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The pathophysiology of sepsis-induced myocardial dysfunction is not resolved

to date and comprises inflammation, barrier dysfunction and oxidative stress.

Disease-associated reduction of tissue cystathionine-γ-lyase (CSE) expression, an

endogenous H2S-producing enzyme, is associated with oxidative stress, barrier

dysfunction and organ injury. CSE-mediated cardio-protection has been suggested

to be related the upregulation of oxytocin receptor (OTR). CSE can also mediate

glucocorticoid receptor (GR) signaling, which is important for normal heart function.

A sepsis-related loss of cardiac CSE expression associated with impaired organ

function has been reported previously. The aim of this current post hoc study was to

investigate the role of cardiac GR and OTR after polymicrobial sepsis in a clinically

relevant, resuscitated, atherosclerotic porcine model. Anesthetized and instrumented

FBM (Familial Hypercholesterolemia Bretoncelles Meishan) pigs with high fat diet-induced

atherosclerosis underwent poly-microbial septic shock (n = 8) or sham procedure (n

= 5), and subsequently received intensive care therapy with fluid and noradrenaline

administration for 24 h. Cardiac protein expression and mRNA levels were analyzed.

Systemic troponin, a marker of cardiac injury, was significantly increased in septic animals

in contrast to sham, whereas OTR and GR expression in septic hearts were reduced,

along with a down-regulation of anti-inflammatory GR target genes and the antioxidant

transcription factor NRF2. These results suggest a potential interplay between GR, CSE,

and OTR in sepsis-mediated oxidative stress, inflammation and cardiac dysfunction.

Keywords: sepsis, heart, oxytocin receptor, glucocorticoid receptor, cystathionine-γ-lyase, oxidative stress,
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INTRODUCTION

Myocardial dysfunction is present in 20–70% of patients
with sepsis and often complicated by coronary artery disease
(CAD), which has a significant impact on mortality (1–4).
The pathophysiology of septic cardiomyopathy is not fully
understood and includes inflammation, barrier dysfunction and
oxidative stress (5). The lack of cystathionine-γ-lyase (CSE)
expression, an endogenous H2S producing enzyme, is associated
with oxidative stress and barrier dysfunction, as previously
reported in sepsis-induced acute kidney injury (6, 7).

CSE and endogenously produced H2S have cardioprotective
effects in heart failure (8). Septic cardiomyopathy is associated
with reduced cardiac and cardiovascular CSE expression in a
co-morbid pig model (9, 10). OTR expression in the heart
is directly affected by H2S (11, 12). Recently, the reperfusion
injury salvage kinase (RISK) pathway was suggested to regulate
CSE-mediated cardio-protection by increasing OTR expression
(13). Interestingly, H2S is also implicated in the hypothalamic
regulation of heart rate and blood pressure by stimulating
OT release during fluid shifts (14). Sepsis is characterized by
intravascular fluid shifts and vasodilation (15). Oxytocin receptor
(OTR) signaling, in turn, is also critical for heart function, has
vasodilatory effects and regulates blood pressure and body fluid
homeostasis (16). However, little is known about its role in sepsis.

Glucocorticoids have been implicated in the regulation of
oxytocin (OT) synthesis and secretion in response to altered fluid
volume and tonicity (17). Glucocorticoid receptor (GR) signaling
is important for normal heart function and development (18).
Moreover, we have recently demonstrated that impaired GR
dimerization aggravated hemodynamic instability and organ
dysfunction during LPS-induced circulatory shock (19). Results
for GR expression in peripheral blood cells in sepsis are
ambivalent (20, 21). While a GR down-regulation is associated
with organ dysfunction in the septic liver (22), there are no
reports of cardiac tissue expression during sepsis.

Finally, impaired cardiac H2S/OTR signaling is associated
with cardiac injury in a murine model of psychological trauma
(12) and in a murine acute on chronic injury model, and OTR
was restored by exogenous H2S administration (11). CSE is a
regulator of GC signaling (23) and critical for appropriate GC
production in the adrenal gland during sepsis (24). Therefore, the
aim of this post hoc study was to investigate the expression of GR
andOTR in order to elucidate their putative role in the heart after
sepsis in a clinically relevant, resuscitated, atherosclerotic large
animal model.

