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Although results of animal research show that interactions between stress and sex

hormones are implicated in the development of affective disorders in women, translation

of these findings to patients has been scarce. As a basic step toward advancing this field

of research, we analyzed findings of studies which reported circulating cortisol levels

in healthy women in the follicular vs. luteal phase of the menstrual cycle. We deemed

this analysis critical not only to advance our understanding of basic physiology, but

also as an important contrast to the findings of future studies evaluating stress and

sex hormones in women with affective disorders. We hypothesized that cortisol levels

would be lower in the follicular phase based on the proposition that changes in levels

of potent GABAergic neurosteroids, including allopregnanolone, during the menstrual

cycle dynamically change in the opposite direction relative to cortisol levels. Implementing

strict inclusion criteria, we compiled results of high-quality studies involving 778 study

participants to derive a standardized mean difference between circulating cortisol levels

in the follicular vs. luteal phase of the menstrual cycle. In line with our hypothesis, our

meta-analysis found that women in the follicular phase had higher cortisol levels than

women in the luteal phase, with an overall Hedges’ g of 0.13 (p < 0.01) for the random

effects model. No significant between-study difference was detected, with the level of

heterogeneity in the small range. Furthermore, there was no evidence of publication bias.

As cortisol regulation is a delicate process, we review some of the basic mechanisms by

which progesterone, its potent metabolites, and estradiol regulate cortisol output and

circulation to contribute to the net effect of higher cortisol in the follicular phase.

Keywords: cortisol, hypothalamic-pituitary-gonadal (HPG) axis, hypothalamic-pituitary-adrenal (HPA) axis,

menstrual cycle, follicular, luteal

INTRODUCTION

Women exhibit high prevalence of stress-related disorders, such as major depressive disorder
(MDD) and anxiety spectrum disorder (1–9). Importantly, the increase in prevalence of
these disorders is observed during periods of drastic hormonal changes, such as puberty, the
pre-menstrual period, pregnancy, postpartum andmenopause (10–12). These observations suggest
that interactions between sex hormones, regulated by the hypothalamic-pituitary-gonadal (HPG)
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axis, and cortisol, a stress hormone under the control
of the hypothalamic-pituitary-adrenal (HPA) axis, may be
critical determinants of stress-related disorder development
and progression.

Research evaluating stress effects in MDD and anxiety
disorders demonstrates a blunted cortisol response to
psychosocial stress in female patients compared to their
respective controls [for a meta-analysis, see (13)]. However,
although these research studies provide valuable information,
they only examine function of the HPA axis, without evaluating
how sex hormones influence it.

The number of studies evaluating interactions between the
provoked HPA and the HPG axes is limited in both diseased
as well as healthy participants. Results of studies comparing
reactivity to psychosocial stress in healthy women suggest that
cortisol output is higher in the luteal vs. follicular phase of the
menstrual cycle (14, 15). However, their small sample size and
opposite findings from other studies (16–19) indicate that more
research needs to be completed before a conclusion can be drawn.
Additional studies, implementing strict verification of menstrual
cycle phase, stress manipulation and participants’ healthy status,
are needed.

An even more fundamental question, though, is related to the
physiological relationship between the HPA and HPG axes under
unprovoked, tonic conditions. However, results from human
laboratory and observational studies in healthy volunteers
evaluating basal cortisol levels across the menstrual cycle range
broadly. Thus, we focused on the function of the HPA axis with
the hypothesis that there would be a higher physiological output
of cortisol during the follicular compared to the luteal phase of
the menstrual cycle. Our hypothesis was based on the finding
that the progesterone metabolite allopregnanolone positively
modulates gamma-aminobutyric acid (GABA)A receptors via
an allosteric binding site to potentiate inhibitory signaling
(20) and enhance the negative feedback on the HPA axis (21,
22). Therefore, during the luteal phase, when allopregnanolone
levels are high, cortisol levels would be expected to decrease
relative to the follicular phase, when allopregnanolone levels
are low.

