of UCP1 through the
proliferation of interstitial preadipocytes andmatured adipocytes
(35, 36). In addition to BAT hyperplasia, prolonged cold exposure
gives rise to an apparent induction of UCP1-positive adipocytes
in white adipose tissue. This type of adipocytes, termed “beige” or
“brite” cells, is developmentally distinct from “classical” brown
adipocytes, which derive from Myf5-positive myoblastic cells
(6, 37). Thus, chronic cold exposure results in increased EE
through the persistent activation and recruitment of classical
brown adipocytes and beige cells, and the consequent “browning”
of white adipose tissue and body fat reduction. As the FDG-PET/
CT-detected and UCP1-positive human adipose depot consists
of a mixture of brown and beige adipocytes (38–41), hereafter we
shall refer to it collectively as BAT.

DIET-INDUCED ACTIVATION OF BAT

EE above the basal metabolic rate in response to meal intake
is referred to as the “specific dynamic action of food,” “thermic
effects of food,” or “DIT.” The term DIT has often been used
to describe the adaptive increase in EE observed after long-
term overfeeding, which is also known as “luxury consumption”
or “luxosconsumption.” Since the publication of the report of
Rothwell and Stock (42) in 1979, it has been demonstrated in
small rodents that daily spontaneous feeding of high-calorie diets
such as high-fat and cafeteria diets resulted in a lower energy
efficiency with less weight gained than expected on the basis of
on caloric intake, in parallel with an increased BAT activity and
EE (43). The adaptive changes in response to overfeeding are not
observed in animals without UCP1 (44). Thus, the role of BAT in
adaptive increase in EE and maintaining energy balance seems to
have been accepted, albeit not widely supported (45).

Thermogenesis after a single meal is expressed as the
percentage of the energy content of the food ingested
(∼10% for standard meals in humans). This is usually
divided into two components: obligatory and facultative
thermogenesis. Obligatory thermogenesis refers to the obligatory
response including digestion, absorption, and storage of ingested
nutrients, whereas facultative thermogenesis refers to the
additional responses to obligatory thermogenesis and may be
closely related to the adaptive increase in EE. In this work, we
tentatively refer to facultative thermogenesis in response to single
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meals as DIT and discuss its mechanisms and pathophysiological
relevance in the context with BAT.

Activation of BAT after a single meal was suggested in the
1980s by Glick et al. (46), who reported increased respiration rate
of BAT in 2 h after food intake in rats. They also demonstrated
a meal-induced increase in guanosine 5′-diphosphate (GDP)
binding to mitochondria isolated from BAT, which was used as
an index of UCP1 activation (47). Our team (48) found meal-
induced metabolic activation of BAT in rats—that is, in 30min
after oral intake of a liquid meal, glucose utilization and fatty
acid synthesis were increased in intact BAT, but to a much lower
extent in surgically denervated BAT. The critical role of UCP1 in
DIT was proved by simultaneous 24-h recording of food intake
and oxygen consumption in UCP1-deficient mice maintained
at a thermoneutral temperature of 30◦C—that is, whole-body
oxygen consumption in UCP1-deficient mice was lower than that
in wild-type mice, particularly during the eating period (44).

DIET-INDUCED BAT THERMOGENESIS IN
HUMANS

In humans, the possible contribution of BAT thermogenesis to
DIT and regulation of energy balance have been suggested by
studies on single nucleotide polymorphism in some BAT-related
genes. For example, Trp64Arg mutation in the β3 adrenergic
receptor (β3AR) gene and A3826G mutation in the UCP1 gene
are associated with higher body fatness, lower metabolic rate, and
smaller weight loss via treatment with low-calorie diets (49–52).
Nagai et al. (53) examined the effects of A-3826G mutation in
the UCP1 gene on DIT in boys, and found a reduced response
3 h after a high-fat meal in those carrying the G allele. They also
found diminished CIT in the group with the GG allele compared
with those carrying the AA+ AG alleles (54).