MATERIALS AND METHODS

The study was approved by the University of Ulm Animal
Care Committee and the Federal Authorities for Animal
Research. The experiments were performed in adherence
to the National Institute of Health Guidelines on the Use
of Laboratory Animals and the European Union “Directive
2010/63/EU on the protection of animals used for scientific
purposes” and authorized by the federal authorities for animal
research of the RegierungspräsidiumTübingen (approved animal

experimentation number: 1024), Baden-Württemberg, Germany,
and the Animal Care Committee of the University of Ulm,
Baden-Württemberg, Germany. This is a post hoc study
performed on available material from the vehicle-treated group
of a previous study (25) and sham-operated animals studied
simultaneously under the same protocol (7, 9). The underlying
atherosclerosis in the pig strain has previously been characterized
in the coronary vasculature by our group (9, 10).

Experimental Protocol and Measurements
Briefly, male castrated FBM (Familial Hypercholesterolemia
Bretoncelles Meishan) pigs [age 15–30 months, 69 kg (65–
73 kg)] with a high-fat diet-induced hypercholesterolemia and
atherosclerosis (26) underwent polymicrobial septic shock (n =

8) induced by inoculation of autologous feces into the abdominal
cavity, or sham procedure, i.e., abdominal saline injection (n =

5), and subsequently received intensive care therapy for 24 h.
Anesthesia and surgical instrumentation have been previously
described in detail (25). Notably, the septic and sham pigs had
the right jugular vein and left carotid artery exposed for the
insertion of a central venous catheter sheath and the placement
of a balloon-tipped pulmonary artery catheter to measure
central venous pressure (CVP), a thermistor-tipped arterial
catheter for blood pressure [mean arterial pressure (MAP)]
recording and transpulmonary single indicator thermodilution–
cardiac output measurement and placement of a left-ventricular
catheter for the assessment of left-ventricular function (9,
25). Animals were allowed to recover for 12 h before the
induction of sepsis. Mean arterial pressure was maintained at
baseline target values by the continuous infusion of Ringer’s
solution, hydroxyethyl starch infusion and administration of
noradrenaline based on need (25). Noradrenaline infusion
was not further increased, if the heart rate was higher than
170/min to avoid tachycardia-induced myocardial ischemia. The
physiological data obtained in this model were all published
previously (7, 9, 10) and are summarized in the Table S1. Sepsis
was confirmed by the presence of hyperlactatemia (>2 mmol/l)
and significant hypotension in spite of adequate fluid and
catecholamine resuscitation in the septic animals (see Table S1).
Furthermore, septic animals had left-ventricular dysfunction in
that the stroke volume and ejection fraction could only be
maintained by noradrenaline administration, concomitant with
disturbed diastolic relaxation, as evidenced by the unchanged
left-ventricular end-diastolic volume even though the pulmonary
artery occlusion pressure was even higher in sepsis [Table S1,
(9)]. Twenty-four hours after the induction of fecal peritonitis,
anesthesia was further deepened and animals were sacrificed with
potassium chloride (7). In addition to the previously published
assessment of cardiac function (9), in the current study plasma
troponin was determined as a marker of cardiac injury at baseline
and 24 h after sepsis.

Immunohistochemistry
Post-mortem, left-ventricular cardiac samples were fixed
in formalin, dehydrated, and embedded in paraffin blocks.
Immunohistochemistry was performed as described previously
(7, 9, 10). Paraffin sections (3–5µm) were cut, deparaffinized
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TABLE 1 | Primer sequences for mRNA analysis.

Gene Forward primer Reverse primer

Actin ctaggagcgggttgaggtg ctggtctcaagtcagtgtacaggt

GILZ atcagctgcacaatttcaaca tccagcttaacggaaaccac

ATF4 gggctgaagagagcttaggg acccatgaggtttgaagtgc

VEGFA atcttcaagccgtcctgtgt acactccagaccttcgtcgt

HIF1α aggaacctgatgctttaactttgt tgtgtcattgctgccaaaat

PPARG1a gtgaccactgagaatgaggcta ggctcttctgcctcctga

NRF2 ggtttcttcggctacatttca agcctggttaggagcaatga

CEBP tgtgtacagatgaatgataaactctgc gattgcatcaacttcgaaacc

PPARg catgctgtcatgggtgaaac cagacagcgtgtcgaagg

IL10 cacatgctccgggaactc ggtccttcgtttgaaagaaactc

Dusp cccgttgaggacaaccac tgaaatcgattgcctcattg

CSE tccaccacgttcaaacaaga ttccagaacggctgtactca

SphK1 cgcctcttctcgacctca ctgctctcacccgaccac

FKBP5 agacccgggactggtgac ccctggcaccctctaagc

ZFP36 tcaccagtttcactgccttg agggaggcaggagtatggaa

GILZ, glucocorticoid-induced leucine zipper; ATF4, activating transcription factor 4;