Tonic levels of cortisol across the menstrual cycle have
been reported as higher for example, (23, 24) or unchanged
(25, 26) in the follicular vs. luteal phase. These discrepancies
are rooted in marked methodological differences across
studies. Hence, our analysis only included high-quality
research studies implementing strict criteria and phase
identification. Based on mechanistic considerations of basic
research studies (reviewed in the Discussion section) that
have reported the effects of neuroactive steroids on the
HPA axis function, we predicted a surge in cortisol during
the early/mid-follicular phase. Our meta-analysis, indeed,
shows that circulating cortisol levels change dynamically as
a function of menstrual cycle phase, suggesting cortisol is
specifically required during the early/mid follicular phase
to mediate adaptive physiological processes in response to
environmental stimuli, when both estradiol and progesterone
are low.

METHODS

Search Strategy
We conducted a literature search in PubMed, Web of Knowledge
and PsychInfo, and included eligible studies published through
December 5th, 2019. Two authors (AH and KK) completed
their search independently according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (27). Any discrepancies were reconciled by reviewing
the literature jointly for specific points of difference. We used
the following search string: [(“Cortisol”) AND (“Menstrual” OR
“Luteal” OR “Follicular”) for (DOCUMENT TYPE: (Article);
LANGUAGE: English; SUBJECTS: Human)]. We compiled the
results in EndNote X8.

Inclusion/Exclusion Criteria
This meta-analysis evaluated tonic peripheral cortisol levels of
healthy menstruating female study participants across follicular
vs. luteal phases of the menstrual cycle. Studies were considered
eligible if a baseline value was provided prior to a laboratory
intervention (for example, psychosocial stress procedure or
exercise), if samples were collected longitudinally in a naturalistic
(or a laboratory) setting across the menstrual cycle, if an
experimental design evaluating a disease state included a healthy
control or if an intervention included a placebo control. The
exclusionary criteria implementation was carried out in a two-
step approach.

In the first step, study abstracts (N = 2,225) were excluded if
they were: (1) abstracts, review papers or case studies, (2) animal
studies, or evaluation of cell lines, (3) male-only evaluations, (4)
abstracts which only mentioned one menstrual phase (luteal or
follicular) as a means of controlling for menstrual cycle phase
(i.e., not as a comparison of the two phases), (5) studies evaluating
a diseased population (including smokers or other substance
use disorder population) or implementing a menstrual phase-
specific intervention (without a placebo control). This category
also included abstracts describing pregnant as well as women in
the peri- or post-menstrual phases, as well as women who were
on oral contraceptives. Finally, abstracts describing athletes or
women who experienced early life trauma were also coded in
this category. The remaining abstracts were excluded if they: (6)
did not mention cortisol (blood, salivary or urinary), (7) were
overlapping study participants with an already published study,
and (8) if they described a procedure (such as IV fertilization, for
example) which could cause changes in circulating cortisol due
to anticipation.

In the second round of exclusion criteria implementation,
we evaluated full articles. We excluded papers which did not
evaluate groups according to menstrual cycle phases, measure
cortisol, have a healthy, non-athletic control group, or report
mean and/or variance and were published more than 25 years
ago. Furthermore, we excluded papers which re-administered
stress (as this can distort baseline cortisol levels), performed non-
linear cortisol modeling, were non-original, written in languages
other than English, or had overlapping participants. Given the
rapid decline of cortisol in the morning, studies which collected

Frontiers in Endocrinology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 311

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Hamidovic et al. Cortisol Across the Menstrual Cycle

cortisol during morning times that varied ≥2 h or did not
mention what time of the day cortisol sample collection -took
place were excluded, as well as studies which determined cycle
phase using self-report.

Data Extraction
Information on the following variables was collected: (1) age,
(2) BMI, (3) day of follicular and luteal phase of cortisol
collection, (4) phase estimation method, (5) time of day of
cortisol collection, and (6) physiological source of cortisol level.
Regarding the length of phase variable, whereas some studies
reported a range of days, others reported multiple, exact days of
the cycle on which cortisol was reported. In the event that a study

reported cortisol values across multiple days of the menstrual
cycle, data from the day closest to the beginning of the cycle
(day 1) for follicular phase, and day 21 of the luteal phase
were extracted to reflect the greatest contrast of estradiol and
progesterone levels across the cycle. In the event that cortisol was
reported on multiple “sub-phases” (for example, early-follicular,
mid-follicular), again, data from the day closest to the beginning
of the cycle (day 1) for follicular phase, and day 21 of the luteal
phase were extracted. If cortisol was collected across multiple
menstrual cycles (for example, two menstrual cycles), values
from the last cycle were reported. In the event that studies
reported cortisol values at multiple times of the day (for example,
morning and evening), or multiple sources (for example, salivary

FIGURE 1 | PRISMA flow diagram.
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and plasma), the most frequently reported time (morning) and
source (blood) in the remaining studies were used to extract
cortisol values.