Rediscovery of BAT in adult humans has prompted further
studies to test whether BAT thermogenesis is activated after
single meals. Vrieze et al. (55) measured BAT activity using
FDG-PET/CT in healthy volunteers 90min after meal intake,
and unexpectedly found a reduction in FDG uptake into BAT
compared with that after overnight fasting. Vosselman et al. (56)
also reported that postprandial FDG uptake into BAT was much
lower than cold-induced uptake, whereas whole-body EE was
comparable. Although these results seem to be in conflict with
the idea of postprandial activation of BAT thermogenesis, they
can be explained by increased insulin-stimulated FDG uptake
into skeletal muscle, which reduces FDG bioavailability for BAT,
which in turn leads to underestimation of BAT activity. FDG
uptake after a mild cold exposure is increased specifically in
BAT, whereas that after food intake is increased in many insulin-
sensitive tissues such as skeletal muscle, brown and white adipose
tissue, and heart (10). Thus, although FDG uptake into BAT
can be used as an index of BAT activity under certain restricted
conditions, it is not always associated with BAT thermogenesis.

This limitation of FDG-PET/CT is overcome by measuring
oxygen uptake using 15O[O2]-PET and blood flow using
15O[H2O]-PET, which are more descriptive indicators of
thermogenesis and mitochondrial substrate oxidation. In fact,

acute cold exposure evoked a marked increase in oxygen
consumption and blood flow in parallel with increased whole-
body EE (57). Moreover, Din et al. (58) demonstrated that oxygen
consumption and blood flow in BAT rose immediately after meal
intake to an extent comparable to those observed after cold
exposure. To confirm the role of BAT in DIT, we measured
whole-body EE continuously for 24 h in healthy humans using
a human calorimeter (59). When the participants were divided
into high BAT and low BAT groups according to the result of
FDG-PET/CT examination, there was no significant difference
in body composition and resting EE between the two groups.
However, EE after meals was significantly higher in the high BAT
group (9.7% of the total energy intake) than in the low BAT group
(6.5%). Of note, the 24-h respiratory quotient was also apparently
lower in the high BAT group, implying higher fat oxidation.
Higher postprandial whole-body EE and substrate oxidationwere
also confirmed in participants with higher BAT activities (57).
All these results indicate that BAT contributes to DIT, at least
in part, in humans. This may also be indirectly supported by
the finding that BAT recruitment by prolonged cold exposure is
accompanied by enhanced DIT (21).

MECHANISMS OF DIT: THE SYMPATHETIC
NERVOUS SYSTEM (SNS)

Based on the principal role of the SNS–βAR axis for CIT,
it is conceivable that this axis is a key mechanism in diet-
induced/postprandial BAT thermogenesis (Figure 1). In fact, in
both experimental animals and humans, the plasma levels of
NA and tissue NA turnover are low during fasting but increases
immediately after food intake (60–63). Moreover, SNS activity
in BAT estimated from tissue NA turnover is increased in mice
chronically overfed with cafeteria and high-calorie diets (64, 65).
Meanwhile, our team (48) found that in rats metabolic activation
of BAT after intake of a liquid meal was diminished after surgical
severing of sympathetic nerves entering BAT. These results
are in line with the idea that diet-induced/postprandial BAT
thermogenesis is mediated through sympathetic nerve activation.
One interesting observation in our studies was that the meal-
induced metabolic activation and NA turnover in BAT were
reduced in rats given the same meal through a gastric tube. In
the case of humans and dogs, LeBlanc et al. (66, 67) showed
that responses in oxygen consumption, and plasma levels of NA
and insulin shortly (1–2 h) after food intake were substantially
reduced when food was administered through a stomach tube.
They also reported lowered postprandial thermogenesis with
a non-palatable meal in comparison with a highly palatable
meal, despite using the same composition and amount in both
meals (68). These results suggest that food palatability and
oropharyngeal taste sensation play a significant role in diet-
induced sympathetic activation and BAT thermogenesis. This
may be consistent with the observation that the cafeteria feeding
regimen with palatable foods is most efficient in producing a
concomitant voluntary hyperphagia, elevated SNS activity, and
BAT hyperplasia, thereby resulting in “luxsusconsumption.”
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FIGURE 1 | Neural and endocrine mechanisms for BAT thermogenesis activated after meal intake. βAR, β-adrenergic receptor; BA, bile acids; BAT, brown adipose

