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Bisphenols, and in particular bisphenol A (BPA), have been widely used for the

production of plastic manufacts in the last 50 years. Currently, BPA is present in a

variety of daily use polycarbonate plastics and epoxy resins, and dietary ingestion

is considered the main route of human exposure. Accordingly, BPA is the chemical

pollutant with the widest exposure in humans, involving nearly 90% of general population,

according to recent studies. Concerns about BPA effects on human health date back

to 1930s, when severe impact on male sexual development was suggested. Now, the

acknowledged biological effects of BPA are various. In regard to human fertility, BPA

has been shown to disrupt hormone signaling even at low concentrations. Results from

human epidemiological studies have reported BPA interference with follicle stimulating

hormone, inhibin B, estradiol, testosterone levels, and sexual function in male subjects.

Moreover, recent studies have reported an association between BPA levels and reduced

sperm concentration, motility, normal morphology, sperm DNA damage, and altered

epigenetic pattern, resulting in trans-generational legacy of BPA effects. In this review,

the recognized effects of BPA on male reproductive health are described, from the most

recent issues on experimental models to epidemiological data. In addition, the very recent

interest about the use of nutraceutical remedies to counteract BPA effects are discussed.

Keywords: endocrine discruptors, semen parameters, endocrine axes, drug metabolism, exposure markers

INTRODUCTION

Bisphenols, and in particular the phenol compound 2,2 Bis (4-hydroxylphenyl)–propane,
universally known as Bisphenol-A (BPA), are widely used as additives for the production of plastic
materials, such as polycarbonate, phenol and epoxy resins, and polyesters and polyacrylates, as
well as an antioxidant in foodstuffs and cosmetics (1, 2). Specifically, nearly 75% of the industrial
production of BPA is intended for the manufacture of polycarbonate-based products, which find
wide application in food industry, such as in containers for food and beverages, in plastic dishes, in
kitchen utensils, in containers for microwave cooking, and until 2011, in bottles (3). Of note, BPA
is also used in epoxy resin films used as binary patina: the internal coatings in the cans for canned
food (4).

BPA is a solid at 25◦C with a melting temperature of 156◦C, insoluble in water but soluble
in alcohol, ethers, and fats. Accordingly, BPA can migrate for continuity in food and drinks by
direct contact with plastic container under certain conditions. Prolonged storage times, exposure
to high temperatures (e.g., >70◦C), and the presence of foods with a significant lipid component
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represent some of these conditions. Consequently, BPA enters
the food chain due to the massive use of plastics, as containers
or technological packaging, and as a function of increasing the
shelf life of foods (5). A recent report from the European Food
Safety Agency (EFSA) showed that the highest concentrations of
BPA were found in packaged products (on average 18.68 µg/kg)
compared to unpackaged foods (on average 1.50 µg/kg) (6).
To this regard, the most relevant concentrations of BPA (>30
µg/kg) were observed in packaged food, such as cereals, meat
and fish, ready-to-use foods, snacks, and sweets. As for other
bulk foods, the presence of the contaminant is most likely due to
the production processes. Among unpackaged foods, the highest
concentrations were found in fish, with average values of 9.40
µg/kg. These data strongly suggest a major role of massive plastic
pollution in waterways (7).

As a result, there is a significant risk of human exposure to
BPA through ingestion, skin contact, or inhalation (8, 9). Once
accessed into the body, nearly the 12% of BPA is metabolized
in the liver by glucuronidation, providing more water-solubility
and quicker excretion in urine, even if the concentrations in
plasma and urine are very low and difficult to detect (10, 11). In
addition, the conjugated form of BPA is equally accounted in the
pool of the active forms (12). For this reason, total urinary BPA,
including both conjugated and unconjugated BPA, is generally
used as a biomarker of exposure to BPA (13). Epidemiological
data from the United States have reported detectable levels
of BPA in urine samples from more than 90% of general
population, resulting a major problem of exposure to chemical
substance (14).