Data Analysis
Analyses of were carried out by first calculating the Cohen’s d
effect size (28). In the event mean and variance values were
provided for sub-groups of women in follicular and luteal phases,
those were combined using the following formulas:

M =
N1M1 + N2M2

N1 + N2

SD =
√

(N1 − 1) SD 2
1 +(N2−1) SD 2

2 +
N1N2

N1+ N2
(M 2

1 +M 2
2 − 2M1M2)

N1 + N2 − 1

where, N1 = sample size group 1, N2 = sample size group 2, M1

=mean group 1, M2 =mean group 2, SD1 = standard deviation
group 1, SD2 = standard deviation group 2.

We divided the mean difference between the two groups by
the pooled standard deviation. Next, we used the J-correction
factor to obtain the Hedges’ g effect size, which corrects for small
samples (29) and is considered small, medium, and large for
values 0.2, 0.5, and 0.8, respectively.Within- and between-subject
study designs were combined as described in Morris et al. (30).
We used a random effects model to calculate the pooled effect
size with an associated 95% CI and a p-value (31). We assessed
source-study heterogeneity using the χ

2-based Q test with its
associated p-value. A statistically significant Q statistic suggests
different effect sizes across studies, implying that methodological
or population sample differences may be introducing variance
across individual studies. We quantified heterogeneity using I2

with values 25, 50, and 75% suggestive of small, medium and large
heterogeneity and calculated potential publication bias using
the Classical Tests (32). We completed sub-analyses according
to source (saliva vs. plasma) and time of day (morning vs.
afternoon). The meta-analysis was performed using the “escalc”
function, and publication bias was assessed using the “ranktest”
function in “metafor” package (33) in R.

RESULTS

Characteristics of Individual Studies
After removal of duplicate studies, literature search identified
2, 226 individual abstracts as shown in the PRISMA figure
(Figure 1). Those abstracts were screened for relevance and
coded for exclusion reasons. The greatest number of abstracts
excluded was based on absence of menstrual cycle groups,
followed by cell line/animal research studies. A total of 256 full-
text articles were reviewed for relevance, of which 221 were
excluded. Of the 221 studies, 44 were excluded based on the
self-report nature of menstrual cycle phase determination, and
40 were excluded because they either didn’t mention cortisol
collection time, or the morning sample was collected at times

TABLE 1 | Participant information from individual studies.

References Sample size (N)* Age [mean

(SD)]

BMI [mean

(SD)]

Follicular

Phase

Luteal

Phase

Andreano et al.

(34)

20 24 ___ ___

Barbarino et al.

(35)

5 6 ___ ___

Beck et al. (36) 20 ___ ___

Hoeger Bement

et al. (37)

20 20.9 (1.0) 23.0

Bricout et al. (38) 11 25.5 (7.6) 19.9

Cannon et al. (39) 7 8 ___ ___

Carr et al. (40) 4 ___ ___

Caufriez et al. (41) 10 30.0 21.8 (0.9)

Childs et al. (42) 29 23 21.9 (0.8) 22.3 (0.3)

Collins et al. (43) 15 29.5 ___

Espin et al. (14) 30 30 19.3 (1.7) 21.7 (4.1)

Genazzani et al.

(44)

5 ___ ___

Heitkemper et al.

(45)

25 33.1 (5.3) 23.6 (4.9)

Huang et al. (46) 18 18 22.0 (2.4) 20.0 (2.8)

Inoue et al. (26) 9 23.7 (5.6) ___

Judd et al. (47) 6 6 ___ ___

Kasa-Vubu et al.

(48)

10 14 29.4 (8.5) 24.0 (4.3)

Kerdelhué et al.

(23)

11 ___ ___

Kirschbaum et al.