tissue; CCK, cholecystokinin; GHSR, ghrelin receptor; NA, noradrenaline; SCTR, secretin receptor; TGR5, G-protein-coupled bile acid-activated receptor; UCP1,

uncoupling protein 1.

Thus, the SNS–BAT axis may be crucial for DIT, particularly
during the early phase, in the same way as for CIT; however, this
implication still seems controversial in humans. Wijers et al. (69)
reported considerable interindividual variations in thermogenic
responses to 84-h intervention by overfeeding and mild cold
exposure in 13 male individuals, but a high correlation between
the responses to the two interventions, suggesting a common
regulation mechanism shared in DIT and CIT. However, there
have been reports of an apparent dissociation of DIT with
CIT in cold-adapted humans. For example, Peterson et al.
(70) demonstrated that daily exposure of healthy men to cold
temperatures for 4 weeks resulted in a 2-fold increase in CIT, in
parallel with increased SNS activity, whereas it did not change the
thermic effect of food. Lee et al. (21) also reported a dissociation
between the effects of prolonged cold exposure on DIT and CIT.
Moreover, blockade of βAR with propranolol was demonstrated
to have only a small effect on the increase in whole-body EE
after intake of carbohydrate-rich meals (71–73). All these results
suggest that DIT in humans is regulated by some mechanisms
different from, and/or in combination with, the SNS–βAR axis.

MECHANISMS OF DIT: GUT HORMONES
AND BILE ACIDS

One of the likely factors involved in DIT may be gut hormones.
Li et al. (74) found abundant expression of the secretin receptor

(SCTR) in murine brown adipocytes, and demonstrated that
secretin activates UCP1- and SCTR-dependent thermogenesis
in vitro and in vivo. They also confirmed that the increment
of plasma secretin levels induced by a single meal positively
correlated with oxygen consumption and fatty acid uptake rates
in BAT in humans. These observations collectively support
the idea that meal-associated increase in circulating secretin
activates BAT thermogenesis by binding to SCTR in brown
adipocytes. Direct evidence for the thermogenic action of
secretin on human BAT was obtained using FDG-PET/CT after
secretin infusion, which significantly increased FDG uptake in
supraclavicular BAT.

In addition to secretin, other gut hormones are also known

to activate or suppress BAT thermogenesis in small rodents.

Recently, Yamazaki et al. (75) reported that in rats, peripherally

administered cholecystokinin (CCK) activates the SNS–BAT axis

via the CCK receptor and vagal afferent nerves. Blouet and

Shwartz (76) also demonstrated that in rats BAT thermogenesis

induced by intraduodenal administration of lipids was abolished

by administration of either the CCK receptor antagonist

devazepide or the N-methyl-D-aspartate receptor blocker MK-
801 directly into the caudomedial nucleus of the solitary tract.

These results collectively indicate that CCK activates BAT
thermogenesis via vagal afferent and sympathetic efferent nerves.
In fact, Vijgen et al. (77) demonstrated that vagal afferents
played a role in BAT thermogenesis in humans: vagus nerve
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stimulation significantly increases whole-body EE in parallel with
BAT activity assessed by FDG-PET/CT.

