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Obesity is characterized by low-grade inflammation, which is accompanied by increased

accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal

muscle, liver and pancreas, thereby impairing their primary metabolic functions in the

regulation of glucose homeostasis. Obesity has also shown to have a detrimental

effect on bone homeostasis by altering bone marrow and hematopoietic stem cell

differentiation and thus impairing bone integrity and immune cell properties. The origin of

immune cells arises in the bone marrow, which has been shown to be affected with the

obesogenic condition via increased cellularity and shifting differentiation and function of

hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors

and increased bone marrow adiposity. These obesity-induced changes in the bone

marrow microenvironment lead to dramatic bone marrow remodeling and compromising

immune cell functions, which in turn affect systemic inflammatory conditions and

regulation of whole-body metabolism. However, there is limited information on the

inflammatory secretory factors creating the bone marrow microenvironment and how

these factors changed during metabolic complications. This review summarizes recent

findings on inflammatory and cellular changes in the bone marrow in relation to obesity

and further discuss whether dietary intervention or physical activity may have beneficial

effects on the bone marrow microenvironment and whole-body metabolism.

Keywords: bone marrow microenvironment, bone marrow mesenchymal stem cells, hematopoietic stem cells,

immune responses, obesity, life-style interventions

INTRODUCTION

Bone marrow (BM) is a soft tissue localized inside of the bones and represents ∼5% of total
body mass in healthy individuals (1). BM is primary recognized as a hematopoietic organ
supporting the production of new blood cells (2). However, it has also a mechanical and immune
function as it comprises bone marrow mesenchymal stem cells (BMSCs), important building
blocks for bone formation, and hematopoietic stem cells (HSCs) responsible for producing
several types of immune cells crucial for immune responses (3, 4). While BMSCs promote
bone tissue regeneration by osteoblast differentiation and neo-vascularization thereby supporting
growth of a new tissue, HSCs are quiescent cells (5, 6). However, in response to external
cues HSCs can mobilize to the site of inflammation, A majority of HSCs reside in BM and
0.01% of them can migrate into circulation (7). Circulating HSCs in peripheral blood are
attracted by several biochemical factors and cytokines including SCF, CXCL12, or IL-8 (8, 9).
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The initiation of hematopoiesis starts in the fetal liver, where
HSCs proliferate and thenmigrate to BM. Later during adulthood
HSCs continuously migrate from BM to peripheral blood, which
maintains steady hematopoiesis (10). In the process of HSC
migration from BM, stem cells leave proliferative niches and
migrate to more oxygenated and vascularized regions in BM
(11). In cases of stress, injury or pharmacological intervention,
alterations in HSC niche formation and interaction with BMSCs
lead to HSCmobilization and egress. These processes are affected
by the metabolic status of an organism, which is altered by
caloric restriction, obesity and type 2 diabetes (12). However, it
is not well-documented how the composition of BM, interaction
between HSCs and BMSCs, and the inflammatory status in this
organ are affected in metabolic complications.

Thus, the purpose of this review is to give an overview
of the latest literature on inflammatory changes in the BM
microenvironment in relation to bone homeostasis. Also, we
will discuss how BM composition and secretory function change
in different metabolic states and whether dietary intervention
or physical activity may have beneficial effects on the BM
microenvironment and whole-body metabolism.

BONE MARROW AS AN IMMUNE AND
ENDOCRINE ORGAN

BM is a heterogeneous immune organ, which consists
of various cell types with different immune functions,
including HSCs (myeloid and lymphoid precursors), which
are important for immune cell production and BMSCs
with immunosuppressive properties (3, 4, 13). It has been
reported that 8–20% of BM mononuclear cells belong to
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lymphocyte lineage (T cells, B cells, Tregs) (14, 15) and
approximately 1% represent plasma cells contributing to
antibody production (16). Also located in the BM are natural
killer T cells (NKT) (cca 0.4–4%) (17), dendritic cells (1–2%)
(18), myeloid progenitor cells (giving rise to osteoclasts),
megakaryocytes important for platelets (thrombocytes)
production via thrombopoietin (1%) (19), neutrophils (8–
15%), eosinophils (0.5–2%), and basophils (0.01–2%) (Figure 1).
Importantly, BM represents a major reservoir of neutrophils
and provides migration of these cells into circulation as a
first host defense in response to infection and stress (20).
Neutrophils are also cleared in BM; once they are senescent,
they are phagocytosed by stromal BM macrophages (21).
Thus, BM is a home of immune and progenitor cells, whose
composition can be changed with age, metabolic status, or
inflammatory condition.