VEGFA, vascular endothelial growth factor A; HIF1α, hypoxia inducible factor 1α;

PPARG1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; NRF2,

nuclear factor erythroid 2-related factor 2; CEBP, CCAAT-enhancer-binding proteins;

PPARg, peroxisome proliferator-activated receptor gamma; IL10, interleukin 10; Dusp,

dual-specificity phosphatase; CSE, cystathionine-γ-lyase; SphK1, sphingosine kinase 1;

FKBP5, FK506 (tacrolimus) binding protein 5; ZFP36, zinc finger protein 36 homolog (or

tristetraprolin TTP).

in xylene, and rehydrated with a graded series of ethanol to
deionized water. After heat-induced antigen retrieval in citrate
pH 6, the slides were blocked with 10% normal goat serum
(Jackson ImmunoResearch) before incubating in primary
antibody [1◦ ab, anti-GR (D8H2, cell signaling), and anti-
PGC1α (Novus)]. Primary antibody detection was performed
by Dako REAL detection system (anti-mouse, anti-rabbit;
alkaline phosphatase conjugated) and visualized with red
chromogen (Dako REAL; Dako) followed by counterstaining
with hematoxylin (Sigma). The slides were visualized using
a Zeiss Axio Imager A1 microscope with a × 10 objective.
Quantification for intensity was performed on multiple 800,000-
µm2 sections using the AxioVision 4.8 software (Zeiss) (7). Data
are presented as densitometric sum red.

Quantitative Polymerase Chain Reaction
Left-ventricular cardiac samples were snap frozen in
liquid nitrogen immediately post mortem and stored at
−80◦C. RNA was extracted by homogenization with tissue
homogenisator (Precellys R©) and Trizol (invitrogen) following
the manufacturer’s instructions. RNA quality was checked using
the nanodrop (thermofisher). DNaseI treated RNA (1 µg)
was used to generate cDNA by oligo(dT) priming. qRT-PCR
was performed with the ViiATM 7 Realtime PCR System (Life
technologies) using a Platinum SYBR Green (Invitrogen) and
analyzed with the QuantStudio Realtime-PCR software using the
11Cτ method. β-Actin served as housekeeping gene. The pig
specific primers for the analyzed target genes were obtained from
Sigma with the sequences listed in Table 1.

FIGURE 1 | Systemic troponin levels. The x-axis indicates the timepoint of

measurement, whereas the y-axis displays plasma troponin levels in ng/gprotein.

The blue box (left box for each timepoint) represents sham (n = 5), the red box

(right box for each timepoint) represents sepsis (n = 8). **p<0.01; ***p<0.001.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism
Version 4. Data are presented as median (quartiles) or
single plotted values with median and interquartile range.
Troponin data were analyzed with a two-way ANOVA and
post hoc Tukey test for multiple comparisons. All other
inter-group differences were analyzed with the Mann–
Whitney rank sum test after exclusion of normal distribution
using the Kolmogorov–Smirnov test. Analysis of mRNA
data was performed after excluding outliers according to
Grubbs’ test.

RESULTS

At 24 h after sepsis induction, systemic troponin levels, as
a marker of myocardial injury, were increased 37-fold in
septic animals in contrast to sham (p = 0.009) (see Figure 1).
Immunohistochemistry revealed the presence of the OTR protein
and its expression in septic hearts was significantly reduced in
comparison to sham animals (p = 0.001) (see Figure 2). GR
protein was also expressed in the heart and reduced in sepsis
(p = 0.059) (see Figure 3). Cardiac mRNA expression levels of
GR target genes (Dusp, SphK1, IL10, GILZ, ZFP36), genes related
to H2S (ATF4, VEGF, NRF2, CSE) and genes related to both
H2S and GR (CEBP, PGC1a, PPARg, HIF1α) were quantified.
Dusp, SphK1, IL10, ATF4, VEGF, CEBP, PGC1a, and PPARg
were not significantly affected by sepsis (data not shown). Levels
of GILZ (p = 0.018), ZFP36 (p = 0.006), FKBP5 (p = 0.012)
and NRF2 (p = 0.009) mRNA were reduced, whereas CSE (p
= 0.012) and HIF1α (p = 0.020) were elevated in sepsis (see
Figure 4).