CCK is an anorexigenic hormone secreted from the
duodenum after food intake, whereas ghrelin is an orexigenic
hormone and its secretion from the stomach is reduced after
food intake. Lin et al. (78) reported that ghrelin decreases UCP1
expression in brown adipocytes, and that during aging, plasma
ghrelin and ghrelin receptor expression in BAT increases whereas
BAT thermogenesis declines. It is thus possible that reduced
secretion of ghrelin, together with increased secretion of CCK
and secretin, contributes to BAT activation in response to food
intake. This may be supported by an association of BAT with
systemic concentrations of some gut hormones including ghrelin
in humans (79). Thus, there are multiple factors/mechanisms
for diet-induced/postprandial BAT thermogenesis, their actions
being synergistic or independent of each other. However, the
precise nature of their roles in DIT and whole-body EE in
humans remain largely unexplained to date.

Another humoral factor may be bile acids (BA), which are
secreted into the intestinal lumen in response to meal intake,
modified by gut flora, and mostly returned to the liver. During
enterohepatic circulation, BA is partially transferred into general
circulation, resulting in a rapid postprandial increase in its
plasma concentration (80, 81). BA are now recognized as a
metabolic regulator, affecting multiple functions, in addition
to lipid-digestive functions, to regulate energy metabolism, as
well as glucose and lipid metabolism, through the activation
of nuclear farnesoid X receptor and the G protein-coupled
membrane receptor TGR5 (Takeda G-protein receptor 5) (82).
In connection with the thermogenic and antiobesity effects
of BA, Watanabe et al. (83) demonstrated that in mice BA
activates TGR5 in brown adipocytes, leading to activation of
type 2 deiodinase and increased thermogenic activity. Similar
direct stimulatory effects of BA chenodeoxycholic acid on BAT
were reported in humans using brown adipocytes in vitro and
using FDG-PET/CT in vivo (84). BA also stimulates intestinal L-
cell TGR5 to secrete glucagon-like peptide-1 (GLP-1). Although
GLP-1 is known as an incretin to stimulate insulin secretion, it
activates BAT thermogenesis and induces beige fat development
through the action on its receptor in the hypothalamus (85) and
the AMPK–SIRT-1–PGC1-α (AMP-activated protein kinase–
sirtuin 1–peroxisome proliferator-activated receptor gamma
coactivator 1-alpha) cell signaling pathway (86). Crucial roles
of TGR5 were also demonstrated in browning of white
adipose tissue under multiple environmental cues including cold
exposure and prolonged high-fat diet feeding (87).

BAT THERMOGENESIS AND DIETARY FAT

Thermogenesis after a single meal is usually estimated to be
10% for standard meals; it varies depending on the composition
of meals, being ∼3% for fat, 7% for carbohydrate, and 30%
for protein. In contrast, sympathetic and BAT activation, and
probably facultative thermogenesis (DIT), are low in animals
fed on high-protein diets (88, 89). Accordingly, high-fat diets
and/or cafeteria diets with high carbohydrate and fat contents
have been widely used for activation and recruitment of
BAT. In this context, what is interesting is that some types

of dietary fat including fish oil help prevent cardiovascular
and metabolic diseases, and visceral fat accumulation (90).
Moreover, several studies conducted in human volunteers have
reported that postprandial thermogenesis is greater after intake
of a meal rich in polyunsaturated fatty acids compared to
that rich in monosaturated and saturated fatty acids (91, 92).
Earlier studies in rats have revealed that dietary fish oil and/or
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
rich in fish oil enhance EE and prevent fat accumulation by
inducing UCP1 in BAT (93, 94). Kim et al. (95) reported that
UCP1 induction by dietary EPA and DHA is blocked by either
subdiaphragmatic vagotomy or treatment with a βAR blocker.
They also demonstrated that the thermogenic and antiobesity
effects of EPA and DHA are abolished in mice lacking TRP
vanilloid 1 (TRPV1), a member of the TRP family activated
by vanilloid compounds. Considering that EPA and DHA have
agonistic activity on TRPV1, it is likely that these polyunsaturated
fatty acids stimulate the vagus nerve through TRPV1 in the gut,
thereby activating the SNS–βAR axis and BAT thermogenesis
(Figure 2).