Further, BM is well-vascularized with blood vessels
and sinusoids, which create a barrier between BM and
peripheral circulation (22, 23). This microvasculature
allows a release of proliferating progenitor cells and
secreted molecules from BM into blood stream in
order to reach peripheral tissues depends on the
stimulatory signals or physiological condition, which
modulate a local microenvironment of the target
tissue (24).

Early in life, many bones contain red BM with a high
hematopoietic activity, which decrease and turn red BM
into yellow “fatty” BM with aging (25). In adults, there
are few bones with red BM (e.g., sternum, vertebrae, ribs,
or pelvic bone) contributing to hematopoiesis (26). Thus,
the bone homeostasis at different body sites is affected by
BM composition of HSCs and BMSCs, which contribute
to bone integrity, and mechanical and immune properties
(4, 27). The crosstalk between these cells activate several
processes, including proliferation, migration, and differentiation
of stem cells, which are accompanied with production of
various bioactive molecules creating the BM microenvironment
(3, 4, 25). The maintenance of this microenvironment is
important for healthy cell development, immune system function
and metabolism.

INTRINSIC REGULATORS OF
HEMATOPOIETIC STEM CELL AND BONE
MARROW MESENCHYMAL STEM CELL
DIFFERENTIATION

HSCs and BMSCs represent multipotent stem cells, which
can differentiate into different cell types based on the
regulation via intrinsic (e.g., transcription factors and cofactors,
posttranscriptional and posttranslational modifications)
and extrinsic factors (e.g., secretory molecules, BM
microenvironment, metabolic cues) (28). HSC differentiation is
coordinated by transcription factors such as c-Myc, PU.1/Spi-
1, GATA1-3, TNFβ, EGR1, BMI1, Gfi1, FoxO3, and others
(29). c-Myc, for example, regulates the balance between HSC
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FIGURE 1 | The cellular composition of bone marrow in healthy conditions. The composition of hematopoietic stem cells (HSCs) and bone marrow mesenchymal

stem cells (BMSCs) with percentage in bone marrow in normal physiological condition. Cell animations were adapted from SERVIER Medical Art; https://smart.servier.

com to create the figure.

self-renewal and differentiation (30). PU.1/Spi-1 is involved in
myeloid lineage determination via regulation of target genes,
including granulocyte colony-stimulating factor receptor (31),
granulocyte-macrophage colony-stimulating factor receptor
(32) and macrophage colony-stimulating factor receptor
(33). Some studies showed that PU.1/Spi-1 expression can
direct stem cell differentiation to myeloid lineage if Notch
signaling is reduced [reviewed in Rothenberg et al. (34)].
Another regulatory molecule of HSC differentiation is Ikaros,
which displays a crucial function as a transcription activator
promoting lymphocyte differentiation. Impairment of this
protein leads to hypoplasia, absence of secondary lymphoid
organs or absence of B- and T- cell precursors (35). Basic
leucine zipper transcription factor, ATF-like (BATF) is an
important factor promoting lymphoid lineage differentiation
(36), while TNFβ serves as a negative regulator of HSC self-
renewal (37). Further, the HSC cell fate determination is
regulated by GATA1-3, zinc finger transcription factors, which
coordinate development of diverse hematopoietic lineages
(38), and B lymphoma Mo-MLV insertion region 1 homolog
(BMI1), which is important for the multilineage potential of
HSCs and their replating capacity (39, 40). Lee et al. recently
identified a role of a transcriptional repressor, known as Gfi1

in the regulation of HSC quiescence and self-renewal, which is
modulated by metabolic status (i.e., upregulated with obesity
and decreased with weight loss) (41). Besides transcriptional
regulation, HSC renewal and differentiation are under control
of posttranslational modifications, including DNA methylation,
acetylation, or ubiquitination, which can be modulated by aging
or metabolic diseases (42). Recent findings documented that
increases in H4K16Ac levels results in inhibition of Cdc42,
which leads to restoration of the B cell lineage output in aged
HSCs (43). Further, G9a/GLP methyltransferase is responsible
for increased levels of H3K9me2 pattern associated with HSC
lineage commitment. On the other hand, inhibition of G9a/GLP
decrease differential potential of stem cells and improves
HSC maintenance (44). Additionally, methylation by DNA
methyltransferase 1 (DNMT1) permits efficient hematopoietic
differentiation (45). All above-mentioned transcription factors
and posttranslational modifications are only part of the HSC
regulatory network, which shows together the complexity of
stem cell differentiation process.

Differentiation of BMSCs toward osteoblasts and adipocytes
is regulated by specific transcription factors: Runt-related
transcription factor 2 (Runx2) (46), osterix (47), GATA2 (48,
49) (responsible for osteoblast lineage determination), and
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TABLE 1 | Transcription factors and determinants of HSC and BMSC differentiation.