Concerns about BPA issues on the human health date back
to 1930s, when severe impact on male sexual development
had been suggested. From a mechanistic point of view, the
most relevant risks associated with the exposure to BPA are
mainly due to its action as an endocrine disruptor (ED), being
able to interfere with the balance of the hormonal system and
thus causing harmful effects on the whole body (15). Available
reports in late 1990s firstly documented a stimulating activity
of BPA on estrogen receptor α that differed, however, from the
classical pattern observed in weak estrogens, partial agonists,
and pure antagonists (16, 17). This evidence was confirmed
by subsequent investigations, reporting that BPA binds several
nuclear receptors, mimicking the action of endogenous steroids,
maintaining the target molecule in active conformations or
blocking the access of endogenous 17β-estradiol to receptor’s
binding site by competition (18–20). In addition, unconjugated
BPA showed a binding activity to other two receptors: the G
protein-coupled estrogen receptor 30 (GPR30), also known as
membrane estrogen receptor alpha (mERα) (21, 22) and the
orphan nuclear estrogen-related receptor gamma (ERR-gamma)
(23, 24). Finally, experimental animal studies demonstrated that
BPA binds also to the androgen receptor (AR), to the peroxisome
proliferator-activated receptor gamma (PPAR-gamma), and the
thyroid hormone receptor (19).

On these bases, the exposure to BPA is increasingly suspected
to exert major reproductive issues, such as the impairment
of semen production in men as well as alteration of the
hormonal cycle and oocyte maturation in women (25). This

narrative review will cover available evidence regarding the
male reproductive outcomes associated with the exposure to
BPA. In addition, possible remedies to counteract BPA effects
are discussed.

METHODS

PubMed, Scopus and Web of Science databases were used to
perform a literature search on the time interval 2000–2019.
The following terms were included: “bisphenol male fertility,”
“bisphenol testis,” “bisphenol reproductive outcome,” “bisphenol
semen parameters,” “bisphenol spermatozoa,” “bisphenol
nutraceuticals,” “bisphenol dietary supplements,” “bisphenol
antioxidant,” “bisphenol medicinal plants.” We included studies
on cell models, studies on murine models, and observational
studies in humans.

The overall 6,865 records were then screened for relevance
to the topics, for a total of 77 studies finally considered for the
review. Data from eligible studies were considered separately,
according to the different following topics: “data from animal
studies,” “data from human studies,” and “nutritional remedies
to BPA related disorders.”

Disrupting Effects of BPA on Male Fertility:
Data From Animal Studies
A wide amount of data from animal studies shows a clear effect
of BPA on male reproductive system, even at very low doses.
One of the first investigations on this topic relied of the fact that
BPA is massively used in sealant made of resin-based composite
materials for dental use, with the consequent oral ingestion of
BPA. Al-Hiyasat et al. were among the first to investigate the
reproductive outcome in male mice exposed to BPA by oral
ingestion, suggesting possible issues for infertility, genital tract
malformations and increased cancer rates in estrogen sensitive
target tissues (26). BPA doses >25 ng/kg were associated with
reduced sperm count, both at epididymal and ejaculated level,
and with significant reductions of the absolute weights of the
testes and seminal vesicles. These early results were confirmed by
more recent studies reporting decreased sperm count associated
with the exposure of BPA in rodent models, suggesting major
impairment of the spermatogenetic process. (27–33). In addition,
lower levels of exposure were equally associated with reduced
semen quality, particularly with regard to motility parameters
and markers of adequate cell-redox balance (27, 29, 31, 33, 34).
Furthermore, the exposure to BPA has been associated with the
alteration of other non-conventional markers of sperm quality
such as the index of DNA fragmentation, suggesting a possible
role as mutagen (29, 31, 34–42). Also, in a recent study from
Wisniewski et al. acrosomal integrity, an overall marker of the
fertilization potential, was significantly reduced by PBA exposure
in murine models (27).