In addition, direct action mechanisms of EPA in brown
adipocytes have also been proposed. To cite an example, Kim et
al. (96) reported that EPA is sensed by the membrane receptor
free fatty acid receptor 4 in brown adipocytes, resulting in
biogenesis of the microRNAs miR-30b and miR-378 and an
increase of intracellular cAMP levels, both of which promote
the transcriptional activation of brown adipogenesis, including
UCP1 induction. The UCP1-inducing effects of EPA are also
reported to be mediated via inhibition of production of
ω6-derived oxygenated metabolites, such as oxylipins, that
can impair UCP1 activation and induction (97). Despite the
abundance of evidence in rodents, however, the thermogenic
effect of EPA and DHA and its relation to BAT in humans remain
to be investigated. In this context, one interesting development
is a recent report by Leiria et al. (98), who observed that
administration of a β3AR agonist induces a rapid increase in the
plasma levels of 12- hydroxyeicosapentaenoic acid (12-HEPE)
and 14-hydroxydocosahesanoic acids (14-HDHA), lipoxygenase
products of EPA and DHA, in parallel with the BAT activity
assessed by FDG-PET/CT, in humans. They also demonstrated
in mice that activated brown adipocytes released 12-HEPE to
promote glucose uptake into skeletal muscle and adipose tissues.
Thus, it seems possible that 12-HEPE is a BAT-derived factor that
improves insulin sensitivity and glucose metabolism (21–24).

BAT THERMOGENESIS INDUCED BY
CAPSAICIN AND CAPSINOIDS

BAT thermogenesis is also induced by various non-caloric
food ingredients and natural substances. One example of
such ingredients is capsaicin, the major pungent component
of chili peppers, which happens to be a potent activator of
TRPV1. Capsaicin is the most consumed spice in the world,
and its health beneficial effects, including thermogenic and
antiobesity activities, have been known for centuries (99–101).
However, because of its strong pungency, not everyone can
consume capsaicin in large quantities. Capsinoids (capsiate,
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FIGURE 2 | BAT thermogenesis through the activation of the TRP–SNS axis by food ingredients. βAR, β-adrenergic receptor; BAT, brown adipose tissue; COMT,

catechol-O-methyl transferase; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; GI tract, gastrointestinal tract; NA, noradrenaline; NMN, normetanephrine;

SNS, sympathetic nervous system; TRP, transient receptor potential channel; A1, TRP ankyrin subfamily member 1; M8, TRP metastatin 8; V1, TRP vanilloid 1; UCP1,

uncoupling protein 1.

dihydrocapsiate, and nordihydrocapsiate) are capsaicin-like
compounds found in a non-pungent type of red pepper, “CH-
19 Sweet” (102). Capsaicin and capsinoids bind to TRPV1 with
comparable affinities; however, pungency is much less defined in
capsinoids (1/1,000). The low pungency exhibited by capsinoids
may be attributable to the high lipophilicity of capsinoids, which
render these molecules unable to access the termini of trigeminal
nerves in the oral cavity, which is covered with epithelium (103).

Animal studies have demonstrated that oral administration
of capsaicin and/or capsinoids can activate TRPV1 expressed
in sensory nerves within the gastrointestinal tract and increase
sympathetic nerve activity innervating BAT, inducing a rapid
increase in BAT temperature, increasing whole-body EE, and
decreasing body fat (104–106). These responses are blunted by
the administration of β-adrenergic blockers (106) or through the
denervation of vagal afferents and extrinsic nerves connected to
the jejunum (104, 105). It was also reported that the thermogenic

and fat-reducing effects of capsinoids are diminished in
mice lacking either TRPV1 or UCP1 (105, 107, 108). Taken
together, oral administration of either pungent capsaicin or
non-pungent capsinoids increases whole-body EE and prevents
obesity through the activation of the TRPV1–SNS–BAT axis
in small rodents. It is possible that capsaicin also acts directly
on TRPV1 expressed in BAT (109). By contrast, the direct
action of capsinoids on TRPV1 in brown adipocytes is unlikely
because orally ingested capsinoids are rapidly hydrolyzed in
the small intestine and are usually undetectable in general
circulation (110).