Intrinsic

regulators

Cell type Function Obesity Life-style interventions

BATF HSC Transcription factor regulating lymphoid differentiation (36) – –

BMI1 HSC Transcription factor regulating multilineage potential of HSCs (39, 40) – –

TNFβ HSC Negative regulator of HSC self-renewal (37) – –

c-Myc HSC Transcription factor regulating balance between HSC self-renewal and

differentiation (15545632)

– –

Pu.1/Spi-1 HSC Transcription factor regulating myeloid lineage differentiation (31) ↑ (54, 55) –

Ikaros HSC Transcription activator of lymphoid differentiation (35) – –

Notch HSC Signaling molecule enhancing self-renewal and regenerative capacity of

HSCs (56)

– –

GATA1-3 HSC Transcription factors regulating HSC lineage determination (38) ↑ GATA 3 (57) –

Gfi1 HSC Transcription factor regulating HSC quiescence and self-renewal (58) ↑ (59) ↓ Weight loss (59)

DNMT1 BMSC DNA methyltransferase promoting HSC differentiation to myeloid

lineage (45)

– –

Runx2 BMSC Transcription factor promoting osteoblast differentiation (46) = (60) ↑ Vibration (61)

Osterix BMSC Transcription factor promoting osteoblast differentiation (47) ↓ (62) ↓ Low magnitude high

frequency vibration (63)

PPARγ BMSC Transcription factor regulating adipogenesis (50) ↑ (60) ↑ Low magnitude height

frequency vibration (64)

GATA2 BMSC Transcription factor regulating adipogenesis and osteogenesis (48, 49) – –

C/EBP BMSC Transcription factor regulating adipogenesis (4) ↑ (65) ↑ Low magnitude height

frequency vibration (64)

TGF-β1 BMSC Negative regulator of adipogenesis (4) ↓ (66) –

BMP-2 BMSC Positive regulator of osteoblast differentiation (51) ↓ (67) = Calorie restriction (68)

Zfp521 BMSC Regulator supporting osteoblast differentiation (53) – –

peroxisome proliferated-activated receptor gamma (PPARγ)
(50), CAAT enhancer binding protein (C/EBP) family (4)
(responsible for adipocyte lineage determination). The activation

of these transcription factors can be controlled by Wnt signaling,

transforming growth factor β1 (TGF-β1) and bone morphogenic
proteins (BMPs) [reviewed in Tencerova and Kassem (4)]. The

regulation of BMSC differentiation is also accompanied by

epigenetic modifications. For example, histone deacetylation in
genes involved in transcriptional regulation, cellular survival,

growth and proliferation of BMSCs. Increased acetylation during

osteoblast differentiation results in increased expression of
Runx2, BMP-2, osterix and osteopontin (OPN), which are
important for osteoblast maturation (51, 52). A recent study by
Addison et al. identified Zfp521 as a key regulator of lineage

specification in progenitor cells, regulating BMP-induced MSC
differentiation coupled with histone modification at Zfp423

promoter (53).
These data demonstrate that HSC and BMSC differentiation

are complex processes under the control of specific transcription

factors, whose activity is further epigenetically modulated.
These intrinsic factors contribute to the regulation of the
BM homeostasis and are changed by obesity and dietary
interventions. Table 1 summarizes key factors and determinants
regulating HSC and BMSC differentiation and associated
signaling pathways.

SECRETORY FACTORS OF BONE
MARROW MESENCHYMAL STEM CELLS
AFFECTING BONE HOMEOSTASIS AND
IMMUNE CELL PROPERTIES

BMSCs represent around 0.01–0.1% of total BM cells in adults
and are capable of differentiating into different cell types
such as osteoblasts (bone formation), adipocytes (adipose tissue
formation) or chondrocytes (cartilage formation), all of which
are important for maintaining of bone homeostasis (4, 13).
BMSCs are also known for their immunosuppressive properties
as they express human leucocyte antigen (HLA) class I and
costimulatory molecules CD80, CD86, or CD40 important for
regulation of T cell proliferation and activation (69, 70). Recent
findings suggest that BMSCs mediate their immunoregulatory
function via cell-cell interactions and secretion of soluble
molecules (70, 71). The BMSC secretory profile of prostaglandin
E2 (PGE2), hepatocyte growth factor (HGF), transforming
growth factor (TGF)-β1 and indoleamine 2,3-dioxygenase (IDO)
show profound immunosuppressive properties inhibiting T cell
activation and proliferation without affecting expression of early
activation markers such as CD25 and CD69 (72). Indeed,
BMSCs can modulate function of several immune cells without
being recognized by immune cells. BMSCs inhibit proliferation
and antibody production of B cells (73), differentiation of
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TABLE 2 | Secretory factors of BMSCs contributing to BM microenvironment and bone homeostasis.