(17)

19 21 23.4 (3.3) 21.7 (2.4)

LeRoux et al. (49) 9 9 21.8 (2.3) 22.5 (2.4)

Liu et al. (50) 6 ___ ___

Lombardi et al.

(51)

20 26.2 ___

Maki et al. (52) 20 20 27.0 (5.6) 25.0 (5.0)

Ohara et al. (53) 7 22.3 (1.0) 20.5 (2.1)

Paoletti et al. (54) 14 31.5 (2.7) 24.2 (2.0)

Parry et al. (55) 30 37.2 (5.8) ___

Rasgon et al. (56) 5 27.0 (4.0) ___

Reynolds et al. (57) 61 21.7 (3.4) ___

Roche and King

(58)

23 23 24.2 (3.9) 23.6 (3.8)

Stewart et al. (59) 4 24.6 (4.5) 24.7 (2.1)

Su et al. (60) 10 30.8 (4.9) ___

Timon et al. (25) 20 ___ 21.3 (2.1)

Tulenheimo et al.

(61)

14 ___ ___

Villada et al. (62) 13 17 19.0 (1.5) 21.3 (4.0)

Wolfram et al. (63) 29 26.3 (3.9) 22.1 (2.9)

*Only one sample size (for follicular and luteal phases) is listed for within subject design

studies. The total sample size is 778.
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TABLE 2 | Menstrual cycle and outcome measure information from individual studies.

References Menstrual cycle Cortisol

Follicular phase Luteal phase Phase estimation Time Source

Andreano et al. (34) 1–7 18–24 Estradiol and progesterone Afternoon Saliva

Barbarino et al. (35) 4–8 20–24 Estradiol and progesterone Morning Plasma

Beck et al. (36) 10 24 LH surge Morning Plasma

Hoeger Bement et al. (37) “Mid-follicular” “Mid-luteal” LH surge Afternoon Saliva

Bricout et al. (38) “Mid-follicular” “Mid-luteal” Estradiol and progesterone 24-h Urine

Cannon et al. (39) 1–14 15–28 Progesterone 24-h Urine

Carr et al. (40) 1 21 LH surge Morning Plasma

Caufriez et al. (41) 3–8 23–28 Basal body temperature 24-h Urine

Childs et al. (42) 3–10 16–24 LH ovulation test Morning Plasma

Collins et al. (43) 5–7 22–25 Basal body temperature Morning Plasma

Espin et al. (14) 5–8 20–24 Basal body temperature Afternoon Saliva

Genazzani et al. (44) 1 21 LH surge Morning Plasma

Heitkemper et al. (45) 1 22 LH ovulation test Morning Urine

Huang et al. (46) 1–4 24–28 Estradiol and progesterone Afternoon Saliva

Inoue et al. (26) 1–14 21–28 Estradiol and progesterone Morning Plasma

Judd et al. (47) 3–5 20–24 LH ovulation test 10-h Serum

Kasa-Vubu et al. (48) 1–14 15–28 LH and progesterone 24-h Plasma

Kerdelhué et al. (23) 1 21 LH surge Morning Serum

Kirschbaum et al. (17) 4–7 21–25 Estradiol and progesterone Afternoon Plasma

LeRoux et al. (49) 8–10 20–22 Estradiol and progesterone Morning Saliva

Liu et al. (50) 1–5 20–22 Pelvic Ultrasound Morning Plasma

Lombardi et al. (51) 5–7 22–26 LH surge and progesterone Morning Serum

Maki et al. (52) 2–4 22–24 LH ovulation test Afternoon Saliva

Ohara et al. (53) 1–14 15–28 LH ovulation test Morning Saliva

Paoletti et al. (54) 5–8 21–24 Basal body temperature Morning Serum

Parry et al. (55) 6–8 26–28 LH ovulation test Morning Plasma

Rasgon et al. (56) 2–9 7–14 LH ovulation test Morning Plasma

Reynolds et al. (57) 7–10 20–23 LH ovulation test Afternoon Saliva

Roche and King (58) 1–14 15to 28 Estradiol and progesterone Morning Plasma

Stewart et al. (59) 7 21 Progesterone 12-h Plasma

Su et al. (60) 3–7 days after the end of menses 21 Progesterone Morning Plasma

Timon et al. (25) 1–2 21–22 Basal body temperature Morning Urine

Tulenheimo et al. (61) 6–9 21–24 Progesterone Morning Plasma

Villada et al. (62) 5–8 20–24 Basal body temperature Afternoon Saliva

Wolfram et al. (63) 2–6 21–24 LH ovulation test CAR Saliva

CAR, Cortisol Awakening Response.

which varied by two or more hours. The analysis included data
from 35 final studies.