In humans, our team (111) found that a single oral ingestion of
capsinoids increases EE in individuals with metabolically active
BAT, but not in those without it. These findings indicate that
the thermogenic effects of capsinoids are dependent on the
presence of BAT—implying that capsinoids activate BAT and
thereby increase EE. Furthermore, daily ingestion of capsinoids
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for 6 weeks augments CIT in individuals with low BAT activities
(18). Because interindividual (26) and intraindividual variations
of CIT (112) are significantly related to BAT activity assessed
by FDG-PET/CT, the capsinoid-induced increase in CIT reflects
the recruitment of BAT. This was directly confirmed by using
FDG-PET/CT (113, 114) and also through near-infrared time-
resolved spectroscopy (NIRTRS) (114), a novel method for
evaluating BAT density in a specific region of interest (115).
Thus, capsinoids have the potential to activate and recruit
human BAT, thereby contributing to their antiobesity effect.
Indeed, after a 12-week oral ingestion of capsinoids, a slight
but significant reduction of abdominal fat was observed in a
group of obese individuals (116). Notably, the fat-reducing effect
of capsinoids is attenuated in individuals who carry a mutated
(Val585Ile) TRPV1 (116), consistent with the crucial role of
TRPV1 in mice. As single and daily oral ingestions of capsinoids
at doses of 30 (110) and 6–9 mg/day for 6–12 weeks (18, 114,
116), respectively, produced no serious adverse events, dietary
supplementation with capsinoids appears to be safe and feasible
for combating obesity.

Although the effects of capsinoids are similar to those of
cold exposure, TRPV1 is not a cold sensor, but rather a sensor
of noxious hot temperatures and low pH (117). It is therefore
expected that human BAT is activated by nociceptive stimuli,
including TRPV1 activation. In agreement with this concept,
chronic adrenergic stress induced by burn trauma results in
browning of white adipose tissue (118). Hence, it is conceivable
that oral ingestion of capsinoids would lead to the activation
of BAT thermogenesis through the TRPV1-mediated pathway
in humans, whereas cold exposure would be more potent in
inducing BAT activation than capsinoid ingestion (113). In
light of a recent report claiming that capsinoid treatment in
mice potentiates cold-induced browning of white fat (119),
a combination of capsinoid supplementation and mild cold
exposure may be an effective strategy for recruitment of BAT
in humans.

ACTIVATION AND RECRUITMENT OF BAT
BY TEA CAFFEINE AND CATECHINS

Other intriguing food ingredients that activate BAT
thermogenesis are caffeine and catechins, which are abundantly
found in green tea. Tea is made from the leaves of Camellia
sinensis L., a species belonging to the Theaceae family. The
manufacturing process produces various types of tea such as
non-oxidized, non-fermented green tea, semifermented Oolong
tea, and fermented black and red teas. These teas, particularly
green tea, contain relatively large amounts of polyphenols,
such as epicatechin and epigallocatechin gallate, which have
various health benefits such as antiobesity, anticarcinogenic, and
antibacterial properties (120, 121).

An apparent thermogenic effect of green tea extract in humans
was reported first by Dulloo et al. (122). They demonstrated that
ingestion of green tea extract containing catechins and caffeine
elicited a 4% increase in 24-h EE coupled with an increase in fat
oxidation. Ingestion of caffeine alone had only a very slight effect

on EE, implying that the effects of green tea extract is mainly
attributable to thermogenesis by catechins. Since then, the short-
term thermogenic effects of green tea extract and/or catechins
have been confirmed by several studies using various doses of
the extract and duration (123–125). Their long-term effects on
body fatness have also been repeatedly investigated. For example,
Nagao et al. (126) reported a small (2–3%) but significant
reduction of body fat content in a group of Japanese volunteers
who underwent 12 weeks of treatment with green tea extract
containing catechins. Similar fat-reducing effects of catechins
were also confirmed in other studies (127–130), although
there is also a report showing that there was no significant
effect (131).