As outlined by the aforementioned studies, BPA showed
major abilities to interfere with spermatogenesis and germ
cell maturation, a process largely regulated by the synthesis
of testosterone (T) from the Leydig cell population of the
testis under the direct control of pituitary luteinizing hormone
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(LH) (43). Several studies have been performed to disclose the
possible disruption of the hypothalamus/hypophysis/testis axis
(HHTA) associated with BPA exposure in animal models, with
the result of a fairly complex picture that invariably leads to
the impaired production of T (28, 44). In this regard, both
direct effects on Leydig cells and indirect effects on HHTA
were recognized. Among the direct effects, a study conducted
in the classical murine Leydig MA-10 cell model, Lan et al.
showed that BPA forces a detour of the normal steroidogenic
activity by stimulating, on one hand, the production of 17-
hydroxy-pregnenolone and T from cholesterol, but on the other
hand, the expression of CYP19A1, the aromatase activity that
converts T into 17-β estradiol, resulting in a overproduction
of this latter (45). Other studies suggested that BPA triggers
multi-level dysfunction in Leydig cells, altering either insulin
signaling and glucose transport or the mitochondrial activity,
with a resulting downstream redox imbalance and altered
steroidogenesis (46, 47). As anticipated, BPA was also suggested
to indirectly suppress the pituitary LH release through the
massive aromatase upregulation in the testes; the consequent
increase of serum estrogens would then exert a negative
hormonal feedback at central level (48). Importantly, because of
its high lipid solubility, BPA undergoes to trans-placental transfer
in animal models with a consequent detection in cord blood,
an evidence reported also in humans (49–52). Accordingly,
BPA exposure during the prenatal period was associated with
the impairment of both fetal development and the endocrine
function of the testis, with reduced Leydig cell proliferation
and fetal testosterone production (53–55). Additional data from
animal models suggests that the endocrine disruption associated
with BPA exposure in male fetuses negatively affects fertility
in adult life. To this regard, in a study by Salian et al.,
maternal exposure to BPA was associated with reduced sperm
count and motility in male offspring and, in turn, with post
implantation loss and decreased litter size (56). However, the
mechanisms by which BPA interferes with testis development
and function, whether in fetal or in adult life, seem to be wider
than the exclusive endocrine disruption of the HHTA. In fact,
exposure to BPA alters the glucose homeostasis in germ cells
through the decreased expression of GLUT-8 glucose transporter,
particularly in spermatocytes and spermatids (39). In addition,
an increased oxidative stress in the testis was claimed as the
responsible for the impaired seminal quality associated with
exposure to BPA (35, 57). For example, excessive production
of reactive oxygen species (ROS) and consequent mitochondrial
dysfunction induced by BPA, was associated with Sertoli cells
apoptosis (58). BPA was also suggested to directly interfere with
apoptotic signaling and to induce the morphological changes in
Sertoli cell mitochondria, the triggering of Pten/Akt signaling
pathway, or the activation of the JNKs/p38 MPAK pathway, with
the consequent nuclear translocation of NF-kB and Fas/FasL
system (59–61). Despite this severe interference with Sertoli
cell cycle, a morphological alteration of testicular histologic
architecture was not observed frequently, largely depending on
the protocol of administration. In fact, Aikawa et al. showed that
the experimental exposure of male mice to 50 µg BPA for 5 days
after birth caused a decrease in normal morphology and sperm

motility with no significant histologic changes of testes (62). Jiang
et al. observed ultrastructural lesions in Sertoli and Leydig cells
after the administration of 5 mg/kg/day of BPA to rats for 8
weeks (63).

Of note, very recent studies disclosed some transgenerational
effects associated with BPA exposure. Manikkam et al. showed
that the early exposure of female gestating rats to a cocktail of
plastic additives, including BPA, was associated with a significant
increase of the prevalence of diseases and abnormalities in F1 and
F3 generation males, particularly pubertal abnormalities, testis
disease and obesity (64). Likewise, similar effects were exerted by
replacement bisphenols, namely compounds structurally similar
to BPA used in “BPA-free” products (65). Subsequent studies
were able to detect major genetic abnormalities associated with
exposure to BPA. Firstly, BPS showed a mutagen effect on male
germ cells, resulting in blocked meiotic progression of germ
cells (31, 66). Furthermore, Shi et al. showed that both BPA and
replacement bisphenols are able tomodify the expression of DNA
methyltransferases and the pattern of histone methylation in the
neonatal and adult testes (67).