Secretory

factors

Function Obesity Life-style

interventions

PGE2 Anti-inflammatory, inhibition of T cell

proliferation (72)

↓ (59) Omega 3 dietary

intervention ↓ (82)

HGF Anti-inflammatory, inhibition of T cell

proliferation (72)

– –

TGFβ Anti-inflammatory, inhibition of T cell

proliferation (72)

↓ (66) –

IL-7 B cell development (83) ↓ (84) –

IL-15 T cell homeostasis (85) ↓ (86) –

IL-21 NKT cells maturation (87) – –

TNFα HSC proliferation and activation (88) ↓ (60), ↑ (89) –

CXCL12/SDF-1 Stem cell migration (90, 91) ↓ (92) ↑ Exercise, caloric

restriction (68, 93)

Thrombopoietin HSC quiescence (94, 95) ↑ (96) ↓ thrombopoiesis (97)

Angiopoietin HSC quiescence (98) ↑ (99) –

M-CSF Myelopoiesis (100) = (101) –

G-CSF Myelopoiesis (100) ↑-(101, 102) ↑ Sleeve gastrectomy

(100)

RANKL Osteoclast differentiation (103) ↑ (104) = Exercise (105)

OPG Osteoclast differentiation (103) ↓ (104) = Exercise (105)

LCN2 HSC proliferation, inhibition of senescence

(106)

↓ (60) –

HSC progenitors into dendritic cells (74), and they promote
anti-inflammatory cytokine production of myeloid cells while
inhibiting the cytotoxic activity of NKT cells (75–77). Although
there is limited information on the exact mechanism of BMSC
immunoregulation in relation to immune cell interaction, they
represent an important tool in stem cell therapy. BMSCs have
been used in several clinical trials for tissue regeneration and
healing (78–81).

The secretory profile of BMSCs may differ depend on
developmental, immune or metabolic challenges they are
exposed to. A brief overview of BMSC secretory factors is listed
in Table 2, describing their functions and changes in metabolic
complications and life-style interventions. BMSCs secrete IL-
7, which is important for early B cell development (83, 84),
IL-15 for T cell homeostasis (85) and IL-21 for maturation
of NKT cells (87). Further, expression of CXCL12/SDF-1
mediates the interaction of BMSCs with BM endothelial cells
in order to contribute to the maturation of megakaryocytes
and thrombopoiesis. SDF-1 also initiates trans-endothelial
migration of BMSCs in homing process via activation of
integrins (LFA-1, VLA-4, and VLA-5) (90, 91). Moreover,
BMSC secretory products, including leukemia inhibitory factor
(LIF), macrophage stimulating factor (MIF), granulocyte-colony
stimulating factor (G-CSF), OPN, IL-6, tumor necrosis alpha
(TNFα) affect immune cell behavior (102, 107, 108). Costa
et al. showed that osteoblast-derived lipocalin 2 (LCN2), with
its anti-senescent function, regulates HSC progenitors and
their proliferation capacity (106). Functional studies indicate
that thrombopoietin and angiopoietin secreted by osteoblasts
promote HSC quiescence (94, 98, 109), while CXCL12 regulates

HSC migration in BM (110, 111). In addition, osteoblasts
may regulate the activity of osteoclasts (derived from myeloid
precursors in BM) in order to attract them to the site
of resorption, thereby maintaining bone homeostasis (112).
Osteoblasts produce receptor activator of nuclear factor-κβ

ligand (RANKL) and osteoprotegerin (OPG), two critical factors
in osteoclast differentiation and activation (103). Osteocytes
(mature osteoblasts) modulate myelopoiesis via activation of
Gsα-dependent signaling, which regulates secretion of G-CSF
(100, 113). These data point out the importance of maintaining
BM homeostasis, which is based on the molecular interactions
among different cell types present in BM. And changes in local
BM microenvironment induced by metabolic status of organism
may shift this balance in favor of action of specific progenitors,
which disrupt the priming of immune cell progenitors arising in
BM in their function when they reach circulation.

SECRETORY FACTORS OF
HEMATOPOIETIC STEM CELLS
AFFECTING BONE HOMEOSTASIS AND
IMMUNE CELL PROPERTIES

Multipotent HSCs represent another cellular component of
BM, which are recognized as the ancestors of blood cells (114–
116). Traditionally, HSCs differentiate into myeloid lineage
(e.g., erythrocytes, granulocytes, macrophages, monocytes,
and platelets) or lymphoid lineage [e.g., B lymphocytes, T
lymphocytes, and natural killer (NK) cells] (117). While
myeloid cells mature in the BM, human lymphoid cells must
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TABLE 3 | Secretory factors of HSCs contributing to BM microenvironment and

bone homeostasis.