Although the possible involvement of BAT in the thermogenic
and antiobesity effects of catechins has been suggested (132, 133),
no evidence supporting this claim has been reported in humans.
Recently, we found that an oral ingestion of catechin-rich tea
produced a rapid increase in EE in individuals with higher
BAT activities, but not in those with undetectable BAT activities
(134). Moreover, a 5-week daily ingestion of catechin-rich tea
resulted in a significant increase in CIT, an index of BAT activity.
Although the active and placebo beverages contained a moderate
amount of caffeine, the placebo ingestion did not produce any
change in EE and CIT. The chronic effects of catechins on BAT
were also confirmed using the NIRSTRS technique (135). Thus,
it is highly likely that the observed thermogenesis is attributable
to catechin, rather than caffeine. However, this does not rule
out a possible synergistic action between catechins and caffeine
(136, 137). Collectively, the thermogenic and fat-reducing effects
of green tea extract rich in catechins would be attributable to the
activation of BAT.

The thermogenic response to green tea extract has been
proposed to be mediated through the direct stimulation of
the NA–βAR cascade in BAT by inhibiting a catecholamine-
degrading enzyme, catechol-O-methyl transferase (COMT), by
catechins and a cAMP-degrading enzyme, phosphodiesterase,
by caffeine (133). In support of this claim, Velickovic et al.
(138) demonstrated a temperature increase in the supraclavicular
region, which colocates to the main region of BAT, after intake
of caffeine-rich coffee. However, COMT activity may not be
impaired by oral catechin ingestion in humans (139), because
of the much lower circulating levels of catechins after a single
ingestion (∼0.1µM at maximum) (140) compared with the
half-maximal inhibitory concentration for the COMT activity
(∼14µM) (141). Thus, the role of COMT inhibition as a primary
target of the catechin action on BAT thermogenesis remains
controversial. To this end, it is interesting that Kurogi et al.
(142, 143) reported that green tea epigallocatechin gallate and
its auto-oxidation products activated TRPV1 and TRP ankyrin
subfamily member 1 (TRPA1), another member of the TRP
family, in intestinal enteroendocrine cells at concentrations
comparable to those in the gastrointestinal tract after oral
ingestion. It is thus possible that catechins activate and
recruit BAT through the action on TRPV1/TRPA1 in sensory
neurons in the gastrointestinal tract, in the same manner as
capsinoids; however, further studies are necessary to confirm
this theory.
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THE TRP–BAT AXIS AS A TARGET OF
ANTIOBESITY FOOD INGREDIENTS

In addition to capsaicin, capsinoids, and catechins, there are
other food ingredients, particularly those in spicy foods, with
agonistic activity to TRPV1 (144). For example, piperine is
responsible for the pungency of black and white pepper;
meanwhile, gingerols, shogaol, zingerone, and 6-paradol are
found in ginger, some of which might be expected to activate
BAT thermogenesis and reduce body fat. The seeds of Grains
of Paradise [Aframomumu melegueta [Rosco] K. Schum.] (GP),
which is also known as Guinea pepper or alligator pepper, are
rich in 6-paradol and are commonly used as a spice for flavoring
food; they also have a wide range of ethnobotanical uses (145).
In humans, we found thermogenic responses to oral ingestion
of an alcohol extract of GP in individuals with metabolically
active BAT, but not in those without it (146), implying a BAT-
dependent thermogenesis by GP extract. In line with the acute
effects, in one study, daily ingestion of GP extract for 4 weeks
resulted in a slight reduction in visceral fat (147). These results
suggest that GP, like capsinoids and catechins, increases whole-
body EE through the activation of BAT, thereby decreasing
body fatness.