As shown in Table 1, most of the studies included participants
in their 20s, with a BMI below 25. Whereas, some studies
incorporated fine-grained sub-phases of follicular and luteal
phases (see Table 2), others defined the phases as day 1–14
and 15–28. Phase estimation was determined via progesterone
level acquisition, LH surgemeasurement, basal body temperature
measurement, or pelvic ultrasound. Times of cortisol collection
were in the morning, afternoon/evening or over several
hours, and the source was saliva, plasma or urine. Whereas,
Supplementary Table 1 shows all the days/phases of menstrual
cycle, time of collection and sources of cortisol across all the

studies, Table 2 only shows the actual day (or range of days),
time and source of cortisol which were included in the analysis.
These two tables are provided in order to increase transparency
of reporting, as several studies reported several values, for which
we implemented the rules as specified in the Methods Section
Data Extraction.

Evaluation of Standardized Mean
Difference in Cortisol Levels Across
Menstrual Cycle
Women in the follicular phase had higher cortisol levels than
women in the luteal phase, with an overall Hedges’ g of
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FIGURE 2 | Forest plot of cortisol levels across the menstrual cycle. Positive standardized mean difference (SMD) means that cortisol levels were higher in the follicular

vs. luteal phase.

0.13 (p < 0.01) for the random effects model (Figure 2).
The confidence interval range was between 0.05 and 0.20.
No significant between-study difference was detected (tau2

=0; H = 1.0), with the level of heterogeneity in the
small range (I2 = 0%, Q = 30.69; p = 0.63). The Rank
Correlation Test for Funnel Plot Asymmetry resulted in
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TABLE 3 | Results of sub-analyses according to the biospecimen source and time of day.

Factor SMD Q

Value SE Z value p-value CI.LB CI.UB df Value p-value

Source

Plasma 0.12 0.0583 2.0907 0.0366 0.0076 0.2361 18 13.2214 0.7783

Saliva 0.1179 0.0615 1.9182 0.0551 −0.0026 0.2384 8 7.872 0.446

Time of day

Morning 0.1363 0.0485 2.8088 0.005 0.0412 0.2314 21 16.6924 0.7296

Afternoon 0.0966 0.0716 1.348 0.1777 −0.0438 0.237 7 9.1638 0.2411

Kendall’s tau = 0.14 (p = 0.23), indicating absence of small
study effects.

Sub-analysis of Cortisol Levels According
to Source and Time of Day
Sub-analysis according to the biospecimen source showed a
significant effect of plasma (p= 0.036) and marginally significant
effect of saliva (p = 0.055). The time of day sub-analysis showed
a significant effect of morning (p = 0.005), but not afternoon
(p = 0.177). Table 3 displays all relevant sub-analyses statistics,
including standardized mean difference, standard error, z and p-
values, confidence intervals, degrees of freedom, Q statistic and
its associated p-value.

DISCUSSION

For decades, literature on cortisol has yielded mixed results
with respect to its concentration in the follicular vs. luteal
phase of the menstrual cycle. Implementing a comprehensive
search of high-quality studies spanning a period of almost 50
years of research, we show that circulating cortisol levels are
higher in the follicular vs. luteal phase. Cortisol regulation is
a delicate process of extensive physiological processes working
in concert to adjust responses to environmental stimuli. Below,
we review mechanisms driving circulating cortisol levels to
both increase and decrease across various menstrual cycle time-
points, while noting that the net effect of these, or other, still
unidentified processes, is a higher circulating cortisol during
the follicular compared to the luteal phase, as reported in our
analysis (Figure 2).