Secretory

factors

Function Obesity Life-style

interventions

IL-1β HSC activation (128) ↓ (60) ↓ Dietary restriction-

reduced intake of

amino acids (129)

MCP1 HSC activation (128) ↓ (60) –

TNFα HSC activation (128, 130) = (60) –

Wnt10b Bone formation (131) ↓ (132) –

CXCL16 Osteoblast migration (133) – –

TRAP Osteoclast activation (134) = (60)

↑(135)

↓ Caloric restriction

(136)

LIF Osteoblast migration (133) – –

CTSK Collagen degradation (137) – –

CTHRC1 Bone formation (138) – –

Del-1 HSC proliferation and

differentiation (139)

– –

TN-C Bone remodeling and bone

renewal (140)

↑ (141) –

migrate to other lymphoid organs (e.g., thymus) in order
to complete their maturation. In most of the experimental
models, multipotency of HSCs is coupled with self-renewal
abilities (118). HSCs together with endothelial cells (119), LepR+

stromal cells (120), megakaryocytes (121), sympathetic nerves,
non-myelinating Schwan cells (122) and secreted bioactive
molecules (123–126) create a dynamic BM microenvironment
(127). Table 3 summarizes HSC secretory factors contributing
to BM homeostasis along with their functions and changes in
metabolic complications and life-style interventions. The BM
microenvironment mediates signals for HSCs to differentiate
into particular cell type in response to infection or blood cell
destruction (142, 143). Interactions between HSCs and BMSCs
are tightly interlinked by secreted signals and regulatory factors
affecting the quiescence, self-renewal or mobilization of stem
cells. HSCs are capable of receiving and producing signals that
directly dialogue with the immune system. A recent study by
Mitroulis et al. identified developmental endothelial locus-1
(Del-1) glycoprotein secreted by several components of HSC
niche such as endothelial cells, reticular cells as a regulator of
long-term HSC proliferation and differentiation toward the
myeloid lineage (139). Another protein expressed in extracellular
matrix of BM is tenascine-C (TN-C), important for active
bone remodeling and HSC renewal in the endosteal region in
conditions of hematopoietic stress (140, 144, 145).

In the context of inflammation, HSCs are recognized as
primary responders to infection, and the secretion of pro-
inflammatory cytokines during infection is important for HSC
regulation. This cascade of pro-inflammatory cytokines and
signaling molecules includes IL-1, IL-2, IL-8, TLR4 (146), TNFα
(147), IFNα, β, and γ (148) to activate T cells, NKT, and IL-
4 and IL-6 to activate B cells [reviewed in King and Goodell
(149)]. These cytokines are required for the maintenance of
the appropriate proliferation and differentiation of HSCs in the
steady-state and stress-induced condition.

Another cell type derived from the myeloid lineage are
osteoclasts (“bone macrophages”), which are key players
in process of bone resorption. Osteoclasts are specialized
multinucleated cells derived from monocyte fusion containing
from 2 to 12 nuclei per cell (150). The process of osteoclast
differentiation is regulated via main activators of osteoclast
formation, RANKL and M-CSF. In addition, RANKL promotes
osteoclast resorption activity (151). In healthy conditions,
osteoclasts play an important role in replacing of old or damaged
bone matrix (bone resorption), which is followed by osteoblasts
forming a new mineralized bone matrix (bone formation).
This renewal process of bone matrix is also known as bone
remodeling, which is energetically demanding (152). During
this process, osteoclasts communicate with osteoblasts through
cytokines such as TGF-β and IGF-1, which promote migration
of BMSCs to newly resorbed tissue (153, 154). TGF-β can also
induce expression of CXCL16, LIF, and Wnt10b by osteoclasts,
which induce mineralization and recruitment of osteoclasts to
osteoblasts (131, 133). Activated osteoclasts further produce
secreted factors supporting their resorption activity, including
cathepsin K (CTSK), sphingosine-1-phospate (137), tartrate-
resistant acid phosphatase (TRAP) (134). CTSK is cysteine
protease secreted by osteoclasts with an essential function in
degradation of matrix collagen and activation of TRAP (155,
156). Mutation in CTSK leads to pycnodysostosis, rare autosomal
recessive skeletal dysplasia, during which osteoclasts function is
defected. Animal models with this deficiency showed reduced
bone resorption, which together with normal or increased
bone formation led to osteopetrotic phenotype (137). TRAP
is a phosphatase expressed by osteoclasts and macrophages
participating in skeletal development, collagen synthesis, and
degradation or mineralization of bone matrix (134). Another
molecule secreted by osteoclasts is collagen triple helix repeat
containing 1 (CTHRC1), which serves as a positive regulator
of osteoblastic bone formation (138, 157). These data provide
further evidence that HSCs are capable of producing several
inflammatory molecules, which contribute to creation of the
BM microenvironment. Importantly, HSC differentiation in
process of building active immune cells is under control of
several bioactive molecules and signaling pathways, which
need to be tightly regulated in response to metabolic or
inflammatory stressors.