As noted above, TRPV1 is not a cold sensor, but a sensor
of noxious hot temperatures higher than 43◦C. Among the
members of the TRP family, TRP metastatin 8 (TRPM8)
and TRPA1 are the most likely receptor candidates to be
sensitive to lower temperatures. As the mean activation
temperatures of these two TRPs are lower than 17–25◦C,
chemical activation of these receptors is expected to mimic
the effects of a mild cold exposure. A representative TRPM8
agonist is menthol, a cooling and flavor compound in mint.
Application of menthol to the skin of whole trunk in mice
was shown to induce autonomic and BAT responses, but
at a much lower extent in TRPM8-deficient mice (148).
A rapid increase in core and BAT temperatures was also
observed after intragastric administration of menthol and 1,8-
cineole, another TRPM8 agonist (149). Using mice lacking
either TRPM8 or UCP1, Ma et al. (150) reported that a
diet supplemented with menthol enhances UCP1-dependent
thermogenesis and prevents high-fat diet-induced obesity in a
TRPM8-dependent manner. In humans, a slight but significant
elevation of metabolic rate after a single skin menthol
administration was observed (151), although its relation to BAT
was not investigated.

TRPA1 is activated by various pungent compounds, such
as ally- and benzyl-isothiocyanates in mustard and wasabi
(Japanese horseradish) and cinnamaldehyde in cinnamon or
dried bark of cassia. These compounds are known to increase
thermogenesis and UCP1 expression, and decrease body fat
(149, 152, 153). In addition to these food ingredients, there
are various natural compounds having agonistic activity for
TRPM8 and TRPA1, some of which may also have the
potential to activate BAT thermogenesis and reduce body fat.
However, despite the evidence for BAT activation by these food
ingredients in small rodents, their thermogenic and antiobesity
effects, particularly those on BAT, have yet to be elucidated
in humans.

CONCLUSION AND PERSPECTIVE

Since the rediscovery of metabolically active BAT in adult
humans, BAT has been attracting increasing attention as a
promising target for combating obesity and related diseases.
In fact, several drugs targeting BAT have been tested for
pharmacotherapy of obesity (154). In physiological terms,
BAT thermogenesis is activated either by exposure to cold
temperatures or after meal intake, but diet-induced BAT
activation may contribute more significantly to whole-body EE
in our usual daily life. As discussed above, BAT is activated
by various postprandially secreted humoral factors such as BA
and gut hormones, and by certain food ingredients acting on
the TRP–SNS axis. Recent studies have shown that BAT is
also involved in the regulation of systemic glucose and lipid
homeostasis, directly by its intrinsic metabolic activity and
probably through some BAT-derived humoral factors “batokines”
(155). This may explain why some TRP agonists including
capsinoids ameliorate insulin sensitivity and glucose homeostasis
(156). Given the beneficial effects of various food ingredients and
BA on substrate and energy metabolism, compounds activating
the TRP/TGR5–BAT axis, by themselves and/or in combination
with some drug, represent a promising option for combating
obesity and related metabolic disorders.

In addition to the food ingredients discussed above, various
food compounds such as curcumin, quercetin, thyme, allicin,
retinoid acid, and resveratrols have been reported to activate and
recruit BAT thermogenesis via multiple actions of mechanism
that are either similar to or distinct fromTRP-mediated processes
(157, 158). Interestingly, the effects of some of these compounds
including EPA are suggested to be mediated through the
production of microRNAs (96, 159). However, most of these
effects have been observed in studies using cells in vitro and
mice/rats in vivo, whereas comparative evidence in humans is
very limited. One of the reasons for this large gap may be
related to the method used in assessing human BAT. To date,
FDG-PET/CT is a standard tool used to measure human BAT
(160); however, this option has serious limitations, including the
enormous cost of the devices, radiation exposure, and acute cold
exposure, which make repeated measurements difficult and an
impediment in basic and clinical studies. There is therefore an
urgent need to establish less invasive and simpler methods for
quantitative assessment of human BAT. This would promote
the development of practical, easy, and effective antiobesity
regimens, particularly when searching for dietary factors/food
ingredients that can activate and recruit BAT in humans.
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