However, earlier studies by Hass et al. on this topic (68)
reported that male offspring from pregnant Wistar rats, gavaged
with bisphenol A from gestation day 7 to pup day 22,
showed a significant reduction of the sperm count only at
the lowest bisphenol A dose (25 µg/kg/day). Higher doses
had no effect on either sperm parameters or the weight and
histology of the reproductive organs. These results suggest a
likely transgenerational toxicity of bisphenols, with a possible
mechanistic involvement of epigenetics on the impairment of
male reproductive functions. However, a more complex scenario
should be hypothesized given the observed non-monotonic
dose–response relationship.

DISRUPTING EFFECTS OF BPA ON MALE
FERTILITY: DATA FROM HUMAN STUDIES

Despite the large availability of data in animal models, fewer
studies assessed the possible relationship between BPA exposure
and semen quality in humans. The first reports on this
topic dealt with occupational medicine; particularly, Li et al.
found a negative association between urinary BPA and sperm
concentration, total sperm count, viability, and motility in
215 factory workers, further distinguished into occupationally
exposed to high or low levels of BPA. However, in the subgroup
with lower creatinine-adjusted urinary BPA, the only significant
association was with reduced sperm concentration. Notably,
urinary BPA levels were not associated to altered morphology
in this study (69). As for data in animal models, other studies
investigated the possible association of BPA exposure with
alterations of sperm DNA. Meeker et al. explored the possible
correlation between urinary BPA concentration and sperm DNA
damage, evaluated by neutral comet assay, in a cohort of 190
subfertile male patients (70). Urinary BPA concentration was
associated with reduced sperm concentration, motility, and
morphology, whereas a positive association with sperm DNA
damage was observed. However, two independent studies on
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male partners from infertile couples attending infertility clinics
were not able to retrieve any significant association between
BPA urinary concentration and altered semen parameters.
Importantly, a relatively high variability of exposure markers was
observed, since the mean urinary BPA concentration in these two
studies were, respectively, 1.5 and 0.6 ng/mL (71, 72).

Another field of investigation pursued was the possible
correlation between exposure to BPA and alteration of the
endocrine pattern, but widely varying scenarios can be observed.
Hanaoka et al. conducted a study on 42 workers occupationally
exposed to BPA through the handling of epoxy resin spray
containing BPA (73). Interestingly, authors have found lower
serum levels of follicle-stimulating hormone (FSH) in exposed
workers compared to those non-exposed, although non-obvious
differences in plasma LH and free T levels were observed. Also,
Galloway et al. investigated the relationship between urinary BPA
and male reproductive hormones in a cohort of 715 healthy
adults aged 20–74 years from the general population (74).
Surprisingly, urinary BPA levels were positively and significantly
associated with serum T levels, but no associations with either
17-β estradiol, sex hormone-binding globulin (SHBG), or free T
were observed. On the other hand, Lassen et al., in a study on
308 healthy males from the general population, found increased
serum T, free T, LH, and estradiol in subjects pertaining to
higher urinary BPA concentrations quartile, compared with the
lowest quartile. Subjects in the highest urinary BPA quartile also
showed reduced progressive sperm motility compared with the
lowest quartile (75). Also, Mendiola et al. performed a similar
study on 375 fertile men recruited from prenatal clinics, finding
that urinary BPA concentrations were positively associated
with serum SHBG levels and inversely correlated with free
androgen index (FAI), calculated as total T × 100/SHBG and
the FAI/LH ratio. However, serum FSH, LH, total T, inhibin B,
and free T levels showed no obvious correlation with urinary
BPA concentration (72). In addition, Meeker et al. found a
negative association between urinary BPA levels and both serum
inhibin B levels and 17-β estradiol/T ratio in male partners of
subfertile couples attending a fertility clinic; however, BPA was
positively associated with both FSH and FSH/inhibin B ratio
(76).