OBESITY-INDUCED CHANGES IN BONE
MARROW

Obesity is characterized by low-grade inflammation, challenging
the immune cell responses in peripheral tissues. Further, the
obesogenic condition increases BM cellularity 20–30% (101),
changes BM composition of HSC and BMSC subpopulations
and affects their differentiation capacity and increases white
and red blood cell counts (Table 4) (96, 158, 164, 165, 172).
Conditions associated with metabolic dysregulations, including
hyperglycemia and hypercholesterolemia, have been linked to
hematopoietic disruption and particularly to myeloid skewing
(84, 165, 183).
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TABLE 4 | The changes in cellular composition of hematopoietic stem cells and

bone marrow mesenchymal stem cells in bone marrow in obesity, exercise and

dietary interventions.

Cell type Obesity Exercise Dietary

intervention

Erythrocytes ↑ (158) ↓ (159) ↑ (160)

↓ (161)

Lymphocytes ↓ (162) ↑ (162, 163) ↑ (160)

Monocytes

(Osteoclasts)

↑ (164–166) ↓ (167) ↓ (167)

Eosinophils ↓ (168, 169) – ↑ (169)

Basophils ↑ (170) ↑ (171) –

Neutrophils ↑ (164, 165,

172)

↓ (173, 174) ↓ (174)

Thrombocytes ↑ (96) – ↓ (97)

Chondrocytes ↓ (175, 176) ↑ (177) ↑ (178)

Osteoblasts ↓(60) ↑ (162, 163) ↑ (179, 180)

Bone marrow

adipocytes

↑(60) ↓ (162, 163) ↓ (181, 182)

Hyperglycemia drives myelopoiesis and activation of
neutrophils in the BM of obese mice (164, 165). Moreover,
HFD-induced changes in bone architecture and immune cell
homeostasis showed bone loss and a shift of HSC differentiation
in myeloid over lymphoid progenitors (60, 162, 184). Further,
morbid obesity elevated neutrophils in circulation and primed
their immune function and metabolic activity, suggesting
a higher inflammatory response in obesity-related diseases
associated with impaired whole-body glucose metabolism
(172). Another study by Kraakman et al. demonstrated
that an obesogenic condition coupled with high glucose
levels promotes increased thrombopoiesis via interaction of
neutrophil-derived S100 calcium-binding proteins A8/A9
(S100A8/A9) and thrombopoietin in hepatocytes, which in
turn leads to megakaryocyte activation and thrombocyte
maturation in BM (96). Also, eosinophils with their anti-
inflammatory activity have been shown to be affected by
obesity, evidenced by decreased accumulation in AT and
enhanced trafficking from BM to lung during allergic
asthma (168, 185). Obesity-induced changes have been
attributed also to basophils, which participate in lung
inflammation and allergic reaction associated with metabolic
complications (170).

It has been shown that differentiation capacity of BMSCs is
changed by obesity in favor of increased adipocyte differentiation
and impaired osteoblast and chondrocyte differentiation, which
contributes to impairment of bone homeostasis and production
of secretory factors affecting the function of neighboring
cells in BM (60, 175, 176, 186). Liu et al. (54) recently
reported an impairment of BMSC mobilization and selective
migration of specific immune cells from BM into circulation
in obesity. Further, Ferraro et al. showed a negative effect of
diabetes on HSC mobilization capacity by changing the BM
microenvironment (92). Not only proportion of immune cells

in BM, but also secretion of inflammatory cytokines is modified
by obesity (see some examples in Table 2). For instance IL-
15 with its anti-obesity effect, TGF-β and IL-7 with their
immunosuppressive properties are decreased with obesity in
BM (66, 84, 86).