DISCUSSION

In this clinically relevant, co-morbid, resuscitated large animal
model of sepsis, we show (i) expression of OTR and GR
in the porcine heart, (ii) a sepsis-induced loss of cardiac
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FIGURE 2 | Myocardial oxytocin receptor (OTR) expression. (A) shows an example of immunohistochemical staining of OTR in a sham animal and (B) shows an

example of immunohistochemical staining of OTR in a septic animal. (C) displays the quantification of the immunohistochemical stainings as densitometric sum (red),

sham: n = 5, sepsis: n = 8. Boxes represent the interquartile ranges with the median indicated by a black line, whiskers represent minimum and maximum values.

**p<0.01.

FIGURE 3 | Myocardial glucocorticoid receptor (GR) expression. (A) shows examples of immunohistochemical staining of GR in a sham animal at 2.5X and a higher

magnification of an arteriole. (B) shows examples of immunohistochemical staining of GR in a septic animal in two different magnifications. The black boxes indicate

the location where the higher magnification picture was taken. (C) displays the quantification of the immunohistochemical stainings as densitometric sum (red), sham:

n = 5, sepsis: n = 8. Boxes represent the interquartile ranges with the median indicated by a black line, whiskers represent minimum and maximum values.

OTR and GR expression, coinciding with (iii) increased
systemic troponin levels as a marker of cardiac injury, (iv)

impaired GR signaling reflected in low levels of GR target
genes, (v) increased levels of CSE and HIF1α mRNA, and
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FIGURE 4 | Cardiac mRNA expression. The x-axis lists the analyzed genes, whereas the y-axis indicates % expression normalized to sham. GILZ,

glucocorticoid-induced leucine zipper, ZFP36: zinc finger protein 36 homolog (or tristetraprolin TTP), FKBP5: FK506 (tacrolimus) binding protein 5, CSE,

cystathionine-γ-lyase, NRF2, nuclear factor erythroid 2-related factor 2, HIF1α, hypoxia inducible factor 1α. sham: n = 4, sepsis: n = 8. *p<0.05; **p<0.01.

(vi) a lower level of NRF2 mRNA, suggesting an impaired
antioxidant defense.

Given the fact that OT/OTR and GC/GR are involved in the
regulation of fluid balance and vascular tone, the goal of this
study was to further investigate their role and regulation in the
heart of sepsis-induced hypotension. In an effort to increase the
translational impact of pre-clinical studies in sepsis research, we
chose to investigate atherosclerotic pigs (FBM) with a similar
biomarker profile to septic patients with CAD: significantly
higher cholesterol levels, increased oxidative stress and lower
blood levels of nitric oxide (NO) metabolites (7). As was reported
by Raper & Sibbald, patients suffering from coronary artery
disease (CAD) present with a lower cardiac output in response
to sepsis than otherwise healthy patients (1). In contrast to
young healthy pigs, the FBM pigs display a similar reduction
of cardiac output as patients with CAD in response to sepsis
(10). Moreover, during resuscitation from hemorrhagic shock,
this pig strain requires significantly higher noradrenaline doses to
achieve similar hemodynamic targets (27, 28). Aggravated septic
cardiomyopathy can be related to atherosclerosis, chronic kidney
disease and cardiac dysfunction, all of which are associated with
reduced tissue CSE expression [coronary artery (10), kidney (7),
heart (9)].