Finally, few studies aimed to assess the possible impact of BPA
exposure on the overall fertility potential in males through the
overall evaluation of the relationship between BPA levels and
the reproductive outcome in the setting of assisted reproduction
facilities. In a study enrolling 215 infertile couples undergoing
assisted reproduction techniques, with roughly equal distribution
between in vitro fertilization and intrauterine insemination,
Dodge et al. (77) investigated the possible correlation between
urinary concentrations of parabens and BPA with the live-
birth rate. Authors found minimal association between paternal
urinary propyl paraben levels and reduced live-birth rate in a
correlation model corrected by possible confounders. However,
no significant association emerged between paternal urinary BPA
and reproductive outcomes after fertility treatments (77). On the
other hand, Buck-Louis et al. in the Longitudinal Investigation
of Fertility and the Environment (LIFE) Study, a multicenter
investigation involving 501 infertile couples from 16 targeted
counties in the middle-east of the United States (78), evaluated

the possible relationship between time to pregnancy (TTP) and
urine levels of more than 15 environmental pollutants, including
BPA, in both males and females. Urinary BPA concentration in
either males or females was not associated with increased TTP,
which was instead correlated with male urinary concentration of
monomethyl, mono-n-butyl, and monobenzyl phthalates.

Overall, available data are supportive of detrimental role
of BPA on semen parameters, but this is not accompanied
by clear data on sex hormones and on fertility outcomes.
As suggested by other authors (79), within the limits of the
availability of data in humans, a possible reconciling explanation
could rely on a greater direct toxicity of BPA on germ line
cells, rather than in an albeit important endocrine disruption
of the HHTA. This hypothesis is somewhat supported by very
few studies reporting the interference of BPA on germ cell
development in human fetal testis and on mitochondrial
activity and energy metabolism in ejaculated human
sperms (57, 80, 81).

NUTRACEUTICAL APPROACHES TO
OVERCOME BPA EFFECTS

Given the large availability of evidence reporting detrimental
effects of BPA on testis function, especially in animal models, this
chemical has progressively gained a role as a reference substance,
able to induce endocrine disruption in several experimental
models, from laboratory animals to in vitro cell cultures (82).
On this basis, some recent studies have focused on possible
approaches to treat or prevent BPA-induced derangements and
testicular toxicity. Since the direct toxicodynamics of PBA on
both Leydig and germ cells of the testis were largely related
to the impairment of cell redox system, most of the treatment
approaches relied on the use of natural sources of antioxidants.

Based on the fact that the expression of the enzymes
glutathione peroxidase and glutathione reductase are regulated
by melatonin, a study from Anjum et al. aimed to disclose the
possible effect of melatonin on mitochondrial lipid peroxidation
observed in mouse testis after BPA exposure (41). Interestingly,
the treatment with melatonin reduced mitochondrial lipid
peroxidation, restored the overall mitochondrial enzyme
machinery and improved the mitochondrial antioxidant pool
compromised by BPA. However, major limitations of the study
were represented by the high dosage of melatonin administered
intraperitoneally. In 2012, El-Beshbishy et al. demonstrated
some mitigation of the mitochondrial toxicity exerted by BPA
exposure in rats, by the co-administration of lipoic acid (44).
Also, Khalaf et al. (83) recently reported a protective effect of
selenium (Se) against BPA-induced testis impairment in albino
male rats. In particular, co-administration of Se attenuated
the reproductive issues induced by BPA toxicity through the
restoration of testicular antioxidant activity and the amelioration
of sperm genetic abnormalities observed in BPA exposed animals
(83). Similar results were obtained by Kaur et al. who reported
decreased lipid peroxidation in mouse testis associated with the
co-administration of Se and BPA, compared with sole exposure
to BPA (84).
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TABLE 1 | Summary of the references supporting the possible effects of bisphenols on male reproductive health.