Previous studies in rodents under HFD condition
have demonstrated increased pro-inflammatory BM
microenvironment (e.g., TNFα, IL-6, and IL-1β) measured in
BM or bone lysates (89, 104, 187). Our recent publications have
reported that obesity does not induce increased inflammatory
responses in BMSCs and HSCs of HFDmice or obese individuals
compared to lean, which is accompanied with no change or
decrease in osteoclast resorption activity (60, 188). This finding
was also found in the study by Trotter et al., showing no
changes in the mRNA levels of inflammatory markers in BM
of HFD mice compared to lean (101). Further, obesity was
identified as a negative factor of bone homeostasis in relation
to osteoclast formation (104, 166, 189). Halade et al., using 12
months old female mice fed with 10% corn oil as a model of
age-associated obesity, showed that increased adiposity enhances
pro-inflammatory cytokine production (e.g., IL-1β, IL-6, and
TNFα) and was associated with a higher differentiation of
osteoclasts (104, 190). Another animal study using 5 weeks
old male mice found higher rates of osteoclast precursors, as
well as elevated osteoclast formation, bone resorption activity
and increased expression of RANKL, TNFα, and TRAP (166).
In addition, acute exposure to dietary fatty acids increased
osteoclastogenic activity in circulating monocytes and increased
secretion of cytokines (191). However, this study did not
investigate the osteoclast in BM and their resorption activity.
In our animal study using a HFD model (60% calories from
fat) in 12 weeks old C57BL/6 male mice, we did not observe
any significant changes in osteoclast activity or number (60).
In clinical study (188) examining obese subjects, we found
decreased bone resorption and bone formation activity,
suggesting a slowing of bone turnover. The discrepancies
between studies may be explained by using different animal
models, length/composition of the diet, or different source
of bone cells for measurement of inflammatory condition
in BM.

In terms of HSC secreted molecules (e.g., CXCL16, CTSK,
Del-1, LIF, or CTHRC1), which play an important role in bone
homeostasis and metabolism (Table 3), there is very limited
information about expression changes in the BM during obesity.
Thus, these observations suggest that further studies are needed
in order to investigate the inflammatory status of BM cells
and their microenvironment in obesity in relation to bone and
whole-body metabolism.

However, it raises further questions whether obesogenic
condition activates immune cells in BM or immune cells need to
migrate through the circulation into the target tissue, i.e., adipose
tissue (AT), skeletal muscle, liver to activate their inflammatory
status. This would suggest that BM is a primary site of immune
cell production and plays an important role in immune cell
mobilization into circulation, whereby these cells are directed to
traffic into the sites of inflammation.
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LIFE-STYLE INTERVENTIONS: DIETARY
AND PHYSICAL ACTIVITY
INTERVENTIONS IMPROVE
OBESITY-INDUCED CHANGES IN BONE
MARROW HOMEOSTASIS

In obesity and type 2 diabetes, several approaches have been
applied to treat or prevent the detrimental effects of metabolic
complications. These include physical activity, as well as dietary
or pharmacological treatment. As a lot of investigations have
been focused on the metabolic and inflammatory improvements
in peripheral tissues, there is limited information on these
parameters in relation to BM homeostasis (Tables 1–4).

Dietary supplementation with long-chain n-3 (ω-3) PUFAs,
supplied as fish oil (FO), which is known for its anti-
inflammatory effects, demonstrated to be beneficial for skeletal
health, as evidenced by increased osteogenesis and decreased
osteoclastogenesis (179, 180). A recent study by Cao et al. (192)
reported that 6 months of a FO diet increased bone density and
microstructure. However, they did not investigate bone adiposity
or inflammatory responses in BM in these conditions.

Exercise also showed a positive effect on bone homeostasis. In
rodents and humans, exercise has been shown to increase bone
density, decrease bone adiposity, and improve chondrogenesis
in HFD mice and humans (177, 193, 194). Further, increased
physical activity has been shown to promote HSC proliferation
and differentiation and modulate immune cell composition in
circulation (159, 171, 173, 195–197) (Table 3). An additional
effect of exercise on the bone is increased mechanical stress
for skeletal system induced by whole body vibration (WBV),
which has been shown to improve bone density by reducing
bone marrow adiposity in mice and humans and restoring
lymphopoiesis (increased number of B cells). WBV also showed
an effect on immune cells in circulation and induced lower
infiltration in AT (162, 163). A key strategy to prevent obesity
and its complications, including bone health, is a combination
of exercise and a well-balanced diet. A study by Garbiax et al.
using 11 months old male rats showed that exercise along with
a caloric restricted diet (low fat and low sucrose) decreased
bone resorption and osteoclast number in the obese state (167).
However, the inflammatory properties of immune cells in BM
also have not been investigated following these interventions.