The paraventricular nucleus (PVN) of the hypothalamus
integrates numerous circadian and environmental inputs to
funnel information through neurons expressing corticotropin-
releasing hormone (CRH). The release of CRH into the
hypophyseal portal vasostructure enhances the synthesis and
release of adrenocorticotropic hormone (ACTH) from the
anterior pituitary, which, in turn, stimulates adrenal glands to
synthesize and release cortisol to adapt metabolic processes and
behavioral responses.

Intriguingly, PVN neurons express high levels of estrogen
receptor beta (ER-β) and low levels of estrogen receptor alpha
(ER-α) (64–66). Several research studies have demonstrated
that estradiol, through its near equivalent affinity for the two

estrogen receptor subtypes, can selectively decrease or increase
HPA axis function. A high number of ER-β-expressing cells in
the PVN are oxytocin and vasopressin immunoreactive (67–
69), which complement the CRH neurons that also express ER-
β (64). Stimulation of ER-β in the PVN results in a reduction
of cortisol levels. In accord, both centrally- and peripherally-
delivered ER-β selective agonists inhibit the HPA function (70).
ER-α occupancy, on the other hand, has an indirect, trans-
synaptic activation in the PVN. The peri-PVN region contains
ER-α neurons, and their activation can impair glucocorticoid-
mediated negative feedback regulation of the HPA axis (71).
These opposing actions of estradiol—with ER-α amplifying, and
ER-β reducing HPA function—are in agreement with laboratory
observations that estradiol both enhances (72, 73) and inhibits
(74, 75) HPA function. Hence, in the luteal phase, when estradiol
levels are higher compared to the early/mid follicular phase,
theoretically, depending on the extent of ER-β or ER-α expression
and activation in or near the PVN, estradiol can either decrease
or increase circulating cortisol levels.

The activity of CRH neurons in the PVN is tightly
regulated by inhibitory GABAergic interneuron populations
(76). Allopregnanolone, a progesterone derivative resulting
from conversion by 5α-reductase type I and 3α-hydroxysteroid
dehydrogenase, is an endogenous neurosteroid and a potent,
positive, allosteric modulator of the action of the inhibitory
neurotransmitter GABA at GABAA receptor. Studies in rodents
show an inhibitory effect of allopregnanolone on the function
of the HPA axis (77–79). This effect of allopregnanolone seems
to be exerted through its action at GABAA receptors, and
subsequent inhibition on PVN neurons (80) under both basal
and stressful conditions (81). In support of these findings,
in addition to allopregnanolone, another potent GABAA

receptor modulator and deoxycorticosterone-derived steroid,
tetrahydrodeoxycorticosterone (TH-DOC), also attenuates the
HPA axis function (77, 82, 83). Therefore, in the luteal phase,
under the physiological milieu of higher circulating progesterone
levels and, most importantly, of its potent GABAA receptor-
modulating metabolite, allopregnanolone, lower circulating
cortisol levels can be expected relative to the follicular
phase. Not surprisingly, our meta-analysis has confirmed this
expectation (Figure 3).

Once released in the blood flow, ∼80% of circulatory cortisol
is bound to corticosteroid-binding globulin (CBG), leaving
∼5% of cortisol in the free form (84). CBG is primarily
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FIGURE 3 | Hypothetical cortisol levels across the menstrual cycle based on values reported in the analyzed studies.

synthesized by the liver and secreted into the bloodstream,
where it binds and provides a pool of circulating cortisol.
It enhances the availability of cortisol to be released on
demand both systemically and at a tissue level. Whereas plasma
cortisol reflects total cortisol (i.e., bound and unbound), the
salivary levels only reflect unbound/free cortisol. Changes in
circulating CBG have a significant impact on total, but not
free, cortisol concentrations (85, 86). The CBG is under a
tight regulation by estradiol, with women expressing greater
CBG basal concentrations than men (87). Interestingly, ethinyl
estradiol, found in oral contraceptives (OC), dose-dependently
increases CBG serum levels (88). Ethynyl estradiol is also
a potent ER modulator, with 194 and 151% of the affinity
of estradiol for the ER-α and ER-β, respectively (89). It
is, however, unclear whether changes in estradiol across the
menstrual cycles can alter CBG. Nenke et al. (90) report that
total CBG concentration reaches ∼1,000 nmol/L in pregnancy
as well as during the active phase of pill cycle containing
ethinyl estradiol. These expression levels are substantially higher
than the CBG levels of ∼500 nmol/L determined in non-
pregnant, non-OC taking individuals (90). Unfortunately, this
study did not account for menstrual cycle phase, which would
have provided valuable information regarding CBG changes,
if any, across the menstrual cycle. The question of potential
CBG changes across the menstrual cycle due to changes in
estradiol concentrations should be evaluated in future studies by
carefully examining the potential anti-estrogenic and blunting
effect of luteal progesterone on estradiol-induced increase in
CBG (91).