Animal Model Human Model

Outcome In vitro In vivo In vitro In vivo

Testis Histology (62) ↔

(63) ↓

Effect on sperm count (26) ↓

(29) ↓

(28) ↓

(61) ↓ (↓Sertoli cell function)

(32) ↓

(33) ↓

(30) ↓

(31) ↓

(59) ↓ (↓Sertoli cell function)

(60) ↓ (↓Sertoli cell function)

(27) ↓

(71) ↔

(69) ↓↔

(95) ↓

(72) ↔

Effect on sperm

motility/mitochondrial function

(39) ↓ (↓ Germ/Sertoli cells metabolism)

(29) ↓

(34) ↓

(33) ↓

(31) ↓

(27) ↓

(57) ↓

(35) ↓

(80) ↓

(81) ↓

(71) ↔

(75) ↓

(95) ↓

(72) ↔

Sperm DNA Fragmentation (41) ↑

(35) ↑

(39) ↑

(29) ↑

(42) ↑

(40) ↑

(36) ↑

(34) ↑

(37) ↑

(31) ↑

(38) ↑

(70) ↑

Testosterone Production (46) ↓ (↓ redox balance)

(47) ↓ (↓ redox balance)

(45) ↓ (↑ CYP19)

(53) ↓ (↓Fetal testis development)

(44) ↓

(28) ↓

(55) ↓ (↓Fetal testis development)

(54) ↓ (↓Fetal testis development)

(48) ↓ (↓ LH by estrogens)

(74) ↑

(73) ↔

(75) ↑

(76) ↓

(72) ↓↔

Fertility Outcome (78) ↔

(77) ↔

Fertility in Offspring (66) ↓

(68) ↓↔

(64) ↓

(56) ↓ (↓ Fetal testis development)

(67) ↓

(31) ↓

For each outcome considered, the respective references are listed according to the model used, animal or human, the in vitro or in vivo evidence and the observed effect (↓, decrease;

↑, increase; ↔↓, mild decrease or no effect). When available, mechanistic details are provided.

Another key vitamin supplementation, namely vitamin D,
showed a partial restore of testicular fibrosis in a complex
rat model of diabetes, obtained by streptozotocin treatment,
associated with BPA-induced hypogonadism (85). Interestingly,
this effect appeared as the result of a direct downregulation of
nuclear factor kappa B exerted by vitamin D, rather than the
indirect involvement of the central pituitary/testis axis.

Of note, the composition of the antioxidant mixture
seems to have major relevance on the efficacy of the
treatment. In fact, the classical vitamin C administration
failed to produce any amelioration on the testicular oxidative

damage induced by BPA in rats, or even exerted worsening
effects (86). On the contrary, Rahman et al. (87), in an
in vitro experimental model on isolated mouse spermatozoa,
showed that the combination of glutatione, vitamin C, and
vitamin E effectively prevented the oxidative stress and
the respective downstream tyrosine phosphorylation-signaling
pathway, avoiding the premature acrosome reaction and possibly
improving the fertilization capacity of sperm cells exposed to
BPA. (87).

Interestingly, a wide variety of phytochemicals and plant
extracts showed ameliorating effects of testis function in rodent
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models exposed to BPA (88). Cordyceps militaris, a medical
fungus largely employed in Chinese traditional medicine,
restored the histological architecture of seminiferous tubules
and epididymis in male rats exposed to BPA, with a significant
recovery of the sperm count, through the likely reduction
of the oxidative stress damage (89). Also, lycopene showed
a detoxifying activity toward testicular damages associated
with BPA exposure, as evidenced by the protection from
the loss of germ cell population, the reduction of testis and
epididymis weight, as well as the impairment of sperm motility,
exerted by the treatment of male rats with the sole BPA (90).
Furthermore, co-administration of quercetin, an antioxidant
phytochemical member of the polyphenolic flavonoid family,
amended the toxic effects on testis and epididymis exerted by
BPA (91).