The effects of caloric restriction on bone health is still

poorly understood. Generally, caloric restriction, accompanied
with weight loss, has a positive effect on systemic glucose
tolerance and inflammatory status of immune cells and their
count (neutrophils) (169, 174). A recent study by Collins et al.
(160) showed that dietary caloric restriction protects BM and
optimizes immunological responses of immune cells by enhanced
accumulation of memory T lymphocytes in BM, erythropoiesis
and bone marrow adiposity. However, caloric restriction or
starvation in growing mice leads to increased accumulation of
bone marrow fat even though peripheral adipose tissue (AT)
mass is decreased. Further, it causes decreased bone density and
increased bone resorption (161, 198, 199). Caloric restriction had
a similar effect in patients with anorexia nervosa (200). However,

in the obese condition, caloric restriction may have a positive
effect, as evidenced by reduced bone adiposity and improvement
of bone density and chondrogenesis. Although no results on
inflammatory components in BM have been measured in this
setting (178, 181, 182).

In the context of inflammatory cytokine production, a recent
publication showed that reduced intake of amino acids may
inhibit secretion of pro-inflammatory mediator IL-1β mediated
by myeloid precursors in BM (See also examples in Table 3)
(129). However, for most of the above-mentioned inflammatory
proteins (Table 3) (e.g., MCP1, TNFα, LIF, CTSK, CXCL16,
CTHRC1, Del-1, or TN-C), there is a lack of information in
the literature about the modulation of their secretory activity
in dietary interventions in BM, which indicates that this area
of research needs to be further investigated. Based on the
recent publications in relation to life-style interventions and
bone health, it suggests that further studies are needed to
dissect the role of inflammatory components in BM homeostasis
and how these may contribute to local BM and systemic
metabolic regulation.

CONCLUSIONS AND PERSPECTIVES

BM is an important immune organ, whereby immune and
progenitor cells with different functions interact with each other
and affect local and systemic immune conditions in response to
metabolic and inflammatory stressors, including obesity. Obesity
leads to a pro-inflammatory state, which influences metabolic
function in insulin-responsive tissues including bone and its
immune compartment, BM. Further, the obesogenic condition
induces BM hyperplasia defined by increased number of immune
cells (monocytes, neutrophils, thrombocytes etc.) migrating into
the circulation, which are usually primed in higher inflammatory
responses to activate inflammation in peripheral tissues.

How can we define an inflammation in BM? Is it a process
of bone resorption defined by activation and expansion of
osteoclasts in BM or a process accompanied by increased
secretion of inflammatory cytokines, which we know from
definition of inflammation in peripheral tissues? And how
is it affected in metabolic complications? Most studies have
reported changes on the level of osteoclast resorption activity,
but not much on secretory properties of immune cells in BM
niche. Another aspect of inflammatory status in BM is the
immunosuppressive properties of BMSCs, which also contribute
to immune regulation in BM microenvironment through cell to
cell interactions and secretory bioactive molecules to maintain
BM homeostasis.

Undoubtedly, metabolic stressors such as obesity interrupt
the existing balance among BMSC and HSC functions,
which further affect systemic whole-body immune regulation
in relation to metabolic status of organism. Many bone
cell-secreted molecules have been found to play an
important role in the regulation of AT development (e.g.,
RANKL, CTSK, and CTHRC1) (201–203) (Figure 2).
Therefore, studying their function in relation to bone and
fat metabolism is of interest. However, more studies are
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FIGURE 2 | Obesity-induced changes in bone marrow homeostasis. The effect of obesity on BM cellular composition and secretory profile of bioactive molecules

produced by hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs) in relation to systemic changes affecting whole-body metabolism

and inflammation (RANKL, Receptor activator of nuclear factor-κβ ligand; OPN, Osteopontin; CTSK, Cathepsin K; CTHRC1, Collagen triple helix repeat containing 1;

LCN2, lipocalin 2; TRAP, Tartrate-resistant acid phosphatase; OPG, Oteoprotegerin; TGF-ß, Transforming growth factor beta; IL-7, Interleukin 7; IL:15, Interleukin 15;

IL1-ß, Interleukin 1 beta; SDF-1, Stromal cell derived factor; TNFα, Tumor necrosis factor alpha; MCP1, Monocyte chemoattractant protein 1; TN-C, Tenascine C;

PPARγ, peroxisome proliferated-activated receptor gamma; C/EBP, CAAT enhancer binding protein; Gfi1, Zinc finger protein Gfi1; GATA3, GATA binding protein 2).

Cell animations were adapted from SERVIER Medical Art; https://smart.servier.com to create the figure.

needed to understand the role of inflammatory changes
and crosstalk between immune cells and BMSCs in BM in
response to obesity and how these changes can be modulated
with targeted therapies focused on treatment for bone and
metabolic complications.
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