There are several limitations to consider in the present meta-
analysis. First, our sub-analyses may have been underpowered
to detect effects of time variations. For example, the “time
of day” sub-analysis showed a significant effect of morning,
but not afternoon menstrual phase cortisol (Table 3). However,

degrees of freedom for morning vs. afternoon sub-analyses
were 21 and 7, respectively, with the afternoon sample possibly
underpowered to detect a significant effect. Importantly, our sub-
analysis of “source” (plasma vs. serum) was consistent with our
main study results, showing higher follicular cortisol in both
the free and total form. Furthermore, given that the overall
sample was fairly homogenous, with most women in the same
age range (20–29 years old) and a normal BMI (Table 1), we
were unable to perform a meta-regression, which would have
provided meaningful information related to the direction of
future mechanistic studies.

As the research evaluating interacting effects between HPA
and HPG axes unfolds, there are several issues to consider.
Perhaps the greatest pitfall of menstrual cycle research is
the inadequate assessment of the menstrual cycle phase.
In the full-article evaluation step of our meta-analysis, we
excluded findings from 44 studies because menstrual cycle phase
was estimated based on self-report. Retrospective reports of
menstrual cycle “start” and “duration” are plagued by profound
phase misinformation (92) and prospective measures confirming
both ovulation and luteal phase status are essential. Menstrual
cycle phase determination was also based on self-report in
approximately half of the studies evaluating the HPA reactivity
in the follicular vs. luteal phase (16, 18, 19), contributing to the
inability to make meaningful conclusions regarding the direction
of effect.

HPA axis dysfunction is strongly implicated in the
etiopathology of affective disorders (93–95) with women
at an increased risk (96, 97). Yet, basic questions related
to the function of the HPA axis throughout stages of the
menstrual cycle under acute or prolonged stress conditions
remain largely unanswered. Whereas, our meta-analysis
reflects a single time point in the cortisol diurnal cycle, it
is still unknown whether there are phase-specific effects
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on the shape of the diurnal curve. This assessment could
be easily implemented given the availability of the salivary
(unbound) cortisol assay, and would provide a comprehensive
picture of daily cortisol trajectory and its potential mean,
amplitude and/or phase shift as the hormonal milieu changes
across the menstrual cycle. In this case, the awakening and
morning cortisol should be taken more frequently than the late
afternoon/evening samples.

It is strongly recommended that future studies employ
a fine-grained approach (i.e., evaluating early/mid follicular,
ovulatory, early, mid and late luteal phases) to advance women’s
mental health research, rather than broadly defining phases as
“follicular” vs. “luteal.”

In summary, the aim of our meta-analysis was to summarize
findings of a period spanning over 50 years of research and
test whether circulating cortisol levels change as a function of
menstrual phase.With respect to this objective, we showed higher
cortisol levels in the follicular vs. luteal phase of the menstrual
cycle. By completing this aim, our hope is to simultaneously
increase awareness of the poor state of women’s neuroendocrine
science research. Experimental protocols designed to study
effects that influence the HPA and HGA axis function need to
be specifically designed to account for women’s physiological
requirements. The joint protocols previously designed for
both sexes rarely apply to studies involving women. Whereas,
participant recruitment, evaluation and analysis are more
rapid in many research scenarios involving men, given the
dynamic nature of the menstrual cycle and the need for
prospective data collection, the same parameters should not be
applied to research involving women. Resources and completion
expectations need to be adjusted as such. Once implemented,
these changes will contribute meaningful information to progress
our understanding of rhythmic hormonal changes, which are

crucial for understanding the now well-established sex difference
in affective disorder development and progression.
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