Our group recently showed that the metabolic/mitochondrial
disruption, induced by the in vitro exposure of human
spermatozoa to BPA, was effectively compensated by low dose
treatment with aqueous extract from leaves of Eruca sativa,
a plant of the Brassicaceae family widely represented in the
Mediterranean region. Importantly, the characterization of the
extract showed to be extremely rich in natural antioxidants,
such as polyphenols and flavonoids. The treatment with
high concentration of the aqueous extract was unexpectedly
associated with severe disruption of both mitochondrial and
cell membrane redox balance, resulting in a significant loss
of sperm motility (81). Importantly, these preliminary results
have been confirmed by a subsequent study performed on
Wistar rats (92). Consistent with in vitro data, the overall
hormonal and semen disruption associated with BPA exposure
was significantly ameliorated by the low-dose administration of
Eruca sativa aqueous extract, while it was worsened by high
dose treatment.

Despite these encouraging results, exogenous antioxidants
may exert a double-edged effect. In particular, the SELECT
study found that the supplementation of vitamin E significantly
increased the risk of prostate cancer among healthy men (93).
Furthermore, more recently, it has been shown that vitamin E
can act as pro-oxidant agent promoting DNA damage and cell
transformation (94). Thus, the use of antioxidants-based dietary
supplements for the prevention of disease states in general, and
in particular for the compensation from altered states associated
with exposure to environmental factors, should be considered
with caution.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Bisphenol A represents one of the most controversial chemical
pollutants, with the typical features of an endocrine disruptor.
Early toxicological evidence on BPA date back to nearly 30
years ago, when major interference with estrogen signaling
pathway was claimed. Since that time, a wide range of cell
mechanisms of both endocrine and metabolic disruption have
been claimed by the use of experimental models. In particular,

major impairment of the male hypothalamus/hypophysis/testis
axis has been recognized as associated with the exposure to BPA
during both the fetal and the adult life, resulting in altered testis
development, impaired endocrine function and infertility. In this
regard, direct disruption of sperm characteristics, such as reduced
motility performances and development genetic abnormalities
have been identified. On the other hand, data obtained in humans
are actually limited and poorly conclusive to identify a strict
causal role of BPA in reduced male fertility potential. A summary
of references supporting each singular effects of bisphenols on
male reproductive health is reported in Table 1.

Methodological differences and different study populations
are factors that can explain some discrepancies. Moreover,
available clinical outcomes, such as semen parameters and time
to pregnancy, are likely susceptible of variation related to many
different confounding factors. It should be noted that, as for most
of chemical pollutants, the identification of a reliable marker of
exposure remains a major issue. Specifically, for BPA, urinary
concentrations are surely reliable data from an analytical point of
view, but may not be representative of the real exposure to BPA
due to its short half-life. To this regard, Vitku et al. reported that
BPA levels in blood plasma were positively correlated with BPA
levels in semen, but only seminal BPA was negatively associated
with seminal quality (96). Finally, the cross-sectional design of
the available studies surely provides proof of association, but
limited evidence of causality.

One of the main problems associated with exposure to
endocrine disruptors in general, and to BPA in particular, is
represented by the potential activity at low concentrations.
This represents a critical issue during the development phases,
such as embryo/fetal life and newborn or peri-pubertal age,
since the effects in these time windows may be irreversible
and are generally detected only at adulthood (15). Accordingly,
populations at higher risk includes pregnant women, infants, and
adolescents. On these bases, the current European law restricted
the use of BPA in the production of packaging and materials
in direct contact with food by limiting migration rate to 0.05
mg/kg of food and prescribing the total absence in products
for newborns, from food to food containers and clothes (6). In
addition, based on new toxicological data and methodologies,
the European Authorities adjusted the tolerable daily intake from
50 to 4 µg/kg body weight/day with an overall lowering rate of
12 times, highlighting the increasing level of attention for these
health concerns.

In conclusion, reproductive issues associated with bisphenol
A exposure still remains an intense field of investigation,
particularly dealing with health consequence reported in males.
Current challenges for the future are represented by the
identification of efficient markers of exposure in order to address
the extent of health consequences in different age ranges.
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