In the present study elevated troponin levels confirm cardiac
injury in the septic arm (Figure 1), supporting the findings
that increased CSE mRNA expression (Figure 4) is an up-
regulation in compensation for the loss of cardiac CSE protein
expression (9). In line with these results was the loss of OTR
in the septic hearts (Figure 2), since CSE-mediated cardio-
protection is suggested to work through the up-regulation of
OTR via the RISK pathway (13). In fact, in CSE knock-out
mice trauma led to a reduction of cardiac OTR expression and
the exogenous administration of H2S led to higher levels of
OTR compared to the vehicle group (11). Both OT and H2S

have been reported to be involved in NRF2 signaling, which
is an important antioxidant transcriptional regulator (29–31).
This is confirmed in the present study: low levels of NRF2
and OTR (Figures 2, 4) taken together with low levels of CSE
protein coincided with high nitrotyrosine, a marker of oxidative
and nitrosative stress (9). NRF2 converges with H2S/OT in
the RISK pathway, mediating cardio-protective effects through
endothelial NO synthase and the subsequent production of NO
(13, 29, 30). However, under conditions of oxidative stress, NO
can react with superoxide and generates peroxynitrite, resulting
in nitrotyrosine formation by the nitration of protein tyrosine
residues (9, 32). Thus, nitrotyrosine formation is a sign of
injury, reflective of reduced NO bioavailability and impaired
NO signaling (9, 32), as also reflected in the coronary arteries
of septic atherosclerotic pigs (10). Oxidative stress can induce
the transcription of HIF1α (33), which in turn can upregulate
the GR (34). The upregulation of HIF1α in the present study
(Figure 4) suggests that it is trying to compensate for the low
levels of GR protein expression (Figure 3). This is the first report
of sepsis-related organ dysfunction in relation to GR expression
in the heart. The GR reduction is in agreement with Jenniskens
et al., who reported sepsis-induced organ dysfunction related to a
down-regulation of GR in the liver (22). This is in contrast to the
ambivalent reports of GR expression in circulating cells (20, 21),
which may not necessarily represent the role of GR at the organ
level during sepsis (35). As reviewed by Cavaillon and Annane
(35), in sepsis, organ specific gene expression was determined
to share common patterns or show distinctly opposite profiles
between different organs (36), whereas circulating cytokines were
not reflective of tissue-specific local levels (37). These differences
in pathophysiological events between organs and systemic factors
during sepsis led to the concept of compartmentalization (35),
thus the focus in this study was on an organ-specific effect
of sepsis.
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Anti-inflammatory GR signaling is crucial for survival in
several animal models of sepsis (38–40) and related to the
suppression of TNFα-induced inflammation (39). Of the known
investigated (anti-inflammatory) GR dependent mediators, only
FKBP5, ZFP36, and GILZ were statistically significant in the
septic arm of the present study (Figure 4). FKBP5 expression
is known to be induced by GC-signaling (41), thus the reduced
levels (Figure 4) are a sign of reduced GR activity. The reduction
of ZFP36 (Figure 4) was associated with elevated levels of TNFα
(7), in support of data from the literature (42). The lower anti-
inflammatory GILZ expression as a consequence of low GR
activity in sepsis is also confirmed in the literature: low levels of
GILZ have been detected in septic patients (43, 44). Thus, the
dysregulation of ZFP36 and GILZ both confirm impaired GC
anti-inflammatory signaling in the septic arm.

Limitations
Decreased cardiac contractility in sepsis can be mediated by
reduced activity of L-type calcium channels (45). A lack of
GR is associated with low levels of L-type calcium channels
and related left-ventricular dysfunction (46) and L-type calcium
channels also play an important role in OT-induced muscular
contraction (13). Thus, L-type calcium channels would have
been a potentially interesting downstream target of GR and
OTR in the context of this study, which has not yet been
investigated. Another limitation of this study is the fact, that
septic animals received significantly more noradrenaline based
on the need tomaintain themean arterial pressure in comparison
to sham animals, thus it cannot be excluded that the observed
cardiac injury and protein dysregulation might be due to
noradrenaline administration rather than sepsis. Even though
OT can reportedly affect endogenous catecholamine release and
-responsiveness (47, 48), nothing is known about the effects of
exogenous high-level noradrenaline administration on OT/OTR
signaling in the heart. Glucocorticoid signaling can potentiate
noradrenaline signaling in various brain regions (49, 50), but
there are no reports in the literature about their relationship in
the heart.

CONCLUSION

In our septic co-morbid pig model, septic cardiomyopathy was
associated with reduced CSE, OTR, and GR expression and
signaling, oxidative stress, increased troponin levels and systemic

inflammation (7, 9). Taken together, these results suggest a
potential interplay between GR, CSE, and OTR in sepsis-
mediated cardiac dysfunction.
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